恒化器系统的建模与稳定性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
恒化器模型是生物和数学中非常重要的模型之一。利用恒化器连续培养微生物已是微生物学研究中的一项重要的研究手段;是原理和应用之间的一个极其重要的中介。它已广泛的应用于研究微生物的种群增长和相互作用规律,也应用于生态系统尤其是水生生态系统的管理,预测和环境污染的控制。
     本论文基于当前生物学模型,特别是恒化器模型的研究现状,深入系统的研究了时滞和扩散方程描述的几类恒化器系统的渐近性态,本文的主要内容包括以下几个方面:
     一、研究了具有Beddington-DeAngelies功能性反应函数的时滞恒化器模型,利用无穷维连续动力系统的一致持续生存的理论给出了两竞争种群一致持续生存的充分条件,利用单调动力学系统得到了系统的全局渐近稳定性。
     二、研究了无种内竞争和有种内竞争的具有阶段结构的时滞恒化器模型的渐近性态,对于两类模型,都在正平衡点存在性的条件下证明了该系统的一致持续生存,对于两类相应的常微系统的模型,均在正平衡点存在性的条件下证明了该正平衡点的全局稳定性。
     三、研究了单营养食物链的恒化器模型的渐近性态,利用波动引理给出了边界平衡点全局吸引性的充分条件。然后利用无穷维动力系统一致持续生存的理论给出了该系统一致持续生存和绝灭的充分条件。
     四、在周期环境中研究了扩散双营养恒化器系统的一致持续生存和周期解的存在性。利用无穷离散动力系统的一致持续生存的理论给出了该系统一致持续生存的充分条件。然后在一致持续生存的条件下得到了该系统周期解的存在性。
     五、研究了一般的具有周期环境扩散种群模型的渐近性态。利用反应扩散方程的比较原理给出了系统存在周期解的充分条件。然后利用单调正、凹算子理论,给出了该扩散种群模型周期解全局吸引的充分条件。从而把有关时滞系统的相关结果推广到了扩散系统。并给出了具体的应用。然后进一步研究具有周期环境的双营养扩散恒化器模型的渐近性态,在周期解存在唯一的条件下证明了该周期解的全局吸引性。
     六、研究了一类生物反应器中双营养扩散模型的渐近性态。在该生物反应器系统中引入了系统本身存在的流速,并考虑了系统中营养和种群的不同扩散率和种群在反应器中的死亡率。首先考虑了具有互补营养的扩散模型,得到了该系统中种群
    
    绝灭和一致持续生存的充分条件;并对营养和种群具有相同的扩散系数和种群零死
    亡率的模型,证明了该系统存在唯一的正平衡解,并证明了该平衡解的全局吸引性。
    然后研究了具有可替代营养的扩散模型,给出了系统中种群绝灭和一致持续生存的
    充分条件;并进一步研究了营养和种群具有相同的扩散系数和种群零死亡率的模型
    唯一正平衡解的全局吸引的充分条件。
Chemostat model is one of the most significant models in Mathematical biology. The Chemostat is an important device used for growing micro-organisms in a continuous cultured environment, and a medium of great importance between principles and applications. It has been widely applied to the study of the increase in different populations of micro-organisms and their interactive law. In addition, it has also been applied to the management and prediction of the ecology system, especially the marine ecology, and the control of the environment pollution.
    In the light of the recent work in biological models, especially in the chemostat models, the dissertation provides a systematic study on the asymptotical behaviour of some chemostat models built by delay or diffusion differential equations. The main contents and results in this dissertation are as follows:
    i) The global asymptotic behavior of the Chemostat model with the Beddington-DeAngelies functional responses and time delays is studied. The conditions for the uniform persistence of the competing populations are obtained via uniform persistence of infinite dimensional systems. Then the global asymptotical stability of the positive equilibrium of the model with time delays is proved via monotone dynamical systems. Our results imply that mutual interference in a species may result in coexistence of the two competing species and demonstrate that those time delays do not influence the competitive outcome of the organisms.
    ii) The asymptotic behaviour of the Chemostat model with mutual interference or without mutual interference is studied. For the two models with delay, the uniform persistence of the models are both proved under the conditions of the existence of the positive equilibrium. Moreover, under those conditions, the global stability of the positive equilibrium is proved for the two models without delays.
    iii) The asymptotic behaviour of the Chemostat model with predator-prey populations and delays is studied. Sufficient conditions for the global attractivity of boundary equilibrium are obtained via fluctuation lemma, and sufficient conditions for uniform persistence of this model are obtained via uniform persistence of infinite dimensional systems.
    iv) The Chemostat model with diffusion and two-nutrients is considered. Sufficient conditions for uniform persistence of this model are obtained via uniform persistence of infinite dimensional discrete dynamical systems. Then one can easily obtain the existence of periodic solution of the Chemostat model.
    v) The asymptotical behavior of population models with diffusion is studied. Firstly sufficient conditions for the existence of periodic solution are obtained by comparison theory of reaction-diffusion differential equations; secondly sufficient conditions are established, under which the models admits a positive periodic solution which attracts all positive solutions. Then we apply the general theory to some types of population models with diffusion and periodic coefficients. Thus some earlier results of population models with delays are extended to diffusion population models.
    
    
    
    Finalh. the asymptotic behaviour of the Chemostat model with two-nutrient and diffusion is further studied. The global attractivity of the periodic solution is proved under the unique existence of the periodic solution.
    vi) The asymptotic behavior of flow reactor models with two-nutrient are considered. Different diffusion coefficients of the population and nutrients, the death rates of the population and the velocity exist in the flow reactor are introduced in these models. In complementary case, sufficient conditions for uniform persistence and extinction of the population are obtained by the theory of uniform persistence of infinite dimensional dynamical systems. Especially for the model with equal diffusion coefficients and zero death rates, the global attractivity of the unique positive steady-state solution is proved. In substitutable case, sufficient conditions for uniform persistence and extinction of population
引文
[1]陈兰荪,陈键.非线性生物动力系统.北京:科学出版社,1993
    [2]陈兰荪.生物数学引论.北京:科学出版社,1988
    [3]马知恩.种群生态学数学建模与研究.安徽:安徽教育出版社,1994
    [4]宋健.宋健科学论文选集.北京:科学出版社,1999
    [5]于景元,郭宝珠,朱广田.人口分布参数控制系统理论.武汉:华中理工大学出版社,1999
    [6]张元兴,许学书.生物反应器工程.上海:华东理工大学出版社,2001
    [7]张恭庆,林源渠.泛函分析讲义(上).北京:北京大学出版社,1995
    [8]张恭庆,郭懋正.泛函分析讲义(下).北京:北京大学出版社,1995
    [9]戴忠达.自动控制理论基础.北京:清华大学出版社,1991
    [10]徐克学.生物数学.北京:科学出版社,1999
    [11]罗定军,张祥,董梅芳.动力系统的定性与分支理论.北京:科学出版社,2001
    [12]郭大均.非线性泛函分析.山东:山东科技出版社,1985
    [13]郑祖庥.泛函微分方程理论.安徽:安徽教育出版社,1996
    [14]叶其孝,李正元,反应扩散方程引论,北京:科学出版社,1990
    [15]王稳地.一个时滞的离散模型的一致持续生存.西南师范大学学报(自然科学版),1992,17:13-18
    [16]宋国华,李秀琴,窦家维等.一类非线性微分方程周期解的存在性及唯一性.系统科学与数学,2000,20(4):403-411
    [17]邱志鹏.双营养Chemostat模型的渐进性态,西南师范大学学报(自然科学版),1999,24(1):1-7
    [18]陈兰荪,刘平舟,肖藻.种群生态系统的持续生存.生物数学学报,1988,3:18--32
    [19]陈兰荪,王东达,杨启昌.阶段结构种群动力学模型.北华大学学报(自然科学版),2000,6:185-191
    [20]曹进德,李永昆.具有时的高维周期系统周期解的存在性与唯一性.数学学报,1997,40:280-286
    [21]王开发.带时滞的微生物培养模型的动力学行为分析.硕士论文:西南师范大学数学系,1997
    [22]刘贤宁.非线性离散种群模型的全局状态.硕士论文: 西南师范大学数学系,1997
    
    数学系,1997
    [23] 邱志鹏.双营养Chemostat模型和具有空间限制的种群模型的渐近性态.硕士论文: 西南师范大学数学系,1999
    [24] 阮士贵.恒化器模型的动力学,华中师大学报(自然科学版),1997,31(4):377-397
    [25] 王稳地.持续生存与时滞模型.西南师范大学学报(自然科学版),1991,16:426-431
    [26] 房辉,曹进德.一类捕食-食饵系统周期正解的全局存在性,生物数学学报,15(2000):403-407
    [27] 屠彩凤 一致稳定合作系统的全局稳定性,数学学报42(1999),369-375.
    [28] G F Webb, Asymptotic stability for abstract nonlinear functional differential equations, Proc Amet Math Soc. 1976, 54:225-230
    [29] J Guckenheimer and P Holmes. Nonlinear oscillations, dynamical systems and birfurcations of vector fields, Springer-Verlag, New York, 1983
    [30] R H Martin, A maximun principle for semilinear parabolic systems, Proc Amer Math Soc. 1979.74:66-70
    [31] A G Frederickson and G Stepnanopoulus. Microbial competition, Science, 1981, 243: 972-9790
    [32] A Pazy. Semigroup of linear operators to partial differential equations, New York: Springer-Verlag. 1983
    [33] A W Leung and L A Ortega. Existence and Monotone scheme for time-periodic non quasimonotone reaction-diffusion systems: Application to autocatalytic chemistry, J Math Anal Appl, 1998. 221:712-733
    [34] B D Hassard, N D Kazarinoff and Y H Wan. Theory and applications of Hopf bifurcation. Cambridge: Cambridge Press, 1981
    [35] C C Travis and G F Webb, Existence and stability for partial differential equations, Trans Amer Math Soc, 1974, 200:395-418
    [36] C H Chiu, Lyapunov functions for the global stability of competing predators, J Math Anal Appl. 1999, 232-241
    [37] Cui Jingan and Chen Lansun. Permanence and extinction in logistic and lotka-volterra system with diffusion, J Math Anal and Appl, 2001, 258: 512-535
    [38] C V Pao, Periodi(?) solution of parabolic systems with nonlinear boundary
    
    conditions, J Math Anal Appl 234(1999) , 695-716.
    [39] C V Pao, On nonlinear reaction-diffusion systems. J Math Anal and Appl, 1982, 87: 165-198
    [40] D M Arrowsmith and C M Place. An introduction to dynamical systems. Cambridge: Cambridge University Press, 1990
    [41] D A Jones and Hal L Smith, Microbial competition for nutrient and wall sites in plug flow, SIAM J Appl Math, 2000, 60(5) : 1576-1600
    [42] E D Stemmons and Hal L Smith, Competition in a Chemostat with wall attachment, SIAM J Appl Math, 2000, 61(2) : 567-595
    [43] Fang Meng and Wang Ke, Periodicity in a delayed ratio-dependent predator-prey system, J Math Anal Appl, 262(2001) : 179-190
    [44] F. M. Williams, Dynamics of microbial populations, systems analysis and simulation in Ecology,B. Patten, ed., Academic Press, 1971,Char 3
    [45] Feng Yang and H I Freedman. Competing predators for a prey in a chemostat model with periodic nutrient input. J Math Biol, 1991, 29: 715-732
    [46] Fu Shengmao and Cui Shangbin. Persistence in a periodic competitor-competitor-mutualist diffusion system. J Math Anal Appl, 2001, 263: 234-245
    [47] G B Folland Partial differential equations. New York: Springer-Verlag, 1983
    [48] G Butler, H I Freedman and P Waltman. Uniformly persistence systems. Proc of the Amercian Math Soc, 1986, 96:425-430
    [49] G J Butler, S B Hsu and P Waltman. A mathematical model of the chemostat model with periodic washout rate, SIAM J Appl Math, 1985, 45: 435-449
    [50] G S K Wolkowicz, Xia Huaxing. Global asymptotic behavior of a Chemostat model with discrete delays. SIAM J Appl. Math.,1999,57(4) :1019-1043
    [51] G S K Wolkowicz and Z Lu. Global dynamics of a mathetical model of competition in the chemostat: general response function and differential death rates. SIAM J Appl Math, 1992, 52: 222-233
    [52] Hal L Smith, Periodic orbits of competitive and cooperative system, J Diff Equs, 1986, 65: 361-373
    [53] Hal L Smith, Competitive conexistence in an oscillating chemostat, SIAM J APP1 Math, 1981, 40: 498-522
    
    
    [54] Hal L Smith, Monotone dynamical system: An introduction to the theory of competitive and cooperative systems, American Mathematical Society. Providence, RI, 1995
    [55] Hal L Smith. Monotone semiflows generated by functional differential equations. J Diff Equations, 1987, 66: 420-442
    [56] Hal L Smith. On the asymptotic behavior of a class of deterministic models of cooperating species, SIAM J Appl Math, 1986, 46: 423-434
    [57] Hal L Smith and H R Thieme. Stable coexistence and bi-stability for competitive systems on ordered banach spaces. J Diff Equs, 2001, 176: 195-222
    [58] Hal L Smith and P Waltman. The Theory of the Chemostat. Cambridge university press, Cambridge,UK,1995
    [59] Hal L Smith and P Waltman. Perturbation of a globally stable steady state, Proceedings of the American Mathematical Society, 1999,127(2) : 447-453
    [60] Hal L Smith, Tang B and P Waltman, Competition in an n-vessel gradostat, SIAM J Appl Math. 1991, 51: 1451-1471
    [61] Hal L Smith and Zhao Xiaoqiang. Microbial growth in a plug flow reactor with wall adherence and cell motility. J Math Anal Appl, 2000, 241: 134-155
    [62] Hal L Smith and Zhao Xiaoqiang. Dynamics of a periodically pulsed bio-reactor model. J Diff Equs, 1999, 155: 368-404
    [63] Hsu S B, Hal L Smith and P Waltman, Dynamics of competition in the unstirred chemostat, Canad Appl Math Quart, 1994, 4: 461-483
    [64] H B Stewart, Generation of analytic semigroups by strongly elliptic operators under general boundary conditions, Trans of American Math Soc, 1980, 259(1) : 299-310
    [65] He Xue-zhong, Stability and delays in predator-prey system, J Math Anal Appl, 1996, 198: 355-370
    [66] H Amann. Fixed pointed equations and nonlinear eigenvalue problems in order Banach spaces, SIAM Rev, 1976, 18: 620-709
    [67] H Amann, Quasi-linear evolution equations and parabolic systems, Trans Amer Math Soc, 1986, 193(1) : 191-227
    [68] H I Freedman and J H Wu, Periodic solutions of single-species models with periodic delay, SIAM J Math Anal, 23(1992) : 689-701
    
    
    [69] H M Tsuchiya,J. L. Jost. A. G. Frederickson. Intermicrobial symbiosis, Ferment. Tech., 1972,4:43-49
    [70] H R Thieme, Persistence under relaxed point-dissipativity with an application to an epidemic model, SIAM J Math Anal 1993,24:407-435
    [71] Hsu S B and P Waltman, Analysis of a model of two competitors in a chemostat with an external inhibitor, SIAM J Appl Math, 1991, 52: 528-540
    [72] Hsu S B and P Waltman, On a system of reaction-diffusion equations arising from competition in an unstirred chemostat, SIAM J Appl. Math,1993,53:1026-1044
    [73] Hsu S B. Limiting behavior for competiting species. SIAM J Appl Math, 1978, 34: 760-763
    [74] Hsu S B, S P Hubbell and P Waltman. A mathematical theory of single nurient competition in continous cultures for micro-organisms. SIAM J Appl Math, 1991,32: 366-383
    [75] J Belair and S A Campbell. Stability and bifurcations of equilibriua in a multiple-delayed differential equation. SIAM J Appl Math,1994, 54: 1402-1424
    [76] J Belair, S A Campbell and P V D Driessche. Frustration stability, and delay-induced ossillations in a nueral network model. SIAM J Appl Math, 1996, 56: 245-255
    [77] J Chattopadhyay and O Anino, A predator-prey model with disease in the prey, Nonlinear Anal TMA, 1999, 36: 749-766
    [78] J Costerton, P Stewart and E Greenberg, Bacterial bio films: a common cause of persistent infections. Science. 1999, 284: 1318-1322
    [79] J D Murray, Mathematical biology, New York: Springer-Verlag, 1998
    [80] J Hofbauer and Joseph W H So, Competition in the gradostat: the global stability problem, Nonlinear Analysis TMA, 199422(8) : 1017-1031
    [81] J K Hale and P Waitman. Persistence infinite dimensional systems. SIAM J Math Anal, 1989,20: 388-395
    [82] J K Hale. Theory of functional differential equations.New York: Springer-verlag, 1977.
    [83] J P LaSalle The stability of dynamical systems. Philadelphia, Pennsylvania: Society for Industrial and Applied Mathematics, 1976
    
    
    [84] Joseph W H So and P Waltman, A Nonlinear boundary value problem arising from competition in the chemostat, Appl Math Comput, 1989, 32: 169-183
    [86] J Smoller. Shock waves and reaction-diffusion equations. New York: Springer-Verlag. 1983
    [87] J V Baxley and H B Thompsons. Nonlinear boundary value problems and competition in the chemostat. Nonlinear Analysis, Theory, Methods & Applications, 1994,22(11) : 1329-1344
    [88] K Deimling. Nonlinear functional analysis. New York: Springer-Verlag, 1980
    [89] K P Hadeler and H I Freedman, Predator-prey population with parasitic infection, J Math Biol, 1989. 27: 609-631
    [90] Kuang Y, Limit cycles in a chemostat-related model. SIAM J Appl Math, 1989, 49:1759-1767
    [91] Kuang Y. Differential equation with applications in population dynamics. New York: Academic Press, 1993
    [92] Kuang Y. Global stability in delay differential systems without dominating instantaneous negative feedbacks. J Diff Equs, 1995, 119: 503-532
    [93] L Dung. Global attractors and steady state solutions for a class of reaction-diffusion system. J Diff Equs, 1998, 147: 1-29
    [94] L Dung and Hal L Smith, A parabolic system modeling microbial competitiom in an unmixed bio-reactor, J Diff Equs,1996,130:59-91
    [95] Li Bingtuan, Kuang Yang. Simple food chain in a Chemostat with distinct removal rates. J Math Anal and Appl, 2000,242: 75-92
    [96] Li Bingtuan. Global asymptotic behavior of the chemostat : general response functions and different removal rates, SIAM J Appl Math, 1998, 59(2) : 411-422
    [97] Li Bingtuan, Gail S K Wolkowicz and Kuang Yang. Global asymptotic behavior of a chemostat model with two perfectly complementary resources and distributed delay. SIAM J Appl Math, 2000, 60(6) : 2058-2086
    [98] Liao Liu sheng, Feedback regulation of a logistic growth with variable coefficients, J Math Anal Appl, 2001, 259:489-500
    [99] Ling Hsiao and Piero De Mottoni. Persistence in reacting-diffusing systems: interaction of two predators and one prey. Nonlinear Analysis TMA,1987, 11(8) :877-891
    
    
    [100] Lu Zhengyi and Y Takeuchi. permance and global stability for cooperative Lotka-Volterra diffusion systems. Nonlinear Analysis TMA, 1992, 10: 963-975
    [101] Luo Zheng-Hua, Guo Bao-Zhu and Morgul Omer. Stability and stabilization of infinite dimensional systems with applications. New York: Springer-Verlag, 1998
    [102 ] M C Memory, Stable and unstable maniforlds for partial functional differential equations. Nonlinear Analysia, TMA, 1991, 16(2) : 131-142
    [103] M H Potter and H F Weinberger, Maximum principle in differential equations, New York: Speringer-Verlag, 1983
    [104] Michael Y Li and J S Muldowney, Global stability for the SEIR model in epidemiology. Math Biosci, 1995, 125: 155-164
    [105] Michael Y Li and J S Muldowney. On Bendixson's criterion. J Diff Equs, 1993. 106:27-39
    [106] M M Ballyk and G S K Wolkowicz. Expolitative competition in the chemostat for two perfectly substitutable resources. Math Biosci, 1993, 118:127-180
    [107] M M Ballyk and G S K Wolkowicz. An examinatin of the thresholds of enrichments: a resource-based growth model. J Math Biol, 1995, 33:435-457
    [108] M M Ballyk and H L Smith A model of microbial groth in a plug flw reactor with wall attachment. Math Biosci, 1999,158: 95-126
    [109] M M Bally, L Dung. Don A Jones and Hal L Smith, Effects of random motility on microbial growth and competition in a flow reactor, SIAM J Appl Math, 1998, 59(2) : 573-596
    [110] M W Hirsch. The dynamical systems approach to differential equation. Bull Amer Math. 1984, 11: 1-64
    [111] M W Hirsh. Systems of differential equations which are competitive or cooperative I. Limits sets. SIAm J Math Anal, 1982, 13: 167-179
    [112] M W Hirsh. System of differential equations which are competitiveor cooperative II. Convergence almost everywhere, SIAM J Math Anal. 1985. 16: 423-434
    [113] Nicholas D Ahkakos, Peter Hess and Hiroshi Matano. Discrete order preserving semigroups and stability for periodic parabolic differential
    
    equations. J Diff Equs. 1989, 82: 322-341
    [114] Nicholas D Ahkakos An application of the invariance principle to reaction-diffusion equations, J Diff Equs, 1979, 33: 201-225
    [115] N Kirupaharan and W P Dayawansa. Theory of reference frames and biological control. Mathematical and Computer Modelling, 2001, 33: 193-198
    [116] Paul C Fife and Min Ming Tang. Comparison principles for reaction-diffusion systems: irregular comparison functions and applications to questions of stability and speed of propagation of disturbances. Journal of Differential Equations. 1981, 40: 168-185
    [117] P Hess and Alan C Lazer. On an abstract competition model and applications. Nonlinear Anal TMA, 1991. 16(11) : 917-940
    [118] P Hess. Periodic parabolic boundary value problems and positivity, New York: John Wiley and Son. 1991
    [119] Qiu-liang Peng and H I Fredman,Global attractivity in a periodic Chemostat with general uptake functions, J Math Anal Appl, 2000,249: 300-323
    [120] R A Armstrong and R Mcgehee, Competitive exclusion, Amer Nature, 1980. 115:151-170
    [121] R H Martin and Hal L Smith, Abstract functional differential equations and reaction-diffusion systems. Trans Amer Math Soc, 1990,321: 1-44
    [122] R V Oneill, D L DeAngelis J J Pastor etc. Multiple nutrient limitations in ecological models. Ecological Modelling, 1989, 46: 147-163
    [123] Ruan Shigui. Bifurcation analysis of a chemostat model with a distributed delay. J Math Anal and Appl, 1996, 204: 786-812
    [124] Ruan S, The effect of delays on stability and persistence in plankton models. Nonlinear Analysis TMA. 1995,24: 575-585
    [125] Ruan S, Uniform persistence in reaction-diffusion plankton models, Rocky Mountain J Math, 1995. 25: 459-470
    [126] Ruan S and He Xuezhong, Global stability in chemostat-type competition models with nutrient recycling, SIAM J Appl Math, 1998, 58(1)
    [127] R S Cantrell and C Cosner, On the dynamics of predator-prey models with the Beddington-deangelis functional response, J Math Anal Appl. 2001. 57:206-222
    
    
    [128] Roger Temam. Infinite-dimensional dynamical systems in mechanics and physics. New York: Springer-Verlag, 2000
    [129] Shair Ahmad and Alan C lazer. Asymptotic behaviour of solutions of periodic competition diffusion system. Nonlinear Anal TMA, 1989, 13(3) : 263-284
    [130] S Busenberg and P van den Driessche, Analysis of a diease transmissin model in a population with varying size, J Math Bio, 1990, 28: 257-270
    [131] S F Ellermeyer. Competition in the chemostat: global asymptotic behavior of a model with delayed response in growth, SIAM J Appl Math, 1994, 54:456-465
    [132] S F Ellermeyer. S S Pilyugin and R Redheffer. Persistence criteria for a chemostat with variable nutrient input. Journal of Differential Equations. 2001,171: 132-147
    [133] S R Dunbar and K P Rybakowski, Perestience in models of predator-prey populations with diffusion, J DiffEqus 1986,65: 117-138
    [134] S R Hansen and S P Hubbel, Single-nutrient microbial competition: qualitative agreement between experiment and theoretically forecast outcome, Science. 1980, 207: 1492-1493
    [135] S S Pilyugin and P Waltman, Competition in the unstirred chemostat with periodic input and washout. SIAM J Appl Math, 1999,59(4) :1157-1177
    [136] S S Pilyugin and P Waltman, The simple chemostat with wall growth, SIAM J Appl Math, 1999, 59(9) : 1552-1572
    [137] Teresa Faria. Stability and Bifurcation for a Delayed Predator-prey model and the effect of diffusion. J Math Anal Appl, 2001, 254: 433-463
    [138] Teresa Faria. Normal forms and Hopf birfurcation for partial differential equations with delays. Trans Amer Math Soc, 2000, 352(5) : 2217-2238
    [139] Wang Wendi and Chen Lansun. A predator-prey system with stage-structure for predator. Computers Math Applic, 1997, 33:83-91
    [140] Wang Wendi, G Mulone, F Salemi and V Salone. Permanence and stability of a stage-structured predator-prey model. J Math Anal Appl, 2001, 262: 499-528
    [141] Wang Wendi and Ma Zhien. Uniform persistence in discrete semi-dynamical system and its application. System Science and Math Sciences, 1995, 8:
    
    228-233
    [142] Wang Wendi, Chen Lansun and Lu Zhengyi, Global stability of a competition model with periodic coefficients and time delays, Canad Appl Math Quart, 1995,3: 365-378
    [143] Wang Wendi and Ma Zhien. Harmless delays for uniform persistence. J Math Anal Appl. 1991, 158: 256-268
    [144] Wang Wendi and Ma Zhien. Asymptotic behavior of a predator-prey system with diffusion and delays. J Math Anal Appl, 1997, 206: 191-204
    [145] Wang Wendi, P Fergola and C Tenneriello. Global attractivity of periodic sloution of population models, J Math Anal and Appl, 1997. 211: 498-511
    [146] Wang Wendi and Ma Zhien. Convergence in the chemostat model with delayed response in growth. System Science and Math Sciences, 1999,
    [147] Wang Yifu and Yin Jingxue. Predator-prey in an unstirred chemostat with periodical input and washout, Nonlinear Analysis: real world applications, 2002, 3: 597-610
    [148] Wen Xianzhang, Global attractivity of positive periodic solution of multispecies ecological competition-predator delay system, Acta Math Sinica 45(2002) . 83-92.
    [149] Wu Jianhuan, Global bifurcation of coexistence state for the competition model in the chemostat, Nonlinear Analysis TMA, 2000, 39: 817-835
    [150] Wu Jianhua. Stability of steady-state solution of the competition model in the chemostat. Systems Sci and Math Sci, 1994, 7:256-260
    [151] Wu Jianhua and Gail S K Wolkowicz, A system of resoure-based growth models with two resources in the unstirred Chemostat. J Diff Equs,2001,172:300-332
    [152] Xiao Yanni and Chen Lansun. Analysis of a three species eco-epidemiological model, J Math Anal Appl, 2001, 258: 733-754
    [153] X Mora, Semilinear parabolic problems define semiflow on Ck-spaces. Trans Amer Math Soc, 1983, 278: 21-55
    [154] Xu Rui and Chen Lansun. Persistence and global stability for a delayed nonautonomous predator-prey system without dominating instantaneous negative feedback. J Math Anal and Appl, 2001, 262: 50-61
    [155] Yu M Svirezhev. Modern problem of mathematical ecology. Proceedings of
    
    the International congress of mathematicans(Warszawa), 1983, 2: 1677-1693
    [156] Yang Jianfu. Positive solutions of semilinear elliptic problems in exterior domains. Journal of Differential Equations, 1993, 106: 40-69
    [157] Zhao T, Global periodic solution and uniform persistence for a single population model in chemostat, J Math Anal App, 1995, 193: 329-352
    [158] Zhu Hsiu-Rong and Hal L Smith, Stable periodic orbits for a class of three dimensional competitive systems. J Diff Equs, 1994, 110: 143-156
    [159] Zhao Xiaoqiang and Vivian Hutson. Permanence in kolmogorov periodic predator-prey models with diffusion. Nonlinear Analysis, Theory, Methods & Applications, 1994, 23(5) : 651-668
    [160] Zhao Xiaoqiang. Global asymptotic behayior in a periodic competitor-competitor-mutualist parabolic system, Nonlinear Analysis, Theory, Methods & Applications, 1997, 29(5) : 551-568
    [161] Zhao Xiaoqiang. Uniform persistence in processes with application to nonautonomous competitive models. J Math Anal and Appl, 2001, 258: 87-101
    [162] Zhao Xiaoqiang. Asymptotic behavior for asymptotically periodic semiflows with applications, Comm Appl Nonlinear Anal, 1996, 3: 43-66
    [163] Zhao Xiaoqiang. Global attractivity and stability in some monotone discrete dynamical syatems, Bull Austral Math Soc. 1995, 3: 473-495
    [164] Zheng Sining. A reaction-diffusion system of a competitor-competitor-mutualist model. J Math Anal and Appl, 1987, 124: 254-280
    [165] J R Beddington. Mutual interference between parasites or predators and its effect on searching efficiency. J animal ecol., 1975, 44: 331-340
    [166] D L DeAngelis, R A Goldstain and R V O'Neill. A model for trophic interaction. Ecology, 1975, 56: 881-892
    [167] K Tognetti. The two stage stochastic. Math Biosci, 1975,25: 195-204
    [168] H J Barclay and Driessche P A. A model for a single species with two life history stages and added morality. Ecol Model, 1980,21: 157-166
    [169] S N Nood, S P Blythe and W S C Gurney et al. Instability in mortality estimation schemes related to stage structured population model. J Math Appl., 1989,6:47-68
    [170] W G Aiello and H I Freedman. Analysis of a model representing
    
    stage-structured populations growth with stage-dependent time delay. SIAM J Appl Math, 1992, 52: 855-869
    [171] W G Aiello and H I Freedman. A time-delay model of single-species growth with stage structure. Math Biosci. 1990, 101:139-153
    [172] Cao Yulin, Fan Jiangqing and Thomos C Card. The effects of stage-depentent time delay on a stage-structured population growth model. Nonlinear Anal TMA, 1992, 19: 95-105
    [173] Hsu S B, H L Smith and P Waltman, Competitive exclusion and coexistence for competitive systems on ordered banach spaces, Trans Amer Math Soc, 1996, 348(8) : 4083-4094
    [174] Zhao Xiaoqiang, Uniform persistence and periodic coexistence states in infinite-dimensional periodic semiflows with applications, Canadian Appli Math Quart, 1995, 3(4) :473-495