两类生物模型的共存态和渐近行为
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Lotka-Volterra模型和恒化器模型是两类重要的生物数学模型。Lotka-Volterra模型是种群动力学研究的核心内容,它在生态学,特别是动植物保护和生态环境的治理与开发等领域中有着非常重要的作用。恒化器是用于微生物连续培养的一种实验装置。它不仅是一个简化了的湖泊模型,可用于模拟湖泊和海洋中单细胞藻类浮游生物的生长,而且它已被广泛地应用于微生物的生产、生物制药、食品加工及生态系统尤其是水生生态系统的管理、预测和环境污染的控制。
     本文基于这两类生物模型的研究现状,主要运用非线性分析和非线性偏微分方程工具,特别是反应扩散方程(组)和对应椭圆方程(组)的理论和方法,深入系统地研究了具有抑制剂的非均匀恒化器模型和具有非单调转换率的Lotka-Volterra模型的动力学行为,包括正平衡态解的存在性、多解性、稳定性以及长时行为。所涉及的数学理论包括:上下解方法、比较原理、单调动力系统理论、全局分歧理论、拓扑不动点理论、Lyapunov-Schmidt过程和扰动理论等。本文的主要内容包括以下几个方面:
     一、研究了基本的非均匀恒化器模型,利用比较原理和上下解方法得到了模型正平衡解的全局吸引性。而且,采用上下解方法、Sobolev嵌入定理并结合特征值性质,详细分析了单物种模型的正解同物种生长率的关系。
     二、考察了一类具有内部抑制剂的非均匀恒化器模型。首先分析了平凡的、半平凡的非负解的稳定性,得到了系统解的一些渐近行为,并根据单调动力系统理论得到了正平衡解的存在性。然后,利用度理论、分歧理论以及摄动理论,重点分析了抑制剂对系统正平衡态解及渐近行为的影响。结果表明体现抑制作用的参数μ在决定模型解的稳定性和长时行为时起了重要作用。当参数μ充分大时,如果物种μ的生长率适当大,则此模型没有正解,且其中一个半平凡的非负解是全局吸引的;如果物种μ的生长率满足一定条件,则此模型的所有正解由一个极限问题决定,且两个半平凡的非负解是双稳定的。
     三、讨论了一类具有外加抑制剂的非均匀恒化器模型,利用分歧理论分析了共存解的全局结构和局部稳定性,采用单调方法研究了系统的渐近行为,并用数值模拟的方法说明了竞争物种灭绝或共存以及正平衡态解全局稳定的可能性,讨论了物种振荡与模型各参数的关系。
     四、研究了一类具有内部抑制剂的质体负载(plasmid-bearing)与质体自由(plasmid-free)的物种相互竞争的非均匀恒化器模型。首先,采用通常的锥映射的不动点指标理论得到了物种共存的充分条件。然后,利用度理论、分歧理论以
Lotka-Volterra model and chemostat model are two kinds of the most significant models in Mathematical biology. Lotka-Volterra model is the nuclear contents of population dynamics. This model plays a very important role in ecology, especially in protection of plants and creatures and in the control and exploiture of environment. The chemostat is a laboratory apparatus used for the continuous culture of microorganisms. It is used as an ecological model of a simple lake, as a model of the growth of unicellular phytoplankton in lake and sea. Moreover, it has been widely applied to the commercial production of microorganisms, biological pharmacy, food manufacture and the management and prediction of the ecology system, particularly the marine ecology, and the control of the environment pollution.
    In the light of the recent work in these two kinds of biological models, mainly using the theories of nonlinear analysis and nonlinear partial differential equations, especially those of reaction-diffusion equations and corresponding elliptic equations, we have systematically studied the dynamical behavior of the unstirred chemostat model with inhibitor and Lotka-Volterra model with nonmonotonic conversion rate, such as coexistence, multiplicity, stability of positive steady states and the longtime behavior of species. The tools used here include super-sub solutions method, comparison principle, monotone system theory, global bifurcation theory, fixed-point theory of topology, Lyapunov-Schmidt procedure and perturbation technique. The main contents and results in this dissertation are as follows:
    i) The standard unstirred chemostat model is studied. The global attractivity of the positive steady-state solutions of the original system is established by the comparison principle and super-sub solutions method. Moreover, the effects of the growth rate on the unique positive equilibrium of the single population model are studied in detail by means of super-sub solutions method, Sobolev embedding theorem and the properties of eigenvalues.
    ii) An unstirred chemostat model with an internal inhibitor is discussed. First, the elementary stability and asymptotic behavior of solutions of the system are determined. The existence of positive steady-state solutions is given by monotone system theory. Second, the effects of the inhibitor are considered carefully by making use of the degree theory,
引文
[1] Ai Shangbing. Periodic solutions in a model of competition between plasmid-bearing and plasmid-free organisms in a chemostat with an inhibitor[J]. J. Math. Biol., 2001, 42: 71-94.
    [2] Andrews J F. A mathematical model for the continuous of microorganisms utilizing inhibitory substrates[J]. Biotechnol. Bioeng., 1968, 10: 707-723.
    [3] Ballyk M, Dung L, Jones D A, Smith H L. Effects of random motility on microbial growth and competition in a flow reactor[J]. SIAM J. Appl. Math., 1998, 59: 573-596.
    [4] Ballyk M, Smith H L. A model of microbial growth in a plug flow reactor with wall attachment[J]. Math. Biosci., 1999, 158: 95-126.
    [5] Blat J, Brown K J. Global bifurcation of positive solutions in some systems of elliptic equations[J]. SIAM J. Math. Anal., 1986, 17: 1339-1353.
    [6] Braselton J P, Waltman P. A competition model with dynamically allocated inhibitor[J]. Math. Bioeci., 2001, 173: 55-84.
    [7] Bulter G J, Hsu Sze-Bi, Waltman P. A mathematical model of the chemostat with periodic washout rate[J]. SIAM J. Appl. Math., 1985, 45: 435-449.
    [8] Bush A W, Cook A E. The effect of time delay and growth rate inhibition in the bacterial treatment of wastewater[J]. J. Theoret. Biol., 1975, 63: 385-395.
    [9] Cantrell R S, Cosner C. Should a park be an island[J]. SIAM J. Appl. Math., 1993, 53(1): 219-252.
    [10] Cantrell R S, Cosner C. On the effects of spatial heterogeneity on the persistence of interacting species[J]. J. Math. Biol., 1998, 37: 103-145.
    [11] Cantrell R S, Ward J R. On competition-mediated coexistence[J]. SIAM J. Appl. Math., 1997, 57(5): 1311-1327.
    [12] Casal A, Eilbeck J C, Lopez-Gomez J. Existence and uniqueness of coexistence states for a predator-prey model with diffusion[J]. Differential Intergal Equations, 1994, 7: 411-439.
    [13] Chao L, Levin B R. Structured habitats and the evolution of anti-competitor toxins in bacteria[J]. Proc. Nat. Acad. Sci., 1981, 75: 6324-6328.
    [14] Chen Wenyan, Wang Mingxin. Positive steady states of a competitor- competitor-mutualist model[J]. Acta Math. Appl. Sinica, English Series, 2004, 20(1): 53-58.
    [15] Cosner C, Lou Yuan. Does movement toward better environments always benefit a population[J]. J. Math. Anal. Appl., 2003, 277: 489-503.[16] Crandall M G, Rabinowitz P H. Bifurcation from simple eigenvalues[J]. J. Functional Analysis, 1971, 8: 321-340.
    [17] Crandall M G, Rabinowitz P H. Bifurcation, perturbation of simple eigenvalues and linearized stability[J]. Arch. Rational Mech. Anal., 1973, 52: 161-180.
    [18] Dancer E N. On the indices of fixed points of mappings in cones and applications[J]. J. Math. Anal. Appl., 1983, 91: 131-151.
    [19] Dancer E N. On positive solutions of some pairs of differential equations[J]. Trans. Amer. Math. Soc., 1984, 284: 729-743.
    [20] Dancer E N. On positive solutions of some pairs of differential equations, Ⅱ[J]. J. Differential Equations, 1985, 60: 236-258.
    [21] Dancer E N. On the existence and uniqueness of positive solutions for competing species models with diffusion[J]. Trans. Amer. Math. Soc., 1991, 326(2): 829-859.
    [22] Dancer E N, Du Yihong. Competing species equations with diffusion, large interactions, and jumping nonlinearities[J]. J. Differential Equations, 1994, 114: 434-475.
    [23] Dancer E N, Du Yihong. Positive solutions for a three-species competition system with diffusion, Part I and Part Ⅱ[J]. Nonlinear Anal., 1995, 24(3): 337-373.
    [24] Dancer E N, Du Yihong. Effects of certain degeneracies in the predator-prey model[J]. SIAM J. Math. Anal., 2002, 34: 292-314.
    [25] Dancer E N, Zhang Zhitao. Dynamics of Lotka-Volterra competition system with large interaction[J]. J. Differential Equations, 2002, 182: 470-489.
    [26] Deimling K. Nonlinear Functional Analysis[M]. Berlin: Springer-Verlag, 1985.
    [27] Dockery J, Hutson V, Mischaikow K, Pernarowski M. The evolution of slow dispersal rates: a reaction-diffusion model[J]. J. Math. Biol., 1998, 37: 61-83.
    [28] Du Yihong. Uniqueness, multiplicity and stability for positive solutions of a pair of reaction-diffusion equations[J]. Proc. Roy. Soc. Edinburgh, 1996, 126A: 777-809.
    [29] Du Yihong. Effects of a degeneracy in the competition model, Part I and Part Ⅱ[J]. J. Differential Equations, 2002, 181: 92-164.
    [30] Du Yihong. Realization of prescribed patterns in the competition model[J]. J. Differential Equations, 2003, 193: 147-179.
    [31] Du Yihong, Brown K J. Bifurcation and monotonicity in competition reaction-diffusion systems[J]. Nonlinear Anal., 1994, 23(1): 1-13.
    [32] Du Yihong, Hsu Sze-Bi. A diffusive predator-prey model in heterogeneous environment[J]. J. Differential Equations, 2004, 203: 331-364.[33] Du Yihong, Lou Yuan. Some uniqueness and exact mulitiplicity results for a predator-prey model[J]. Trans. Amer. Math. Soc., 1997, 349(6): 2443-2475.
    [34] Du Yihong, Lou Yuan. S-shaped global bifurcation curve and Hopf bifurcation of positive solutions to a predator-prey model[J]. J. Differential Equations, 1998, 144: 390-440.
    [35] Du Yihong, Lou Yuan. Qualitative behaviour of positive solutions of a predator-prey model: effects of saturation[J]. Proc. Royal Soc. Edinburgh, 2001, 131A: 321-349.
    [36] Dung L, Smith H L. A parabolic system modelling microbial competition in an unmixed bio-reactor[J[. J. Differential Equations, 1996, 130: 59-91.
    [37] Edwards V H. Influence of high substrate concentrations on microbial kinetics[J]. Bioteclmol. Bioeng., 1970, 12: 321-349.
    [38] Feng Wei. Coexistence, stability, and limiting behavior in a one-predator-two-prey model[J]. J. Math. Anal. Appl., 1993, 179: 592-609.
    [39] Field R J, Burger M. Oscillations and Travelling Waves in Chemical Systems[M]. New York: Wiley, 1985.
    [40] Figueiredo D G, Gossez J P. Strict monotonicity of eigenvalues and unique continuation[J]. Comm. Partial Differential Equations, 1992, 17: 339-346.
    [41] Frederickson A G, Stephanopoulos G. Microbial competition[J]. Science, 1981, 213: 972-979.
    [42] Freedman H I, So J W H, Waltman P. Coexistence in a model of competition in the chemostat incorporating discrete delays[J]. SIAM J. Appl. Math., 1989, 49(3): 859-870.
    [43] Freter R. Mechanisms that control the microflora in the large intestine. Hentges D J. Human Intestinal Microflora in Health and Diseases[C]. New York: Academic Press, 1983.
    [44] Gui Changfeng, Lou Yuan. Uniqueness and nonuniqueness of coexistence states in the Lotka-Volterra competition model[J]. Comm. Pure Appl. Math., 1994, 47: 1571-1594.
    [45] Hansen S R, Hubbell S P. Single nutrient microbial competition: agreement between experimental and theoretical forecast outcomes[J]. Science, 1980, 207: 1491-1493.
    [46] Hess P. Periodic Parabolic Boundary Value Problems and Positivity[M]. Harlow: Longman Scientific & Technical, 1991.
    [47] Hsu Sze-Bi. A comptition model for a seasonly fluctuating nutrient[J]. J. Math. Biol., 1980, 9: 115-132.[48] Hsu Sze-Bi, Hubbell S P, Waltman P. A mathematical model for single nutrient competition in continuous cultures of micro-organisms[J]. SIAM J. Appl. Math., 1977, 32: 366-383.
    [49] Hsu Sze-Bi, Li Yen-Sheng, Waltman P. Competition in the presence of a lethal external inhibitor[J]. Math. Biosci., 2000, 167: 177-199.
    [50] Hsu Sze-Bi, Luo Ting-Kung, Waltman P. Competition between plasmid-bearing and plasmid-free organisms in a chemostat with an inhibitor[J]. J. Math. Biol., 1995, 34: 225-238.
    [51] Hsu Sze-Bi, Waltman P. Analysis of a model of two competitors in a chemostat with an external inhibitor[J]. SIAM J. Appl. Math., 1992, 52: 528-540.
    [52] Hsu Sze-Bi, Waltman P. On a system of reaction-diffusion equations arising from competition in an un-stirred chemostat[J]. SIAM J. Appl. Math., 1993, 53: 1026-1044.
    [53] Hsu Sze-Bi, Waltman P. Competition between plasmid-bearing and plasmid-free organisms in selective media[J]. Chem. Eng. Sci., 1997, 52(1): 23-35.
    [54] Hsu Sze-Bi, Waltman P. Competition in the chemostat when one competitor produce a toxin[J]. Japan J. Indust. Appl. Math., 1998, 15: 471-490.
    [55] Hsu Sze-Bi, Waltman P. A model of the effect of anti-competitor toxins on plasmid-bearing, plasmid-free competition[J]. Taiwanese J. Math., 2002, 6(1): 135-155.
    [56] I-Isu Sze-Bi, Waltman P. A survey of mathematical models of competition with an inhibitor[J]. Math. Bioeci., 2004, 187: 53-97.
    [57] Hsu Sze-Bi, Waltman P, Wolkowicz G S K. Global analysis of a model of plasmid-bearing, plasmid-free competition in the chemostat[J]. J. Math. Biol., 1994, 32: 731-742.
    [58] Hutson V, Lou Yuan, Mischaikow K. Spatiar heterogeneity of resources versus Lotka-Volterra dynamics[J]. J. Differential Equations, 2002, 185: 97-136.
    [59] Hutson V, Lou Yuan, Mischaikow K. Convergence in competition models with small diffusion coefficients[J]. J. Differential Equations, 2005, 211: 135-161.
    [60] Hutson V, Lou Yuan, Mischaikow K, Polacik P. Competing species near a degenerate limit[J]. SIAM J. Math. Anal, 2003, 35(2): 453-491.
    [61] Hutson V, Mischaikow K, Polacik P. The evolution of dispersal rates in a heteroge-neous time-periodic environment[J]. J. Math. Biol., 2001, 43: 501-533.
    [62] Kapral R, Schowalter K. Chemical Waves and Patterns[M]. Amsterdam: Kluwer, 1994.[63] Kato T. Perturbation Theory for Linear Operators[M]. Berlin/New York: Springer-Verlag, 1966: 427-476.
    [64] Keener J. Principles of Applied Mathematics[M]. MA: Addison-Wesley, Reading, 1987.
    [65] Kuramoto Y. Chemical Oscillations, Waves and Turbulence[M]. Berlin: Springer, 1984.
    [66] Kuto K. Stability of steady-state solutions to a prey-predator system with cross-diffusion[J]. J. Differential Equations, 2004, 197: 293-314.
    [67] Kuto K, Yamada Y. Mutiple coexistence states for a prey-predator system with cross-diffusion[J]. J. Differential Equations, 2004, 197: 315-348.
    [68] Lenski R E, Hattingh S. Coexistence of two competitors on one resource and one inhibitor: a chemostat model based on bacteria and antibiotics[J]. J. Theoret. Biol., 1986, 122: 83-93.
    [69] Levin B R. Frequency-dependent selection in bacterial populations[J]. Phil. Trans. Royal Soc. London, 1988, 319: 459-472.
    [70] Levin B R, Stewart F M. Partitioning of resources and the outcome of interspecific competition: a model and some general considerations[J]. Amer. Naturalist, 1973, 107: 171-198.
    [71] Li Lige. Coexistence theorems of steady states for predator-prey interacting system[J]. Trans. Amer. Math. Soc., 1988, 305: 143-166.
    [72] Li Lige, Logan R. Positive solutions of general elliptic competition models[J]. Differential and Integral Equations, 1991, 4(4): 817-834.
    [73] Li Kaitai, Wang Lizhou. Global bifurcation and long time behavior of the Volterra-Lotka ecological model[J]. International J. Bifurcation and Chaos, 2001, 11(1): 133-142.
    [74] Lopez-Gomez J, Pardo R M. Existence and uniqueness of coexistence states for the predator-prey model with diffusion: the scalar case[J]. Differential and Integral Equations, 1993, 6(5): 1025-1031.
    [75] Lou Yuan. Necessary and sufficient condition for the existence of positive solutions of certain cooperative system[J]. Nonlinear Anal., 1996, 26(6): 1079-1095.
    [76] Lou Yuan, Martinez S, Ni W M. On 3 x 3 Lotka-Volterra competition systems with cross-diffusion[J]. Discrete and Continuous Dynamical systems, 2000, 6(1): 175-190.
    [77] Lou Yuan, Nagylaki T, Ni W M. On diffusion-induced blowups in a mutualistic model[J]. Nonlinear Anal., 2001, 45: 329-342.[78] Lou Yuan, Ni W M. Diffusion, self-diffusion and cross-diffusion[J]. J. Diferential Equations, 1996, 131: 79-131.
    [79] Lou Yuan, Ni W M. Diffusion vs cross-diffusion: an elliptic approach[J]. J. Diferential Equations, 1999, 154: 157-190.
    [80] Lu Zhiqi, Hadder K P. Model of plasmid-bearing, plasmid-free competition in the chemostat with nutrient recycling and an inhibitor[J]. Math. Biosci., 1998, 148: 147-159.
    [81] Luo Ting-Kung, Hsu Sze-Bi. Global analysis of a model of plasmid-bearing and plasmid-free competition in a chemostat with inhibition[J]. J. Math. Biol., 1995, 34: 41-76.
    [82] Macken C A, Levin S A, Waldstatter R. The dynamics of bacteria-plasmid systems[J]. Math. Biosci., 1994, 32: 123-145.
    [83] Martinez S. The effect of diffusion for the multispecies Lotka-Volterra competition model[J]. Nonlinear Anal.: Real World Appl., 2003, 4: 409-436.
    [84] Murray J D. Mathematical Biology[M]. Second edition. Berlin: Springer-Verlag, 1993: 1-33, 63-92, 232-252.
    [85] Nie Hua, Wu Jianhua. A system of reaction-diffusion equations in the unstirred chemostat with an inhibitor[J]. Advances In Mathematics(China), 2003, 32(6): 753-756.
    [86] Okubo A. Difusion and Ecological Problem: Mathematical Models[M]. Berlin/New York: Springer-Verlag, 1980.
    [87] Pang P Y H, Wang MingXin. Non-constant positive steady states of a predator-prey system with non-monotonic functional response and diffusion[J]. Proc. London Math. Soc., 2004, 88: 135-157.
    [88] Pang P Y H, Wang Mingxin. Strategy and stationary pattern in a three-species predator-prey model[J]. J. Differential Equations, 2004, 200: 245-273.
    [89] Rabinowitz P H. Some global results for nonlinear problems[J]. J. Functional Analysis, 1971, 7: 487-513.
    [90] Holling C S. The functional response of predators to prey density and its role in mimicry and population regulation[J]. Mere. Entomolog. Soc. Can., 1965, 45: 3-60.
    [91] Ruan Weihua. Positive steady-state solutions of a.competing reaction-diffusion system with large cross-diffusion coefficients[J]. J. Math. Anal. Appl., 1996, 197: 558-578.[92] Ruan Weihua. A competing reaction-diffusion system with small cross-diffusions[J]. Canadian Appl. Math. Quart., 1999, 7(1): 69-91.
    [93] Ruan Weihua, Feng Wei. On the fixed point index and multiple steady-state solutions of reaction-diffusion systems[J]. Differential Integral Equations, 1995, 8(2): 371-392.
    [94] Ruan Shigui, Xiao DongMei. Global analysis in a predator-prey system with nonmonotonic functional response[J]. SIAM J. Appl. Math., 2001, 61: 1445-1472.
    [95] Ryder D F, DiBiasio D. An operational strategy for unstable recombinant DNA cultures[J]. Biotechnol. Bioeng., 1984, 26: 947-952.
    [96] Schaefer H H. Topological Vector Spaces[M]. New York: Macmillan, 1966.
    [97] Schuler M L, Kargi F. Bioprocess Engineering Basic Concepts[M]. Englewood Cliffs: Prentice Hall, 1992.
    [98] Shigesada N, Kawasaki K, Teramoto E. Spatial segregation of interacting species[J]. J. Theoret. Biol., 1979, 79: 83-99.
    [99] Smith H J. Competitive coexistence in oscillating chemostat[J]. SIAM J. Appl. Math., 1981, 40: 498-522.
    [100] Smith H L. Monotone dynamical systems: an introduction to the theory of competitive and cooperative systems[M]. Math. Surv. and Monographs, Vol. 41. Providence, Rhode Island: American Mathematical Society, 1995: 31-51, 145-161.
    [101] Smith H L, Waltman P. The Theory of the Chemostat[M]. Cambridge, UK: Cambridge University Press, 1995.
    [102] Smoller J. Shock Waves and Reaction-Diffusion Equations[M]. New York: Spring-Verlag, 1983: 93-122, 126-156, 167-181.
    [103] So W H, Waltman P. A nonlinear boundary value problem arising from competition in the chemostat[J]. Appl. Math. Comput., 1989, 32: 169-183.
    [104] Sokol W, Howell J A. Kinetics of phenol oxidation by washed cells[J]. Biotechnol. Bioeng., 1981, 23: 2039-2049.
    [105] Stephanopoulos G, Lapidus G. Chemostat dynamics of plasmid-bearing plasmid-free mixed recombinant cultures[J]. Chem. Eng. Sci., 1988, 43: 49-57.
    [106] Stephen A G, Yang Kuang. Two species competition with high dispersal: the winning strategy[J]. Math. Biosci. Engineering, 2005, 2(2): 1-18.
    [107] Thomas J W. Numerical Partial Differential Equations: Finite Difference Methods[M]. Beijing: Spring-Verlag, 1997: 5-139.[108] Wang Lizhou, Li Kaitai. On positive solutions of the Lotka-Volterra cooperating models with diffusion[J]. Nonlinear Anal., 2003, 53: 1115-1125.
    [109] Wu Jianhua. Global bifurcation of coexistence state for the competition model in the chemostat[J]. Nonlinear Anal., 2000, 39: 817-835.
    [110] Wu Jianhua, Nie Hun, Wolkowicz G S K. A mathematical model of competition for two essential resources in the unstirred chemostat[J]. SIAM J. Appl. Math., 2004, 65: 209-229.
    [111] Wu Jianhua, Wei Guangsheng. Coexistence states for cooperative model with diffusion[J]. Comput. Math. with Appl., 2002, 43: 1277-1290.
    [112] Wu Jianhua, Wolkowicz G S K. A system of resource-based growth models with two resources in the un-stirred chemostat[J]. J. Differential Equations, 2001, 172: 300-332.
    [113] Yamada Y. Stability of steady states for prey-predator diffusion equations with homogeneous Dirichlet conditions[J]. SIAM J. Math. Anal., 1990, 21: 327-345.
    [114] Zheng Sining. A reaction-diffusion system of a competitor- competitior-mutualist model[J]. J. Math. Anal. Appl., 1987, 124: 254-280.
    [115] Zheng Sining, Liu Jing. Coexistence solutions for a reaction-diffusion system of un-stirred chemostat model[J]. Appl. Math. Comput., 2003, 145: 579-590.
    [116] 王明新.《非线性抛物方程》[M].北京:科学出版社,1993:161-186.
    [117] 文贤章,王志成,庚建设.反应扩散方程静态解的存在性和渐近性态[J].数学年刊,1998,20A:379-388.
    [118] 叶其孝,李正元.《反应扩散方程引论》[M].北京:科学出版社,1990:115-156,192-228.