毒死蜱在大棚土壤和蔬菜中的残留特征、土壤生态效应及其控制途径
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,我国大棚蔬菜生产得到快速发展。然而,大棚温暖潮湿的环境给病虫害大量繁殖提供了适宜的条件,导致农药超量、频繁的使用。毒死蜱作为高效、广谱的有机磷杀虫、杀螨剂,在我国大棚蔬菜栽培中广泛使用,蔬菜和土壤受到一定程度污染。为评价毒死蜱在大棚蔬菜和土壤中施用的安全性,开展了大棚和露地蔬菜和土壤中毒死蜱的消解特征、毒死蜱单独和与其它农药复合多次重复使用在土壤中的降解特征及其对土壤微生物多样性的影响、毒死蜱高效降解菌的分离和鉴定、毒死蜱的微生物降解特性及途径、微生物菌剂和酶制剂对蔬菜和土壤中毒死蜱降解的生物强化等方面的研究。主要研究结果如下:
     毒死蜱在大棚和露地小白菜上的消解符合一级动力学特征,在土壤中的消解符合双室模型。大棚封闭的环境和季节更替能改变毒死蜱在小白菜和土壤中的消解行为,毒死蜱在大棚小白菜和土壤中的消解速率低于露地,在秋季的消解速率低于夏季。与露地相比,推荐剂量和双倍剂量毒死蜱在夏季大棚小白菜上的半衰期分别延长了26.0%和10.7%,在秋季大棚小白菜上的半衰期分别延长了6.6%和15.7%;在夏季土壤中的半衰期分别延长了44.4%和140.0%,在秋季大棚土壤中的半衰期延长了16.2%和63.1%。大棚小白菜收获期毒死蜱的残留量比露地高几乎50%。
     低浓度(4 mg kg~(-1))、中浓度(8 mg kg~(-1))和高浓度(12 mg kg~(-1))毒死蜱在土壤中的降解符合一级动力学特征,其半衰期分别为14.32 d、16.70 d和18.00 d。随着毒死蜱浓度的提高,其在土壤中的半衰期明显延长。三个浓度处理初期(7 d)土壤微生物多样性均受到明显的抑制作用,作用大小与毒死蜱浓度呈正相关,但这种影响随着时间的推移逐渐缓解,到第21 d各处理土壤微生物多样性已恢复至对照水平,到第35 d,各处理土壤微生物多样性甚至超过对照水平。
     毒死蜱、三唑酮和丁草胺单独和复合重复使用在土壤中的降解均符合一级动力学特征,随着施药次数的增加,除了毒死蜱+三唑酮处理中毒死蜱的半衰期略有延长外,其它各处理农药的半衰期均逐步缩短。各处理施药初期(3 d)土壤微生物多样性均受到明显的抑制作用,但这种影响随着时间的推移逐步缓解,到第21 d各处理土壤微生物多样性均已恢复至或超过对照水平。随着施药次数的增加,农药对土壤微生物多样性的抑制作用逐渐消失。
     从污染土壤中分离筛选到一株能以毒死蜱为唯一碳源和能源生长的真菌DSP,经形态特征和18S rDNA序列分析鉴定为轮枝孢属(Verticillium sp.)。
     在纯培养条件下真菌DSP对毒死蜱的降解与农药浓度、pH值和温度有关。Verticillium sp.DSP对毒死蜱的降解符合一级动力学特征,1、10和100 mg l~(-1)毒死蜱的降解半衰期分别为2.03 d、2.93 d和3.49 d,100 mg l~(-1)毒死蜱对真菌DSP有略微抑制作用。真菌DSP在pH 5.0、7.0和9.0时对1 mg l~(-1)毒死蜱的降解半衰期分别为2.03 d、1.93 d和2.11 d。真菌DSP在15、25和35℃时对1 mg l~(-1)毒死蜱的降解半衰期分别为3.31 d、2.03 d和1.88 d。真菌DSP在不同pH及温度下对毒死蜱的降解作用为pH7.0>pH5.0>pH9.0,35℃>25℃>15℃。通过毒死蜱微生物降解产物的GC-MS分析,TCP是最主要的降解产物,TCP在真菌DSP的作用下进一步烷基化生成TMP或脱卤素,鉴于真菌DSP可以利用毒死蜱为唯一底物生长,因此,毒死蜱降解产物可能进一步分解转化为二氧化碳,为一矿化过程。
     DSP菌剂处理能有效促进土壤和蔬菜上毒死蜱的降解。灭菌土、以前未使用毒死蜱的土壤、以前使用毒死蜱的土壤中毒死蜱的降解均符合一级动力学特征,毒死蜱在DSP菌接种土壤中的半衰期比相应未接种土壤的半衰期分别缩短了81.2%、59.1%和24.4%。与未喷菌剂的对照相比,DSP菌剂处理后毒死蜱在大棚和露地小白菜上的半衰期分别缩短了10.9%和17.6%,在大棚和露地土壤中的半衰期分别缩短了12.0%和37.1%。
     DSP粗酶制剂可以促进小白菜、空心菜、木耳菜、四季豆和辣椒上毒死蜱的降解。5种蔬菜上毒死蜱的降解均符合一级动力学特征,并且E(1:10)处理蔬菜上毒死蜱的降解速率要高于E(1:20)处理。与对照相比,DSP粗酶制剂E(1:20)处理小白菜、空心菜、木耳菜、四季豆和辣椒上毒死蜱的半衰期分别缩短了29.7%、34.4%、19.4%、19.4%和13.9%,E(1:10)处理蔬菜上相应的半衰期分别缩短了46.2%、56.8%、34.0%、45.7%和32.3%。结果表明,微生物酶制剂是控制蔬菜上农药残留的有效手段。
Greenhouse production of vegetables has been developed rapidly in China during the past decades. Compared to field conditions, greenhouse provides more favorable climate for fast reproduction of pests and diseases that result in extensive and frequent applications of pesticides. Chlorpyrifos is a broad spectrum organophosphorus insecticide and acaricide widely used for insect pest control on greenhouse vegetables. For the evaluation on the safety of chlorpyrifos application in the greenhouse, studies were conducted on dissipation of chlorpyrifos on vegetable and in soil in the greenhouse and open field, the influences of chlorpyrifos alone and in combination with other commonly used pesticides on soil microbial diversity. One fungal strain capble of degrading chlorpyrifos was isolated from soil. The fungal degradation of chlorpyrifos and its mechanism in pure cultures, and bioaugmentation of chlorpyrifos degradation on vegetable and in soil by the fungal strain preparation and its cell-free extracts were also investigated. The results were summarized as follows:
     Dissipation of chlorpyrifos on pakchoi and in soil was fitted to the first-order and bi-exponential models, respectively. The hermetic environment of the greenhouse and changes of seasons alter dissipation behavior of chlorpyrifos on pakchoi and in soil. The dissipation rates of chlorpyrifos on pakchoi and in soil in the greenhouse were lower than those in the open field, and the rates in the autumn were lower than those in the summer. Compared to the open field, the half-lives of degradation (DT_(50)) for chlorpyrifos at the recommended and double dosages on greenhouse pakchoi were extended by 26.0% and 10.7% in the summer, and 6.6% and 15.7% in the autumn, the corresponding DT_(50) on greenhouse soil were extended 44.4% and 140.0% in the summer, and 16.2% and 63.1% in the autumn, respectively. Chlorpyrifos residues at pre-harvest time in the greenhouse were higher than those in the open field by almost 50%.
     Degradation of chlorpyrifos at levels of 4.0, 8.0, and 12.0 mg kg~(-1) in soil were all fitted to the first-order function, its DT_(50) were measured to be 14.32 d, 16.70 d, and 18.00 d, respectively. The DT_(50) of chlorpyrifos in soil was extended with the concentration of chlorpyrifos. In all treatments, soil microbial diversity was inhibited significantly at 7 d after chlorpyrifos treatment, and the inhibitory effect was increased with the concentration of chlorpyrifos, but disappeared gradually with the time, and soil microbial diversity in all treatments was recovered to the level of the control at 21 d after treatment.
     Degradation of chlorpyrifos, triadimefon, and butachlor alone and in combination after repeated treatments in soil were all fitted to the first-order function. The DT_(50) of pesticides in all treatments were shortened gradually with the increasing of application times, except that the DT_(50) of chlorpyrifos was slightly extended in the combined treatment of chlorpyrifos and triadimefon. In all treatments, soil microbial diversity was inhibited significantly at 3 d after pesticides application, but the inhibitory effect disappeared gradually with the time, and soil microbial diversity recovered to or exceeded the level of the control at 21 d. The inhibitory effect of pesticides on soil microbial diversity disappeared gradually with the increasing of application times.
     A fungal strain DSP capable of utilizing chlorpyrifos as sole carbon and energy sources was isolated. Based on its morphological characteristics and 18S rDNA sequence analysis, the isolated strain was identified as Verticillium sp.
     The ability of the fungal strain DSP to degrade chlorpyrifos in pure cultures depends on pesticide concentration, pH, and temperature. Degradation of chlorpyrifos by the fungal strain DSP was fitted to the first-order function. The DT50 of chlorpyrifos were measured to be 2.03 d, 2.93 d, and 3.49 d at concentrations of 1, 10, and 100 mg l~(-1), 2.03 d, 1.93 d, and 2.11 d at pH 5.0, 7.0, and 9.0, and 3.31 d, 2.03 d, and 1.88 d at 15, 25, and 35°C, respectively. Fungal degradation was inhibited slightly by chlorpyrifos at high concentration of 100 mg l~(-1). The degradation rates of chlorpyrifos by the fungal strain DSP were effected by pH and temperature following an order of pH 7.0>pH 5.0>pH 9.0, and of 35°C >25°C> 15°C, respectively. TCP was identified as a main degradation product of chlorpyrifos by GC-MS analysis, and it was likely that TCP was further transferred to be TMP or dechlorination. According to the capability of the fungal strain DSP to utilize chlorpyrifos as sole carbon and energy sources, it is reasonable to propose that chlorpyrifos is mineralized by the fungal strain DSP.
     Degradation of chlorpyrifos in soil and on vegetable was significantly accelerated by the addition of the fungal strain DSP. Degradation of chlorpyrifos in sterilized soil, previously chlorpyrifos-untreated soil, and previously chlorpyrifos-treated soil were all fitted to the first-order function. Compared to the un-inoculated controls, the DT_(50) of chlorpyrifos in three inoculated soils were shorted by 81.2%, 59.1%, and 24.4%, respectively. In contrast to the controls, the DT_(50) of chlorpyrifos in the greenhouse and open field were shortened by 10.9% and 17.6% on pakchoi treated with the strain DSP preparation, and 12.0% and 37.1% in inoculated soils, respectively.
     Degradation of chlorpyrifos on pakchoi, water spinach, Malabar spinach, haricot beans, and pepper was enhanced significantly by cell-free extracts. Degradation of chlorpyrifos on five vegetables were all fitted to the first-order function, and the degradation rates of chlorpyrifos on E (1:10) treated vegetables were higher than those on E (1:20) treated vegetables. Compared with the controls, the DT50 of chlorpyrifos were shorten by 29.7%, 34.4%, 19.4%, 19.4%, and 13.9%, and by 46.2%, 56.8%, 34.0%, 45.7%, and 32.3% on E (1:20) and E (1:10) treated pakchoi, water spinach, Malabar spinach, haricot beans, and pepper, respectively. The results indicate cell-free extracts is a promising method for the detoxification of pesticide residues on vegetables.
引文
金志华,林建平,梅乐和.工业微生物遗传育种学原理与应用[M].北京:化学工业出版社,2006.
    刘新,尤民生,廖金英,魏英智.土壤中毒死蜱和微生物相互作用的研究[J].应用生态学报,2004(15):1174-1176.
    刘玉焕,钟英长.真菌降解有机磷农药乐果的研究[J].环境科学学报,2000,20(1):95-99.
    谭亚军,李少南,吴小毛.几种杀虫剂对大型蚤的慢性毒性[J].农药学学报,2004,6(3):62-66.
    田芹,周志强,江树人,任丽萍,张春荣,王金利.毒死蜱在环境水体中降解的研究[J].农业环境科学学报,2005,24:289-293.
    王焕民,张子明.新农药手册[M].北京:中国农业出版社,1989.
    王晓,楚小强,虞云龙,方华,陈洁,宋凤鸣.毒死蜱降解菌株Bacillus latersprorus DSP的降解特性及其功能定位[J].土壤学报,2006,43:648-654.
    王永杰,李顺鹏,沈标,赵勇.有机磷农药降解菌的紫外诱变育种[J].应用与环境生物学报,1999,5(6):635-637.
    吴慧明,朱国念.毒死蜱在灭菌和未灭菌土壤中的降解研究[J].农药学学报,2003,5:65-69.
    吴祥为,花日茂,操海群,汤锋,李学德,岳永德.毒死蜱降解菌的分离鉴定与降解效能测定[J].环境科学学报,2006,26:1433-1439.
    吴祥为,花日茂,汤锋,李学德,操海群.水中毒死蜱的光催化降解研究[J].农业环境科学学报,2006,25:486-489.
    姚斌,汪海珍,徐建民,张超兰.除草剂对水稻土微生物的影响[J].环境科学学报,2004,24(2):349-354.
    姚斌,徐建民,张超兰.甲磺隆对土壤微生物多样性的影响[J].土壤学报,2004,41:320-322.
    姚斌,徐建民,尚鹤,张超兰.阿特拉津除草剂对土壤微生物生态特征的影响[J].水土保持学报,2005,19(3):46-49.
    杨丽,赵宇华,张炳欣,张昕.一株毒死蜱降解细菌的分离鉴定及其在土壤修复中的应用[J].微生物学报,2005,45:905-909.
    张红,吕永龙,幸晓云,史艳飞,明宾.杀虫剂类POPs对土壤中微生物群落多样性的影响[J].生态学报,2005,25(4):937-942.
    郑华,欧阳志云,方治国,赵同谦.BIOLOG在土壤微生物群落功能多样性研究中的应用[J].土壤学报,2004,41:456-461.
    郑重.一种简易恒化器的装置和使用[J].微生物学通报,1989,16(2):111-112.
    郑重.农药的微生物降解[J].环境科学,1990,11(2):68-72.
    Adesodun, J. K., Davidson, D. A., Hopkins, D. W. Micromorphological evidence for changes in soil faunal activity following application of sewage sludge and biocide[J]. Applied Soil Ecology, 2005, 29: 39-45.
    Aguilera-del Real, A., Valverde-Garcia, A., Camacho-Ferre, F. Behavior of methamidophos residues in peppers, cucumbers, and cherry tomatoes grown in a greenhouse: evaluation by decline curves[J]. Journal of Agricultural and Food Chemistry, 1999, 47: 3355-3358.
    Aguilera-del Real, A., Valverde-Garcia, A., Fernandez-Alba, A., Camacho-Ferre, F. Behaviour of endosulfan residues in peppers, cucumbers and cherry tomatoes grown in greenhouse: evaluation by decline curves[J]. Pest Managment Science, 1997, 51: 194-200.
    Ahren, D., Ursing, B. M., Tunlid, A. Phylogeny of nematode-trapping fungi based on 18S rDNA sequences[J]. FEMS Microbiology Letters, 1998, 158:179-184.
    Aislabie, J., Saul, D. J., Foght, J. M. Bioremediation of hydrocarbon-contaminated polar soils[J]. Extremophiles, 2006, 10: 171-179.
    Alexander, M. Biodegradation of chemical of environmental concern[J]. Science, 1981, 211: 132-138.
    Alexander, M. In environmentally acceptable endpoints in soil[M]. Linz, D. G., Nakles, D. V., Eds.: American Academy of Environmental Engieers: Annapolis, M. D. 1997: 43-136.
    Al Mihanna, A. A., Salama, A. K., Abdalla, M. Y. Biodegradation of chlorpyriofos by either single or combined cultures of some soilborne plant pathogenic fungi[J]. Journal of Environmental Science and Health, 1998, 33(6): 693-704.
    Anhalt, J. C., Arthur, E. L., Anderson, T. A., Coats, J. R. Degradation of atrazine, metolachlor, and pendimethalin in pesticide-contaminated soils: Effects of aged residues on soil respiration and plant survival[J]. Journal of Environmental Science and Health Part B-Pesticides Food Contaminants and Agricultural Wastes, 2000, 35:417-438.
    Arrebola Liebanas, F. J., Egea Gonzalez, F. J., Moreno Frias, M., Fernandez Gutierrez, A., Hernandez Torres, M.E., Martinez Vidal, J.L. Evaluation of endosulfan residues in vegetables grown in greenhouses[J]. Pest Managment Science, 2001, 57: 1-8.
    Ashauer, R., Boxall, A., Brown, C. Uptake and elimination of chlorpyrifos and pentachlorophenol into the freshwater amphipod Gammarus pulex[J]. Archives of Environmental Contamination and Toxicology, 2006, 51: 542-548.
    Atlas, R.M. Diversity of microbial community[J]. Advanced Microbiology Ecology, 1984, 7: 19-47.
    Audus, L.J. The biological detoxieation of 2,4-dichlorophenoxyacetic acid in soil[J]. Plant and Soil, 1949, 2(1): 31-36.
    Awasthi, M.D., Prakash. N.B. Persistence of chlorpyrifos in soils under different moisture regimes[J]. Pesticide Science, 1997, 50: 1-4.
    Awasthi, N., Ahuja, R., Knmar, A. Factors influencing the degradation of soil-applied endosulfan isomers[J]. Soil Biology & Biochemistry, 2000, 32: 1697-1705.
    Back, K.H., Yoon, B.D., Kim, B.H., Cho, D.H., Lee, I.S., Oh, H.M., Kim, H.S. Monitoring of microbial diversity and activity during bioremediation of crude OH-contaminated soil with different treatments[J]. Journal of Microbiology and Biotechnology, 2007, 17: 67-73.
    Baruah, M., Mishra, R.R. Effect of herbicides butachlor, 2,4-D and oxyfluorfen on enzyme activities and CO_2 evolution in submerged paddy field[J]. Plant and Soil, 1986, 96: 287-291.
    Bending, G.D., Friloux, M., Walker, A. Degradation of contrasting pesticides by white rot fungi and its relationship with ligninolytic potential[J]. FEMS Microbiology Letters 2002, 212: 59-63.
    Bending, G.D., Rodriguez-Cruz, M.S. Microbial aspects of the interaction between soil depth and biodegradation of the herbicide isoproturon[J]. Chemosphere 2007, 66: 664-671.
    Benimeli, C.S., Amoroso, M.J., Chaile, A.P., Castro, G.R. Isolation of four aquatic streptomycetes strains capable of growth on organochlorine pesticides[J]. Bioresource Technology 2003, 89: 133-138.
    Benimeli, C.S., Castro, G.R., Chaile, A.P., Amoroso, M.J. Lindane removal induction by streptomyces sp M7[J]. Journal of Basic Microbiology, 2006, 46: 348-357.
    Benimeli, C.S., Castro, G.R., Chaile, A.P., Amoroso, M.J. Lindane uptake and degradation by aquatic Streptomyces sp strain M7[J]. International Biodeterioration & Biodegradation, 2007, 59: 148-155.
    Benitez, F.J., Real, F.J., Gonzalez, M., Pineda, M. Oxidation processes applied to the elimination of chlorpyrifos and acetochlor in aqueous solutions[J]. Fresenius Environmental Bulletin, 2006, 15: 1484-1490.
    Bhadbhade, B.J., Sarnaik, S.S., Kanekar, P.P. Bioremediation of an industrial effluent containing monocrotophos[J]. Current Microbiology, 2002, 45: 346-349.
    Bhadbhade, B.J., Sarnaik, S.S., Kanekar, P.P. Biomineralization of an organophosphorus pestidie, Monocrotophos, by soil bacteria[J]. Journal of Applied Microbiology, 2002, 93: 224-234.
    Bieganska, J. A model study of pesticide biodegradation in soil[J]. Biology Bulletin 2007, 34: 76-85.
    Binelli, A., Ricciardi, F., Riva, C., Provini, A. Integrated use of biomarkers and bioaecumulation data in Zebra mussel (Dreissena polymorpha) for site-specific quality assessment[J]. Biomarkers, 2006, 11: 428-448.
    Brown, K.A. Phosphotriesterases of Flavobacterium sp.[J]. Soil Biology & Biochemistry, 1980, 12: 105-112.
    Burrows, L.A., Edwards, C.A. The use of integrated soil microcosms to assess the impact of carbendazim on soil ecosystems[J]. Ecotoxicology, 2004, 13: 143-161.
    Cabras, P., Cabitza, F., Meloni, M., Pirisi, F.M. Behavior of some pesticide residues on greenhouse tomatoes. 2. Fungicides, acaricides, and insecticides[J]. Journal of Agricultural and Food Chemistry, 1985, 33: 935-937.
    Caesar-TonThat, T.C., Caesar, A.J., Gaskin, J.F., Sainju, U.M., Busscher, W.J. Taxonomic diversity of predominant culturable bacteria associated with microaggregates from two different agroecosystems and their ability to aggregate soil in vitro[J]. Applied Soil Ecology, 2007, 36: 10-21.
    Calbrix, R., Laval, K., Barray, S. Analysis of the potential functional diversity of the bacterial community in soil: a reproducible procedure using sole-carbon-source utilization profiles[J]. European Journal of Soil Biology, 2005, 41: 11-20.
    Capri, E., Balderaechi, M., Yon, D., Reeves, G. Deposition and dissipation of chlorpyrifos in surface water following vineyard applications in Northern Italy[J]. Environmental Toxicology and Chemistry, 2005, 24: 852-860.
    Caracciolo, A.B., Grenni, P., Ciccoli, R., Di Landa, G., Cremisini, C. Simazine biodegradation in soil: analysis of bacterial community structure by in situ hybridization[J]. Pest Management Science, 2005, 61: 863-869.
    Castillo, M.A., Felis, N., Aragon, P., Cuesta, G, Sabater, C. Biodegradation of the herbicide diuron by streptomycetes isolated from soil[J]. International Biodeteriorafion & Biodegradation, 2006, 58: 3-4.
    Castillo-Sanchez, J., Aguilera-del Real, A., Rodriguez-Sanchez, M., Valverde-Garci a, A. Residue levels, decline curves, and plantation distribution of procymidone in green beans grown in greenhouse[J]. Journal of Agricultural and Food Chemistry, 2000, 48: 2991-2994.
    Chiu, T.C., Yen, J.H., Hsieh, Y.N., Wang, Y.S. Reductive transformation of dieldrin under anaerobic sediment culture[J]. Chemosphere, 2005, 60:1182-1189.
    Claassens, S., Van Rensburg, P.J.J., Van Rensburg, L. Soil microbial community structure of coal mine discard under rehanilitation[J]. Water Air and Soil Pollution, 2006, 174: 355-366.
    Chapman, R.A., Chapman, P.C. Persistence of granular and EC formulations of chlorpyrifos in a mineral and an organic soil incubated in open and closed containers[J]. Journal of Environmental Science and Health, 1986, B21: 447-456.
    Ciglasch, H., Busche, J., Amelung, W., Totrakool, S., Kaupenjohann, M. Insecticide dissipation after repeated field application to a northen Thailand ultisol[J]. Journal of Agricultural and Food Chemistry, 2006, 54:8551-8559.
    Cochran, R.C., Kishiyama, J., Aldous, C., Carr Jr, W.C., Pfeifer, K.E Chlorpyrifos: hazard assessment based on a review of the effects of short-term and long-term exposure in animals and humans[J]. Food Chemisty and Toxicology, 1995, 33: 165-172.
    Comeau, Y., Greer, C.W., Samson, R. Role of inoculum preparation and density on the bioremediation of 2,4-D-contaminated soil by bioaugmentation[J]. Applied Microbiology and Biotechnology, 1993, 38:681-687.
    Cycon, M., Piotrowska-Seget, Z., Kaczynska, A., Kozdroj, J. Microbiological characteristics of a sandy loam soil exposed to tebuconazole and lambda-cyhalothrin under laboratory conditons[J]. Ecotoxicology, 2006, 15: 639-646.
    De Schrijver, A., De Mot, R. Degradation of pesticides by actinomycetes[J]. Critical Reviews in Microbiology, 1999, 25:85-119.
    Delorenzo, M.E., Scott, G.I., Ross, P.E. Effects of the agricultural pesticides atrazine, deethylatrazine, endosulfan, and chlorpyrifos on an estuarine microbial food web[J]. Environmental Toxicology and Chemistry, 1999, 18: 2824-2835.
    Desaint, S., Hartmann, A., Parekh, N,R., Foumier, J.C. Genetic diversity of carbofuran-degrading soil bacteria[J]. FEMS Microbiology Ecology, 2000, 34:173-180.
    De Wilde, T., Spanoghe, P., Debaer, C., Ryckeboer, J., Springael, D., Jaeken, P. Overview of on-farm bioremediation systems to reduce the occurrence of point source contamination[J]. Pest Management Science, 2007, 63:111-128.
    Dogheim, S.M., Alia, S.A.G., El-Marsafy, A.M. Monitoring of pesticide residues in Egyptian fruits and vegetables during 1996[J]. Journal of AOAC International, 2001, 84: 519-531.
    Duirk, S.E., Collette, T.W. Degradation of ehlorpyrifos in aqueous chlorine solutions: pathways, kinetics, and modeling[J]. Environmental Science & Technology, 2006, 40: 546-551.
    Duquenne, P., Parekh, N.R., Catroux, G., Foumier, J.C. Effect of inoculant density, formulation, dispersion and soil nutrient amendment on the removal of carbofuran residues from contaminated soil[J]. Soil Biology & Biochemistry, 1996, 28:1805-1811.
    Egea Gonzalez F.J., Marti nez Vidal, J.L., Castro Cano, M.L., Martinez Galera, M. Levels of metamidophos in air and vegetables after greenhouse applications by gas chromatography[J]. Journal of Chromatography A, 1998, 829: 251-258.
    El Hadiri, N., Ammati, M., Chgoura, M., Mounir, K. Behavior of methyl isothiocyanate in soils under field conditions in Morocco[J]. Chemosphere, 2003, 52: 927-932.
    Felsot, A.S., Dzantor, E.K. Potential of biostimulation to enhance dissipation of aged herbicide residues in land-farmed waste[J]. ACS Symposium Series, 1997, 664: 77-91.
    Fliessbach, A., Mader, P. Short- and long-term effects on soil microorganisms of two potato pesticide spraying sequences with either glufosinate or dinoseb as defoliants[J]. Biology and Fertility of Soils, 2004, 40: 268-276.
    Fogg, P., Boxall, A.B.A., Walker, A. Degradation of pesticides in biobeds: The effect of concentration and pesticide mixtures[J]. Journal of Agricultural and Food Chemistry, 2003, 51: 5344-5349.
    Fragoeiro, S., Magan, N. Enzymatic activity, osmotic stress and degradation of pesticide mixtures in soil extract liquid broth inoculated with Phanerochaete chrysosporium and Trametes versicolor[J]. Environmental Microbiology, 2005, 7: 348-355.
    Gajbhiye, V.T., Gupta, S., Gupta, R.K. Persistence of imidacloprid in/on cabbage and cauliflower[J]. Bulletin of Environmental Contamination and Toxicology, 2004, 72: 283-288.
    Gamon, M., Saez, E., Gil, J., Boluda, R. Direct and indirect exogenous contamination by pesticides of flee-farming soils in a Mediterranean wetland[J]. Archives of Environmental Contamination and Toxicology, 2003, 44:141-151.
    Garau, V. L., Angioni, A., Real, A.A.D., Russo, M., Cabras, P. Disappearance of azoxystrobin, pyrimethanil, cyprodinil, and fludioxonil on tomatos in a greenhouse[J]. Journal of Agricultural and Food Chemistry, 2002, 50:1929-1932.
    Garland, J.L., Mills, A.L. Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-cource utilization[J]. Applied and Environmental Microbiology, 1991, 57:2351-2359.
    Garland, J.L. Patterns of potential C source utilization by rhizosphere communities[J]. Soil Biology & Biochemistry, 1996, 28: 223-230.
    Gels, J.A., Held, D.W., Potter, D.A. Hazards of insecticides to the bumble bees Bombus impatiens (Hymenoptera: Apidae) foraging on flowering white clover in turf. Journal of Economic Entomology, 2002, 95, 722-728.
    Gianfreda, L., Nannipieri, P. Basic principles, agents and feasibility of bioremediation of soil polluted by organic compounds[J]. Minerva Biotecnologica, 2001, 13, 5-12.
    Girbal, L., Rols, J.L., Lindley, N.D. Growth rate influences reduetive biodegradation of the organophosphorus pesticide demeton by Corynebacterium glutamicum[J]. Biodegradation, 2000, 11,371-376.
    Girvan, M.S., Bullimore, J., Ball, A.S., Pretty, J.N., Osborn, A.M. Responses of active bacterial and fungal communities in soils under winter wheat to different fertilizer and pesticide regimens[J]. Applied and Environmental Microbiology, 2004, 70: 2692-2701.
    Goldstein, R.M., Mallory, L.M., Alexander, M. Reasons for possible failure of inoculation to enhance biodegradation[J]. Applied and Environmental Microbiology, 1985, 50: 977-983.
    Gonod, L.V., Martin-Laurent, F., Chenu, C. 2,4-D impact on bacterial communities, and the activity and genetic potential of 2,4-D degrading communities in soil[J]. FEMS Microbiology Ecology, 2006, 58: 529-537.
    Graebing, P., Chib, J.S. Soil photolysis in a moisture- and temperature-controlled environment. 2. Insecticides[J]. Journal of Agricultural and Food Chemistry, 2004, 52: 2606-2614.
    Greenhalgh, R., Dhavan, K.L., Weinberger, P. Hydrolysis of fenitrothion in model and natural aquatic systems[J]. Journal of Agricultural and Food Chemistry, 1980, 28: 102-105.
    Grigg, B.C., Assaf, N.A., Turco, R.F. Removal of atrazine contamination in soil and liquid systems using bioaugmentation[J]. Pesticide Science, 1997, 50:211-220.
    Gunalan, J., Fournier, C. Effect of microbial competition on the survival and activity of 2,4-D-degrading Alcaligenes xylosoxidans subsp. Denitrificans added to soil[J]. Letters in Applied Microbiology, 1993, 16:178-181.
    Haack, S.K. Analysis of factors affecting the accuracy, rep reducibility and interpretation of microbial community carbon source utilization patterns[J]. Applied and Environmental Microbiology, 1995, 61: 1458-1468.
    Hamilton, D., Ambrus, A., Dieterle, R., Felsot, A., Harris, C., Petersen, B., Racke, K., Wong, S.S., Gonzalez, R., Tanaka, K., Earl, M., Roberts, G., Bhuia, R. Pesticide residues in food-acute dietary exposure[J]. Pest Management Science, 2004, 60:311-339.
    Hancock, S., Ehrich, M., Hinckley, J., Pung, T., Jortner, B.S. The effect of stress on the acute neurotoxicity of the organophosphate insecticide chlorpyrifos[J]. Toxicology and Applied Pharmacology, 2007, 219: 136-141.
    Hangler, M., Jensen, B., Ronhede, S., Sorensen, S.R. Inducible hydroxylation and demethylation of the herbicide isoproturon by Cunninghamella elegans[J]. FEMS Microbiology Letters, 2007, 268: 254-260.
    Hart, M.R., Brookes, P.C. Soil microbial biomass and mineralization of soil organic matter after 19 years of cumulative field applications of pesticides[J]. Soil Biology & Biochemistry, 1996, 28:1641-1649.
    Hernandez, R., Chen, A.C., Davey, R.B., Ivie, G.W., Wagner, G.G, George, J.E. Comparison of genomic DNA in various strains of Boophilus microplus (Acari: Ixodidae) [J]. Journal of Medical Entomology, 1998, 35: 895-900.
    Henderson, K.L.D., Belden, J.B., Zhao, S.H., Coats, J.R. Phytoremediation of pesticide wastes in soil[J]. Zeitschrift Fur Naturforschung C-A Journal of Biosciences, 2006, 61: 213-221.
    Hernandez Torres, M.E., Egea Gonzalez, F.J., Castro Cano, M.L., Moreno Frias, M., Martinez Vidal, J.L. Residues of methamidofos, malathion, and methiocarb in greenhouse crops[J]. Journal of Agricultural and Food Chemistry, 2002, 50:1172-1177.
    Hill, B.D., Schaalje, G.B. A two-compartment model for the dissipation of deltamethrin on soil[J]. Journal of Agricultural and Food Chemistry, 1985, 33:1001-1006.
    Hirai, H., Nakanishi, S., Nishida, T. Oxidative dechlorination of methoxychlor by ligninolytic enzymes from white-rot fungi[J]. Chemosphere, 2004, 55: 641-645.
    Holden, P.A., Firestone, M.K. Soil microorganisms in soil cleanup: How can we improve our understanding[J]. Journal of Environmental Quality, 1997, 26: 32-40.
    Hong, Q., Zhang, Z.H., Hong, Y.F., Li, S.E A microcosm study on bioremediation of fenitrothion-contaminated soil using Burkholderia sp. FDS-1[J]. International Biodeterioration & Biodegradation, 2007, 59: 55-61.
    Horwood, M.A. Rapid degradation of termiticides under field conditions[J]. Australian Journal of Entomology, 2007, 46: 75-78.
    Hu, Q., Qi, H.Y., Zeng, J.H., Zhang, H.X. Bacterial diversity in soils around a lead and zinc mine[J]. Journal of Environmental Sciences-China, 2007, 19:74-79.
    Institute of Soil Science, Academia Sinica. Soil Physical and Chemical Analysis[M]. Shanghai: Shanghai Science and Technology Press, 1979.
    InSeon, K.; Rodong, E; YongTack, S. Involvement of adaptive mechanism and an energy-dependent efflux system of Pseudomonas sp. LE2 counteracting insecticide lindane. Pesticide Biochemistry and Physiology, 2002, 73, 140-148.
    Itoh, K., Ikushima, T., Fujii, K., Suyama, K., Yamamoto, H. Natural fluctuations in carbon substrate utilizing activity and community-level physiological profiles of microorganisms in rice paddy soils as a basis for assessing the side-effects of pesticides on soil ecosystems[J]. Journal of Pesticide Science, 2002, 27: 360-364.
    Itoh, K., Ikushima, T., Suyama, K., Yamamoto, H. Evaluation of pesticide effects on microbial communities in a paddy soil comparing with that caused by soil flooding[J]. Journal of Pesticide Science, 2003, 28: 51-54.
    Jena, S., Jeanmeure, L.EC., Wichukom, S.D., Wright, P.C. Carbon substrate utilization profile of a high concentration effluent degrading microbial consortium[J]. Environmental Technology, 2006, 27: 863-873.
    Johnsen, K., Jacobsen, C.S., Torsvik, V. Pesticide effects on bacterial diversity in agricultural soils-a review[J]. Biology and Fertility of Soils, 33: 443-453.
    Jolivalt, C., Neuville, L., Boyer, F.D., Kerhoas, L., Mougin, C. Identification and formation pathway of laccase-mediated oxidation products formed from hydroxyphenylureas[J]. Journal of Agricultural and Food Chemistry, 2006, 54: 5046-5054.
    Jouquet, P., Ranjard, L., Lepage, M., Lata, J.C. Incidence of fungus-growing termites (Isoptera, Macrotermitinae) on the structure of soil microbial communities[J]. Soil Biology & Biochemistry, 2005, 37:1852-1859.
    Kaare, J., Carsten, S.J., Vigdis, T. Pesticide effects on bacterial diversity in agricultural soils-a review[J]. Biology and Fertility of Soils, 2001, 33: 443-453.
    Karpouzas, D.G., Singh, B.K. Microbial degradation of organophosphorus xenobiotics: Metabolic pathways and molecular basis[J]. Advances In Microbial Physiology, 2006, 51: 119-185.
    Karpouzas, D.G., Walker, A. Factors influencing the ability of Pseudomonas putida strains epI to degrade ethoprophos in soil[J]. Soil Biology & Biochemistry, 2000a, 32: 1753-1762.
    Karpouzas, D.G, Walker, A. Factors influencing the ability of Pseudomonas putida strains epⅠ and Ⅱ to degrade the organophosphate ethoprophos[J]. Journal of Applied Microbiology, 2000b, 89: 40-48.
    Karr, C.J., Solomon, G.M., Brock-Utne, A.C. Health effects of common home, lawn, and garden pesticides[J]. Pediatric Clinics of North America, 2007, 54: 63.
    Kale, S.P., Carvalho, F.P., Raghu, K., Sherkhane, P.D., Pandit, G.G., Mohan Rao, A. Studies on degradation of 14C-chlorpyrifos in the marine environment[J]. Chemosphere, 1999, 39: 969-976.
    Kenaga, E.E., Whitnoy, W.K., Hardy, J.L., Doty, A.E. Laboratory tests with dursban insecticide[J]. Journal of Economic Entomology, 1965, 58: 1043.
    Kochetkov, V.V., Balakshina, V.V., Naumov, A.V., Grishchenkov, V.G., Boronin, A.M. Isolation and characterization of pesticide-degrading bacterial strains[J]. Applied Biochemistry and Microbiology, 1997, 33: 275-278.
    Kralj, M.B., Franko, M., Trebse, P. Photodegradation of organophosphorus insecticides-Investigations of products and their toxicity using gas chromatography-mass spectrometry and AChE-thermal lens spectrometric bioassay[J]. Chemosphere, 2007, 67: 99-107.
    Krutz, L.J., Zablotowicz, R.M., Reddy, K.N., Koger, C.H., Weaver, M.A. Enhanced degradation of atrazine under field conditions correlates with a loss of weed control in the glasshouse[J]. Pest Management Science, 2007, 63:23-31.
    Kumar, M., Philip, L. Bioremediation of endosulfan contaminated soil and water-Optimization of operating conditions in laboratory scale reactors[J]. Journal of Hazardous Materials, 2006, 136: 354-364.
    Kuyukina, M.S., Ivshina, I.B., Ritchkova, M.I., Philp, J.C., Cunningham, C.J., Christofi, N. Bioremediation of crude oil-contaminated soil using slurry-phase biological treatment and land farming techniques[J]. Soil & Sediment Contamination, 2003, 12: 85-99.
    Laabs, V., Amelung, W., Pinto, A., Altstaedt, A., Zech, W. Leaching and degradation of corn and soybean pesticides in an Oxisol of the Brazilian Cerrados[J]. Chemosphere, 2000, 41: 1441-1449.
    Laabs, V., Amelung, W. Sorption and aging of corn and soybean pesticides in tropical soils of Brazil[J]. Journal of Agricultural and Food Chemistry, 2005, 53:7184-7192.
    Lan, W.S., Gu, J.D., Zhang, J.L., Shen, B.C., Jiang, H., Mulehandani, A., Chen, W., Qiao, C.L. Coexpression of two detoxifying pesticide-degrading enzymes in a genetically engineered bacterium[J]. International Biodeterioration & Biodegradation, 2006, 58: 70-76.
    Larkin, R.P., Honeycutt, C.W. Effects of different 3-year cropping systems on soil microbial communities and rhizoctonia diseases of potato[J]. Phytopathology, 2006, 96: 68-79.
    Larkin, R.P., Honeycutt, C.W., Griffin, T.S. Effect of swine and dairy manure amendments on microbial communities in three soils as influenced by environmental conditions[J]. Biology and Fertility of Soils, 2006, 43: 51-61.
    Lee, T.H., Byun, I.G., Kim, Y.O., Hwang, I.S., Park, T.J. Monitoring biodegradation of diesel fuel in bioventing processes using in situ respiration rate[J]. Water Science and Technology, 2006a, 53: 263-272.
    Lee, J.B., Sohn, H.Y., Shin, K.S., Jo, M.S., Kim, J.E., Lee, S.W., Shin, J.W., Kum, E.J., Kwon, G.S. Isolation of a soil bacterium capable of biodegradation and detoxification of endosulfan and endosulfan sulfate[J]. Journal of Agricultural and Food Chemistry, 2006b, 54: 8824-8828.
    Lee, S.B., Taylor, J.W. Isolation of DNA from fungal mycelia and single spores. In "PCR Protoeols-A Guide to Methods and Applications[M]" (Innis, M.A., Gelfand, D.H., Sninsky, J.J., & White, T.J., Eds.). San Diego: Academic Press, 1990.
    Leistra, M., Dekker, A., Burg, A.M.M. Computed and measured leaching of the insecticide methomyl from greenhouse soils into water courses[J]. Water, Air, and Soil Pollution, 1984, 23: 155-167.
    Leistra, M., Smelt, J.H., Weststrate, J.H., van den Berg, F., Aalderink, R. Volatilization of the pesticides chlorpyrifos and fenpropimorph from a potato crop[J]. Environmental Science & Technology, 2006, 40: 96-102.
    Leland, J.E., Mullins, D.E., Berry, D.F. The fate of C-14-diazinon in compost, compost-amended soil, and uptake by earthworms[J]. Journal of Environmental Science and Health Part B-Pesticides Food Contaminants and Agricultural Wastes, 2003, 38: 697-712.
    Li, X.H., He, J., Li, S.P. Isolation of a chlorpyrifos-degrading bacterium, Sphingomonas sp. Strain Dsp-2, and cloning of the mpd gene[J]. Research in Microbiology, 2007, 158: 143-149.
    Lin, C.W., Lai, C.Y., Chen, L.H., Chiang, W.F. Microbial community structure during oxygen-stimulated bioremediation in phenol-contaminated groundwater[J]. Journal of Hazardous Materials, 2007, 140: 221-229.
    Liu, B., McCormell, L.L., Torrents, A. Hydrolysis of chlorpyrifos in natural waters of the Chesapeake Bay[J]. Chemosphere, 2001, 44:1315-1323.
    Liu, G.S. Physical and Chemical Analysis of Soils and Profile Description[M]. Beijing: China Standard Publishing House, 1996.
    Liu, J., Wang, L., Zheng, L., Wang, X.R., Lee, F.S.C. Analysis of bacteria degradation products of methyl parathion by liquid chromatography/electrospray time-of-flight mass spectrometry and gas chromatography/mass spectrometry[J]. Journal of Chromatography, 2006a, 1137:180-187.
    Liu, Z., Hong, Q., Xu, H.H., Jun, W., Li, S.P. Construction of a genetically engineered microorganism for degrading organophosphate and carbamate pesticides[J]. International Biodeterioration & Biodegradation, 2006b, 58: 65-69.
    Lu, J.H., Wu, L.S., Newman, J., Faber, B., Merhaut, D.J., Gan, J.Y. Sorption and degradation of pesticides in nursery recycling ponds[J]. Journal of Environmental Quality, 2006, 35: 1795-1802.
    Lu, Z.M., Min, H., Wu, S.W., Ruan, A.D. Phylogenetic and degradation characterization of Burkholderia cepacia WZ1 degrading herbicide quinclorac[J]. Journal of Environmental Science and Health Part B-Pesticides Food Contaminants and Agricultural Wastes, 2003 38: 771-782.
    Luo, H.F., Qi, H.Y., Zhang, H.X. Assessment of the bacterial diversity in fenvalerate-treated soil[J]. World Journal of Microbiology & Biotechnology, 2004, 20: 509-515.
    Magurran, A.E. Ecological diversity and its measurement[M]. Princeton N.J: Princeton University Press, 1988, 141-162.
    Mallick, B.K., Banerji, A., Shakil, N.A., Sethunathan, N.N. Bacterial degradation of chlorpyrifos in pure culture and in soil[J]. Bulletin of Environmental Contamination and Toxicology, 1999, 62: 48-55.
    Mansy, A.E.R., El-Bestawy, E. Toxicity and biodegradation of fluometuron by selected cyanobacterial species[J]. World Journal of Microbiology & Biotechnology, 2002, 18: 125-131.
    Martinez Vidal, J. L., Egea Gonzalez, F. J., Martinez Galera, M., Castro Cano, M. L. Diminution of chlorpyrifos and chlorpyrifos oxon in tomatoes and green beans grown in greenhouses[J]. Journal of Agricultural and Food Chemistry, 1998, 46: 1440-1444.
    Martinez Galera, M., Gil Garcia, M. D., Rodriguez Lallena, J. A., Lopez Lopez, T., Martinez Vidal, J. L. Dissipation of pyrethroid residues in peppers, zucchinis, and green beans exposed to field treatments in greenhouses: evaluation by decline curves[J]. Journal of Agricultural and Food Chemistry, 2003, 51: 5745-5751.
    Masutti, C. S. M., Mermut, A. r. Degradation of fipronil under laboratory conditions in a tropical soil from sirinhaem pernambuco, Brazil[J]. Journal of Environmental Science and Health Part B-Pesticides Food Contaminants and Agricultural Wastes, 2007, 42: 33-43.
    Mazanti, L., Rice, C., Bialek, K., Sparling, D., Stevenson, C., Johnson, W. E. Aqueous-phase disappearance of atmzine, metolachlor, and chlorpyrifos in laboratory aquaria and outdoor macrocosms[J]. Archives of Environmental Contamination and Toxicology, 2003, 44: 67-76.
    McCarthy, D. L., Claude, A. A., Copley, S. D. In vivo levels of chlorinated hydroquinones in a pentachlorophenol-degrading bacterium[J]. Applied and Environmental Microbiology, 1997, 63: 1883-1888.
    Mena, E., Garrido, A., Hemandez, T., Garcia, C. Bioremediation of sewage sludge by composting[J]. Communications In Soil Science and Plant Analysis, 2003, 34: 957-971.
    Mencia, M., Martinez-Ferri, A. I., Alcalde, M., De Lorenzo, V. Identification of a gamma-hexachlorocyclohexane dehydrochlorinase (LinA) variant with improved expression and solubility properties[J]. Biocatalysis and Biotransformation, 2006, 24: 223-230.
    Menon, P., Gopal, M., Prasad, R. Influence of two insecticides, chlorpyrifos and quinalphos, on arginine ammonification and mineralizable nitrogen in two tropical soil types[J]. Journal of Agricultural and Food Chemistry, 2004, 52: 7370-7376.
    Menon, P., Gopal, M., Parsad, R. Effects of chlorpyrifos and quinalphos on dehydrogenase activities and reduction of Fe~(3+) in the soils of two semi-arid fields of tropical India[J]. Agriculture Ecosystems & Environment, 2005, 108: 73-83.
    Mertens, B., Blothe, C., Windey, K., De Windt, W., Verstraete, W. Biocatalytic dechiorination fo lindane by nano-scale particles of Pd(0) deposited on Shewanella oneidensis[J]. Chemosphere, 2007, 66: 99-105.
    Miles, J.R.W., Harris, C.R., Tu, C.M. Influence of temperature on the persistence of chlorpyrifos and ehlorfenvinphos in sterile and natural mineral and organic soils[J]. Journal of Environmental Science and Health B, 1983, 18:705-712.
    Min, H., Ye, Y.F., Chen, Z.Y., Wu, W.X., Du, Y.F. Effects of butaehlor on microbial populations and enzyme activities in paddy soil[J]. Journal of Environmental Science and Health Part B-Pesticides Food Contaminants and Agricultural Wastes, 2001, 36: 581-595.
    Min, H., Ye, Y.F., Chen, Z.Y., Wu, W.X., Du, Y.F. Effects ofbutachlor on microbial enzyme activities in paddy soil[J]. Journal of Environmental Sciences-China, 2002, 14:413-417.
    Monteiro, J.P, Jurado, A.S., Moreno, A.J.M., Madeira, V.M.C. Toxicity of methoprene as assessed by the use of a model microorganism[J]. Toxicology in Vitro, 2005, 19: 951-956.
    Mostafa, F.I.Y., Helling, C.S. Isoproturon degradation as affected by the growth of two algal species at different concentrations and pH values[J]. Journal of Environmental Science and Health Part B-Pesticides Food Contaminants and Agricultural Wastes, 2001, 36: 709-727.
    Mulbry, W., Ahrens, E., Karns, J. Use of a field-scale biofilter for the degradation of the organophosphate insecticide coumaphos in cattle dip wastes[J]. Pesticide Science, 1998, 52: 268-274.
    Mulchandani, P., Chen, W., Mulchandani, A., Wang, J., Chen, L. Amperometric microbial biosensor for direct determination of organophosphate pesticides using recombinant microorganism with surface expressed organophosphorus hydrolase[J]. Biosensors & Bioelectronics, 2001, 16: 433-437.
    Muyzer, G., de Waal, E.C., Utitterlinden, A.G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA[J]. Applied and Environmental Microbiology, 1993, 59: 695-700.
    Nose, K. A multi-site decay model of pesticide in soil[J]. Journal of Pesticide Science, 1987, 12: 505-508.
    Ortiz-Hernandez, M.L., Quintero-Ramirez, R., Nava-Ocampo, A.A., Bello-Ramirez, A.M. Study of the mechanism of Flavobacterium sp for hydrolyzing organophosphate pesticides[J]. Fundamental & Clinical Pharmacology, 2003, 17: 717-723.
    Oliver, G.R., Bolles, H.G., Shurdut, B.A. Chlorpyrifos: Probabilistic assessment of exposure and risk[J]. Neurotoxicology, 2000, 21: 203-208.
    Padmavathi, J., Devi, K.U., Rao, C.U.M., Reddy, N.N.R. Telomere fingerprinting for assessing chromosome number, isolate typing and recombination in the entomopathogen Beauveria bassiana[J]. Mycological Research, 2003, 107: 572-580.
    Pal, R., Das, P., Chakrabarti, K., Chakraborty, A., Chowdhury, A. Butachlor degradation in tropical soils: Effect of application rate, biotic-abiotic interactions and soil conditions[J]. Journal of Environmental Science and Health Part B-Pesticides Food Contaminants and Agricultural Wastes, 2006, 41: 1103-1113.
    Pandey, S., Singh, D.K. Soil dehydrogenase, phosphomonoesterase and arginine deaminase activities in an insecticide treated groundnut (Arachis hypogaea L.) field[J]. Chemosphere, 2006, 63: 869-880.
    Pankhurst, C., Doube, B.M., Gupta, V.V.S.R. Defining and assessing soil health and sustainable productiving. Biological Indicators of soil Health[M]. CAB International, 1997.
    Parekh, N.R., Hartmann, A., Fournier, J.C. PCR detection of the reed gene and evidence of sequence homology between the degradative genes and plasmids from diverse carbofuran-degrading bacteria[J]. Soil Biology & Biochemistry, 1996, 28:1797-1804.
    Pattanasupong, A., Nagase, H., Sugimoto, E. Degradation of carbendazim and 2,4-dichlorophenoxyacetic acid by immobilized consortium on Loofa Sponge[J]. Journal of Bioscience and Bioengineering, 2004, 98, 28-33.
    Paul, D., Pandey, G., Meier, C., van der Meer, J.R., Jain, R.K. Bacterial community structure of a pesticide-contaminated site and assessment of changes induced in community structure during bioremediation[J]. FEMS Microbiology Ecology, 2006, 57:116-127.
    Pesaro, M., Widmer, F., Nicollier, G., Zeyer, J. Effects of freeze-thaw stress during soil storage on microbial communities and methidathion degradation[J]. Soil Biology & Biochemistry, 2003, 35: 1049-1061.
    Philippot, L., Kuffner, M., Cheneby, D., Depret, G., Laguerre, G., Martin-Laurent, F. Genetic structure and activity of the nitrate-reducers community in the rhizosphere of different cultivars of maize[J]. Plant and Soil, 2006, 287:177-186.
    Popov, V.H., Cornish, P.S., Sultana, K., Morris, E.C. Atrazine degradation in soils: the role of microbial communities, atrazine application history, and soil carbon[J]. Australian Journal of Soil Research, 2005, 43: 861-871.
    Potter, C.L., Glaser, J.A., Chang, L.W. Degradation of polynuclear aromatic hydrocarbons under bench-scale compost conditions[J]. Environmental Science & Technology, 1999, 33: 1717-1725.
    Preston-Mafham, J., Boddy, L., Randerson, P.F. Analysis of microbial community functional diversity using sole-carbon-source utilization profiles-a critique[J]. FEMS Microbiology Ecology, 2002, 42: 1-14.
    Racke, K.D., Coats, J.R., Titus, K.R. Degradation of chlorpyrifos and its hydrolysis product, 3,5,6-trichloro-2-pyridinol in soil[J]. Journal of Environmental Science and Health, 1988, 23: 527-539.
    Racke, K.D., Laskowski, D.A., Schultz, M,R. Resistance of chlorpyrifos to enhanced biodegradation in soil[J]. Journal of Agricultural and Food Chemistry, 1990, 38: 1430-1436.
    Ralebitso, T.K., Yamazoe, A., Roling, W.F.M., Braster, M., Senior, E., van Verseveld, H.W. Insights into bacterial associations catabolizing atrazine by culture-dependent and molecular approaches[J]. World Journal of Microbiology & Biotechnology, 2003, 19: 59-67.
    Ram, M.B., Shaharnat, U.K. Degradation of atrazine by Pseudomonas: N-dealkylation and dehalogenation of atmzine and its metabolites[J]. Journal of Agricultural and Food Chemistry, 1986, 34: 746-749.
    Rand, G.M. Fundamentals of aquatic toxicology[M]. Taylor and Francis, Washington, DC, USA. 1995.
    Rao, J.V., Bequm, G., Pallela, R., Usman, P.K., Rao, R.N. Changes in behavior and brain acetylcholinesterase activity in mosquito fish, Gambusia affinis in response to the sub-lethal exposure to chlorpyrifos[J]. International Journal of Environmental Research and Public Health, 2005, 2: 478-483.
    Redondo, M.J., Ruiz, M.J., Font, G., Boluda, R. Dissipation and distribution of atrazine, simazine, chlorpyrifos, and tetradifon residues in citrus orchard soil[J]. Archives of Environmental Contamination and Toxicology, 1997, 32: 346-352.
    Reinecke, S.A., Reinecke, A.J. The impact of organophosphate pesticides in orchards on earthworms in the Western Cape, South Africa[J]. Ecotoxicology and Environmental Safety, 2007, 66:244-251.
    Rhine, E.D., Fuhrmann, J.J., Radosevich, M. Microbial community responses to atrazine exposure and nutrient availability: Linking degradation capacity to community structure[J]. Microbial Ecology, 2003, 46:145-160.
    Rial-otero, R., Arias-estevez, M., Lopez-periago, E., Cancho-grande, B., Simal-gandara, J. Variation in concentrations of the fungicides tebuconazole and dichlofluanid following successive applications to greenhouse-grown lettuces[J]. Journal of Agricultural and Food Chemistry, 2005, 53: 4471-4475.
    Riaz-ul-Haq, Shakoori, A.R. Microorganisms resistant to heavy metals and toxic chemicals as indicators of environmental pollution and their use in bioremediation[J]. Folia Biologica-Krakow, 2000, 48, 143-147.
    Richins, R.D., Kaneva, I., Mulchandani, A., Chen, W. Biodegradation of organophosphorus pesticides by surface-expressed organophosphorus hydrolase[J]. Nature Biotechnology, 1997, 15: 984-987.
    Rinklebe, J., Langer, U. Microbial diversity in three floodplain soils at the Elbe River (Germany) [J]. Soil Biology & Biochemistry, 2006, 38:2144-2151.
    Robert, M., Chenu, C. Interaction between soil minerals and microorganisms[A]. In: Stotzky, G., Bollag, J.M. Soil Biochemistry. New York, Marcel Dekker Inc, 1992, 7: 307-379.
    Robertson, L.N., Chandler, K.J., Stickley, B.D.A., Cocco, R.F., Ahetagic, M. Enhanced microbial degradation implicated in rapid loss of chlorpyrifos from the controlled-release formulation suSConR Blue in soil[J]. Crop Protection,1998, 17: 29-33.
    Rodriguez, R.A., Toranzos, G.A. Stability of bacterial populations in tropical soil upon exposure to Lindane[J]. International Microbiology, 2003, 6: 253-258.
    Roeth, F. W. Enhanced herbicide degradation in soil with repeat application. Rev. Weed Sei. Champaign, m: Weed Science Society of America. 1986; v.2, p. 45-65.
    Ronald, B.C., Mitchell, J.A. Enhanced degradation of the fungicide vinclozolin: isolation and characterization of a responsible organism[J]. Pesticide Science, 1996, 48:13-23.
    Ros, M., Goberna, M., Moreno, J.L., Hernandez, T., Garcia, C., Insam, H., Pascual, J.A. Molecular and physiological bacterial diversity of a semi-arid soil contaminated with different levels of formulated atrazine[J]. Applied Soil Ecology, 2006, 34: 93-102.
    Rousseaux, S., Hartmann, A., Rouard, N., Soulas, G. A simplified procedure for terminal restriction fragment length polymorphism analysis of the soil bacterial community to study the effects of pesticides on the soil microflora using 4,6-dinitroorthocresol as a test case[J]. Biology and Fertility of Soils, 2003, 37: 250-254.
    Rudel, H. Volatilisation of pesticides from soil and plant surfaces[J]. Chemosphere, 1997, 35: 143-152.
    Runes, H.B., Jenkins, J.J., Bottomley, P.J. Atrazine degradation by bioaugmented sediment from constructed wetlands[J]. Applied Microbiology and Biotechnology, 2001, 57: 427-432.
    Russell, R.J., Sutherland, T.D., Home, I., Oakeshott, J.G. Enzymatic bioremediation of chemical pesticides[J]. Australasian Biotechnology, 2001, 11: 24-26.
    Sakkas, V.A., Lambropoulou, D.A., Albanis, T.A. Study of chlorothalonil photodegradation in natural waters and in the presence of humic substances[J]. Chemosphere, 2002, 48: 939-945.
    Satsuma, K., Kameshiro, M., Hayashi, O., Sato, K., Kato, Y. Characterization of a Nocardioides-based, atrazine-mineralizing microbial colony isolated from Japanese riverbed sediment[J]. Journal of Pesticide Science, 2006, 31: 420-423.
    Scherwinski, K., Wolf, A., Berg, G. Assessing the risk of biological control agents on the indigenous microbial communities: Serratia plymuthica HRO-C48 and Streptomyces sp. HRO-71 as model bacteria[J]. Biocontrol, 2007, 52: 1573-8248.
    Schrap, S.M., van den Heuvel, H., van der Meulen, J., Ruiter, H., Parsons, J.R. A chemostat system for investigating pesticide biodegradation in continuous mixed bacteria cultures originating from surface water[J]. Chemosphere, 2000, 40, 1389-1397.
    Scow, K.M., Sirnkins, S., Alexander, M. Kinetics of mineralization of organic compounds at low concentrations in soil[J]. Applied and Environmental Microbiology, 1986, 5: 1028-1035.
    Sette, L.D., de Oliveira, V.M., Manfio, G.P. Isolation and characterization of alachlor-degrading actinomycetes from soil[J]. Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology, 2005, 87:81-89.
    Shan, M., Fang, H., Wang, X., Feng, B., Chu, X.Q., Yu, Y.L. Effect of chlorpyrifos on soil microbial populations and enzyme activities[J]. Journal of Environmental Sciences, 2006, 18: 4-5.
    Sherman, J.D. Chlorpyrifos (dursban)-associated birth defects: report of four cases[J]. Archives of Environmental Health, 1996, 51: 5-8.
    Shimazu, M., Chen, W., Mulchandani, A. Biological detoxification of organophosphate pesticides[J]. Pesticide Decontamination and Detoxification ACS Symposium Series, 2004, 863: 25-36.
    Siebers, J., Mattusch, P. Determination of airborne residues in greenhouses after application of pesticides[J]. Chemosphere, 1996, 33:1597-1607.
    Singh, B.K., Walker, A. Microbial degradation of organophosphorus compounds[J]. FEMS Microbiology Reviews, 2006, 30: 428-471.
    Singh, B.K., Walker, A., Morgan, J.A.W., Wright D.J. Effects of soil pH on the biodegradation of chlorpyrifos and isolation of a chlorpyrifos-degrading bacterium[J]. Applied and Environmental Microbiology, 2003, 69:5198-5206.
    Singh, B.K., Walker, A., Morgan, J.A.W., Wright, D.J. Biodegradation of chlorpyrifos by Enterobacter strain B-14 and its use in bioremediation of contaminated soil[J]. Applied and Environmental Microbiology, 2004, 70: 4855-4863.
    Singh, B.K., Walker, A., Wright, D.J. Degradation of chlorpyrifos, fenamiphos, and chlorothalonil alone and in combination and their effects on soil microbial activity[J]. Environmental Toxicology and Chemistry, 2002, 21: 2600-2605.
    Singh, B.K., Walker, A., Wright, D.J. Bioremedial potential of fenamiphos and ehlorpyrifos degrading isolates: Influence of different environmental conditions[J]. Soil Biology & Biochemistry, 2006, 38: 2682-2693.
    Singh, B.K., Walker, A., Wright, D.J. Cross-enhancement of accelerated biodegradation of organophosphorus compounds in soils: Dependence on structural similarity of compounds[J]. Soil Biology & Biochemistry, 2005, 37: 1675-1682.
    Singh, N. Factors affecting triadimefon degradation in soils[J]. Journal of Agricultural and Food Chemistry, 2005, 53: 70-75.
    Sirisha, K., Mohan, S.V., Reddy, S.J. Effect of repeated applications of ehlorpyrifos on its degradation in surface and subsurface soil[J]. Toxicological & Environmental Chemistry, 2006, 88: 373-384.
    Smalla, K., Wachtendorf, U., Heuer, H., Liu, W., Fomey, L. Analysis of BIOLOG GN substrate utilization patterns by microbial communities[J]. Applied and Environmental Microbiology, 1998, 64:1220-1225.
    Smith, D., Alvey, S., Crowley, D.E. Cooperative catabolic pathways within an atrazine-degrading enrichment culture isolated from soil[J]. FEMS Microbiology Ecology, 2005, 53: 265-273.
    Sojka, R.E., Entry, J.A., Fuhrmann, J.J. The influence of high application rates of polyaerylamide on microbial metabolic potential in an agricultural soil[J]. Applied Soil Ecology, 2006, 32: 243-252.
    Solbrig, O.T. From genes to ecosystems: a research agenda for biodiversity. Report of an IUBS-SCOPEUNESCO workshop[C]. The International Union of Biological Sciences. Paris France: 51 Boulevar dole Montmorenny, 1991.
    Sorensen, S.R., Holtze, M.S., Simonsen, A., Aamand, J7. Degradation and mineralization of nanomolar concentrations of the herbicide dichlobenil and its persistent metabolite 2,6-dichlorobenzamide by Aminobacter sp. Isolated from dichlobenil-treated soils[J]. Applied and Environmental Microbiology, 2007, 73: 399-406.
    Sprenger, W.W., Dijkstra, A., Zwart, G.J.M., van Agterveld, M.P., van Noort, P.C.M., Parsons, J.R. Competition of a parathion-hydrolyzing Flavobacterium with bacteria from ditch water in carbon-, nitrate- and phosphate-limited continuous cultures[J]. FEMS Microbiology Ecology, 2003, 43: 45-53.
    Staddon, W.J., Duchesne, L.C., Trevors, J.T. Microbial diversity and community structure of postdisturbance forest soils as determined by sole-Carbon-ultilization patems[J]. Microbial Ecology, 1997, 34: 125-130.
    Stenrod, M., Eklo, O.M., Charnay, M.P., Benoit, P. Effect of freezing and thawing on microbial activity and glyphosate degradation in two Norwegian soils[J]. Pest Management Science, 2005, 61: 887-898.
    Sublette, K., Jennings, E., Mehta, C., Duncan, K., Brokaw, J., Todd, T., Thoma, G. Monitoring soil ecosystem recovery following bioremediation of a terrestrial crude oil spill with and without a fertilizer amendment[J]. Soil & Sediment Contamination, 2007, 16: 181-208.
    Sun, F., Lin, F.Y., Wong, S.S., Li, G.G. Accumulation of chlorpyrifos by the Cyprinus carpio in different aquaria[J]. Plant Protection Bulletin-TaiPei, 1999, 41: 155-164.
    Sundaram, B., Koolana, R.S., Rawendra, N. Degradation of bifenthrin, chlorpyrifos and imidacloprid in soil and bedding materials at termiticidal application rates[J]. Pesticide Science, 1999, 55: 1222-1228.
    Sutherland, T.D., Home, I., Weir, K.M., Coppin, C.W., Williams, M.R., Selleck, M., Russell, RJ., Oakeshott, J.G. Enzymatic bioremediation: From enzyme discovery to applications[J]. Clinical and Experimental Pharmacology and Physiology, 2004, 31, 817-821.
    Tahir, S., Anwar, T., Ahmad, I., Aziz, S., Mohammad, A., Ahad, K. Determination of pesticide residues in fruits and vegetables in Islamabad market[J]. Journal of Environmental Biology, 2001,22: 71-74.
    Talley, J.W., Zhang, X.R., Waisner, S., Ringelberg, D., Hansen, L. Study of the potential for bioremediation of petroleum hydrocarbons within smear zone soils[J]. Journal of Environmental Engineering-ASCE, 2004, 130: 1401-1406.
    Tanaka, S., Kobayashi, T., Iwasaki, K., Yamane, S., Maeda, K., Sakurai, K. Properties and metabolic diversity of microbial communities in soils treated with steam sterilization compared with methyl bromide and chloropicrin fumigations[J]. Soil Science and Plant Nutrition, 2003, 49: 603-610.
    Tago, K., Yonezawa, S., Ohkouchi, T. Purification and characterization of fenitrothion hydrolase from Burkholderia sp NF100[J]. Journal of Bioscience and Bioengineering, 2006, 101: 80-82.
    Tekere, M., Ncube, I., Read, J.S., Zvauya, R. Biodegradation of the organochlorine pesticide, lindane by a sub-tropical white rot fungus in batch and packed bed bioreactor systems[J]. Environmental Technology, 2002, 23:199-206.
    Top, E.M., Maila, M.P., Clerinx, M. Methane oxidation as a method to evaluate the removal of 2,4-dichlorophenoxyacetic acid (2,4-D) from soil by plasmid-mediated bioaugmentation[J]. FEMS Microbiology Ecology, 1999, 28: 203-213.
    Topp, E. Bacteria in agricultural soils: Diversity, role and future perspectives[J]. Canadian Joumal of Soil Science, 2003, 83: 303-309.
    Torra-Reventos, M., Yajima, M., Yamanaka, S., Kodama, T. Degradation of the herbicides thiobencarb, butachlor and molinate by a newly isolated Aspergillus niger[J]. Journal of Pesticide Science, 2004, 29:214-216.
    Tworkoski, T. J.; Welker, W. V.; Vass, G.D. Soil residues following repeat applications of diuron, simazine, and terbacil[J]. Weed Technol. 2000, 14, 191-196.
    U.S. EPA. Guidance for reregistration of pesticides containing chlorpyrifos as the active ingredient[S]. Case#0100. Office of Pesticide Programs. Washington, DC, 1984.
    Vail, G.D., Hickman, M.V., Schreiber, M.M. Soil temperature and water effects on dissipation of commercial and starch encapsulated atrazine formulations[J]. Weed Science, 1995, 43 555-560.
    Valle, A., Boschin, G., Negri, M., Abbruscato, P., Sorlini, C., D'Agostina, A., Zanardini, E. The microbial degradation of azimsulfuron and its effect on the soil bacterial community[J]. Journal of Applied Microbiology, 2006, 101: 443-452.
    Van Eerd, L.L., Hoagland, R.E., Zablotowicz, R.M., Hall, J.C. Pesticide metabolism in plants and microorganisms[J]. Weed Science, 2003, 51: 472-495.
    van Lenteren, J.C. A greenhouse without pesticides: fact or fantasy[J]. Crop Protection, 2000, 19: 375-384.
    Velasco-Arjona, A., Manclus, J.J., Montoya, A., Luque de Castro, M.D. Robotic sample pretreatment-immunoassay determination of chlorpyrifos metabolite (TCP) in soil and fruit[J]. Talanta, 1997, 45: 371-377.
    Vischetti, C., Perucci, P., Casucci, C., Monaci, E., Dumontet, S. Biochemical parameter changes in urban-waste compost used as biofilter for pesticide decontamination[J]. International Journal of Environmental Analytical Chemistry, 2006, 86:195-205.
    Wang, L.G., Jiang, X., Yan, D.Y., Wu, J.S., Bian, Y.R., Wang, F. Behavior and fate of chlorpyrifos introduced into soil-crop systems by irrigation[J]. Chemosphere, 2007a, 66: 391-396.
    Wang, J.H., Lu, Y.T., Shen, G.Q. Combined effects of cadmium ann butachlor on soil enzyme activities and microbial community structure[J]. Environmental Geology, 2007b, 51: 1221-1228.
    White, T.J., Bruns, T., Lee, S. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics[C]. In "PCR Protocols-A Guide to Methods and Applications" (Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J., Eds.). San Diego: Academic Press, 1990.
    Whitehead, A., Anderson, S.L., Kuivila, K.M., Roach, J.L., May, B. Genetic variation among interconnected populations of Catostomus occidentalis: implications for distinguishing impacts of contaminants from biogeographical structuring[J]. Molecular Ecology, 2003, 12:2817-2833.
    Whitney, K.D., Seidler, EL., Slotkin, T.A. Developmental neurotoxicity of chlorpyrifos: cellular mechanism[J]. Toxicology and Applied Pharmacology, 1995, 134: 53-62.
    Widmer, F., Fliessbach, A., Laczko, E., Schulze-Aurich, J., Zeyer, J. Assessing soil biological characteristics: a comparison of bulk soil community DNA-, PLFA-, and Biolog (TM)-analyses[J]. Soil Biology & Biochemistry, 2001, 33: 1029-1036.
    Wu, J., Nofziger, D.L. Incorporating temperature effects on pesticide degradation into a management model[J]. Journal of Environmental Quality, 1999, 28: 92-100.
    Xu, J., Qiu, X.H., Dai, J.Y., Cao, H., Yang, M., Zhang, J., Xu, M.Q. Isolation and characterization of a Pseudomonas oleovorans degrading the chloroacetamide herbicide acetochlor[J]. Biodegradation, 2006, 17:219-225.
    Yang, C., Dong, M., Yuan, Y., Huang, Y., Guo, X.M., Qiao, C.L. Reductive transformation of parathion and methyl parathion by Bacillus sp.[J]. Biotechnology Letters, 2007, 29: 487-493.
    Yang, C., Liu, N., Guo, X. M., Qiao, C. L. Cloning of mpd gene from a chlorpyrifos-degrading bacterium and use of this strain in bioremediation of contaminated soil[J]. FEMS Microbiology Letters, 2006, 265:118-125.
    Yang, L., Zhao, Y. H., Zhang, B. X., Yang, C. H., Zhang, X. Isolation and characterization of a chlorpyrifos and 3, 5, 6-trichloro-2-pyridinol degrading bacterium[J]. FEMS Microbiology Letters, 2005, 251: 67-73.
    Yang, Y. H., Yao, J., Hu, S., Qi, Y. Effects of agricultural chemicals on DNA sequence diversity of soil microbial community: A study with RAPD marker[J]. Microbial Ecology, 2000, 39: 72-79.
    Yates, S. R., Gan, J., Papiernik, S. K. 177. Environmental fate of methyl bromide as a soil fumigant[J]. Reviws of Environmental Contamination and Toxicology, 2003, 177: 45-122.
    Yu, Y. L., Shan, M., Fang, H., Wang, X., Chu, X. Q. Responses of soil microorganisms and enzymes to repeated applications of chlorothalonil[J]. Journal of Agricultural and Food Chemistry, 2006a, 54:10070-10075.
    Yu, Y. L., Wang, X., Luo, Y. M., Yang, J. F., Yu, J. Q., Fan, D. F. Fungal degradation of metsulfuron-methyl in pure cultures and soil[J]. Chemosphere, 2005, 60: 460-466.
    Yu, Y. L., Wu, X. M., Li, S. N., Fang, H., Zhan, H. Y., Yu, J. Q. An exploration of the relationship between adsorption and bioavailability of pesticides in soil to earthworm[J]. Environmental Pollution, 2006b, 141: 428-433.
    Zablotowicz, R. M., Krutz, L. J., Reddy, K. N., Weaver, M. A., Koger, C. H., Locke, M. A. Rapid development of enhanced atrazine degradation in a dundee silt loam soil under continuous corn and in rotation with cotton[J]. Journal of Agricultural and Food Chemistry, 2007, 55: 852-859.
    Zara, G., Zara, S., Mangia, N. P., Garau, G., Pinna, C., Ladu, G., Budroni, M. PCR-based methods to discriminate Bacillus thuringiensis strains[J]. Annals of Microbiology, 2006, 56: 71-76.
    Zayed, S. M. A. D., Farghaly, M., El-Maghraby, S. Fate of ~(14)C-chlorpydfos in stored soybeans and its toxicological potential to mice[J]. Food Chemistry and Toxicology, 2003, 41: 767-772.
    Zhang, Z. H., Hong, Q., Xu, J. H., Zhang, X. Z., Li, S. P. Isolation of fenitrothion-degrading strain Burkholderia sp FDS-1 and cloning of mpd gene[J]. Biodegradation, 2006a, 17: 275-283.
    Zhang, Z.Y., Liu, X.J., Yu, X.Y., Zhang, C.Z., Hong, X.Y. Pesticide residues in the spring eabbage(Brassiea oleracea L. var. capitata) grown in open field[J]. Food Control, 2007, 18: 723-730.
    Zhang, Z.Y., Zhang, C.Z., Liu, X.J., Hong, X.Y. Dynamics of pesticide residues in the autumn Chinese cabbage (Brassica chinensis L.) grown in open fields[J]. Pest Management Science, 2006b, 62: 350-355.
    Zhao, S.H., Arthur, E.L., Coats, J.R. Influence of microbial inoculation (Pseudomonas sp strain ADP), the enzyme atrazine chlorohydrolase, and vegetation on the degradation of atrazine and metolachlor in soil[J]. Journal of Agricultural and Food Chemistry, 2003, 51: 3043-3048.