耦合热力荷载下功能梯度材料板的安定性分析及优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稳定性和完整性是许多承受塑性变形的零部件和结构设计中十分重要的问题,它不仅影响机器或结构的工作状态,而且关系到由于结构和部件的失稳而导致的灾难性事故,因此对使用在高温高强度下的功能梯度材料结构的安定分析十分重要。另一方面,因功能梯度材料微观组成和性能沿其厚度方向连续变化,其材料性能的描述方法对研究其力学行为有较大影响。本文在假设功能梯度材料板由线弹性颗粒相材料和各向同性弹塑性基体相材料制备的基础上,分别由一个指数函数分布模型和分段指数函数分布模型描述其材料性能的变化,采用Bree研究核燃料容器的方法分析了受到循环热―机械载荷作用的功能梯度材料板的安定性能,并在此基础上优化了板中颗粒相体积分数的分布。论文主要工作如下:
     ①基于内时本构方程、静力安定定理和运动安定定理,采用一个指数函数分布模型描述功能梯度材料板的材料性能,借助Bree板的分析方法建立了其安定分析的数学模型,通过数值方法对一个简单的功能梯度材料板进行了详细的安定分析,并与其等效均匀材料板的安定分析结果做了比较。
     ②借助Eshelby求解的一个椭球形区域点内点外的应变场,推导出颗粒之间的局部相互作用并与基于简单机械模型得到的材料组成相的弹塑性本构关系结合,建立了功能梯度材料的弹塑性本构关系,可用于预测功能梯度材料板中任一点的等效材料性能和其弹塑性响应。
     ③采用分段指数函数分布模型描述功能梯度材料板的材料性能变化,推导出采用此模型后的安定分析的分段模型。以Al/SiC功能梯度板为例,将其分为20层且每层上下表面处的材料性能采用考虑颗粒之间局部相互作用的细观力学模型预测,通过数值方法对板进行安定分析。
     ④在以上分析的基础上,以功能梯度材料板处在安定状态时所能承受的最大温度增量为目标,以板中所含颗粒的总体积百分比不变为约束条件,由Matlab语言编写出目标函数和约束函数子程序,借助Matlab软件中的遗传算法工具箱对所提出的板中颗粒体积分数分布函数进行优化,得到所优化参数满足目标函数的最优解。对优化后的板进行安定分析得到相应的安定区域,并与未优化时的板的安定区域比较,并给出各安定边界上典型载荷点对应的板的应力分布进一步分析优化结果。
The shakedown of a FG Bree plate is analyzed with static and kinematicshakedown theorems. The main work in this dissertation is listed as follows:
     (1) The mathematical model of shakedown analysis of a functionally graded Breeplate is proposed. The distribution of the material properties in the thickness direction isdescribed with a single exponential function. The shakedown of the plate with thehomogenized material properties is also analyzed. The comparison the distributionadopted is not satisfied and the optimization should be performed foe better shakedowncapability.
     (2) A micromechanics method considering the interactions between particles isused to predict thermal and mechanical properties of functionally graded materials, andthe piecewise exponential distribution model is adopted to describe more exactly theactual distribution of material properties in a FG plate. It aims to achieve a morerealistic distribution of the material properties for a more realistic shakedown analysis,because the piecewise exponential distribution model is capable in describing thedistribution of the actual distribution of material properties with sufficient accuracy.
     (3) The distribution of the material properties in a FG structure is described withthe piecewise exponential function model. The plate is separated into a number of layers,and the thermal-mechanical properties at the lower and the upper surfaces of eachsegment are obtained with the micromechanics mean-field scheme taking into accountthe interaction between particles. The shakedown of an Al/SiC FG Bree plate isanalyzed. The piecewise concept of the distribution of the material properties is inaccord with the piecewice approach used in the shakedown analysis, therefore, theproposed method is of particularly advantageous for the analysis of the shakedown ofFG structures.
     (4) An optimizeztion model for the analysis of the shakedown of the FG Bree plateis proposed, where the Genetics Algorithm is adopted, with which the distribution of theparticles in a FG plate can be optimized for different objective functions. In order toverify this model, two examples are given, in one of which an Al/SiC FG Bree plate isused, and in the other of which a Ti/Si_3N_4FG Bree plate is used. In both examples, theaverage volume fraction of the particles in the plate is fixed as15%, and the distributionof these particles is opitimized for the purpose to enhance the capability of the plate to bear the largest variation of temperature. The results show that the load-bearingcapability od the FG plate is substantially enhanced, demonstrating the capability of theproposed model.
引文
[1]新材料与新工艺.军民两用技术与产品,2007,05:19
    [2]张志民.复合材料结构力学.北京:北京航空航天大学出版社,1993.
    [3] N. S. Emilio Carlos, C. W. Matthew, H. P. Glaucio. Modeling bamboo as functionally gradedmaterial: lessons for the analysis of affordable materials. Material Science,2006,41:6991-7004.
    [4] M. Niino, T. Hrai, R. Watanabe. Journal of Japan Society of Composite Materials,1987,13:257-264.
    [5]王宝林,韩杰才,张幸红.非均匀材料力学.北京:科学出版社,2003.
    [6] B. H. Rabin, I. Shiota. Functionally gradient materials. Mater. Res. Soc. Bull.,1995,20:14-18.
    [7]余茂黎,魏明坤.功能梯度材料的研究动态.功能材料,1992,23:184-191.
    [8]李智慧,何小凤,李运刚.功能梯度材料的研究现状.河北理工学院学报,2007,29(1):45-50.
    [9] M. Kouzu. FGM activities in Japan. Composite: Part B,1997,28B:1-4.
    [10]鲁先孝,马玉璞,林新志.功能梯度材料在隐身方面的应用.材料开发与利用,2007,2:52-56.
    [11] S. C. Chin Emest. Foreword army focused research team on functionally graded armorcomposites. Mater. Sci. Eng. A,1999,259:155-161.
    [12] W. Pompe, H. Worch, M. Epple. Functionally graded materials for biomedical application.Mater. Sci. Eng. A,2003,362:40-60.
    [13] H. S. Hedia. Effect of coating thickness and its material on the stress distribution for dentalimplants. J. Medical Eng. Tech.,2007,31(4):253-262.
    [14] H. S. Hedia. Design of functionally graded dental implant in the presence of cancellous bone.J. Biomedical Mater. Res. Part B,2005,75(1):74-80.
    [15] M. Huang, R. Wang, V. Thompson et al. Bioinspired design of dental multilayers. J. Mater.Sci.,2007,31:54-62.
    [16] K. Takagi, J. F. Li, S. Yokoyama, et al. Design and fabrication of functionally graded PZT/Ptpiezoelectric bimorph actuator. Sci. Tech. Advanced Mater.,2002,3:217-222.
    [17] X. Zhu, J. Zhu, S. Zhou, et al. Microstructures of thermonomorph piezoelectric ceramicactuators with functionally gradient. Sensors and Actuators A: Physical,1999,74:198-202.
    [18] X. H. Zhu, Z. Y. Meng. Operational principle, fabrication and displacement characteristics ofa functionally gradient piezoelectric ceramic actuator. Sensors and Actuators A: Physical,1996,48:169-173.
    [19] R. Samadhiya, A. Mukherjee, S. Schmauder. Characterization of discretely graded materialsusing acoustic wave propagation. Computational Mater. Sci.,2006,37:20-28.
    [20] X. Q. He, T. Y. Ng, S. Sivashanker. Active control of FGM plates with integratedpiezoelectric sensors and actuators. Int. J. Solids Struct.,2002,38:1641-1655.
    [21] W. Lengauer, K. Dreyer. Functionally graded hardmetals. J. Alloys Compounds,2002,338:194-212.
    [22] Y. D. Lee, F. Erdogan. Residual/Thermal stresses in FGM and laminated thermal barriercoatings [J]. International Journal of Fracture,1994,69(2):1573-2673.
    [23] Y. Fukui, K. Takashima, C. B. Ponton. Measurement of Young’s modulus and internalfriction of an in situ Al-Al3Ni functionally graded material [J]. Journal of Materials Science,1994,29(9):2281-2288.
    [24] A. J. Markworth, J. H. Saunders. A model of structure optimization for a functionally gradedmaterial [J]. Materials Letters,1995,22(1-2):103-107.
    [25] A. E. Giannakopoulos, S. Suresh, M. Finot, et al. Elastoplastic analysis of thermal cycling:layered materials with compositional gradients [J]. Acta Metallurgica et Materialia,1995,43(4):1335-1354.
    [26] R. L. Williamson, B. H. Rabin, J. T. Drake. Finite element analysis of thermal residualstresses at graded ceramic-metal interfaces Part I. Model description and geometrical effects[J]. Journal of Applied Physics,1993,74(2):1310-1320.
    [27] J. T. Drake, R. L. Williamson, B. H. Rabin. Finite element analysis of thermal residualstresses at graded ceramic-metal interfaces Part II. Interface optimization for residual stressreduction [J]. Journal of Applied Physics,1993,74(2):1321-1326.
    [28] M. Finot, S. Suresh, C. Bull, S. Sampath. Curvature changes during thermal cycling of acompositionally graded Ni-Al2O3multi-layered material. Materials Science and EngineeringA,1996,205:59-71.
    [29] Z. Hashin, S. Shtrikman. A variational approach to the theory of the elastic behavior ofmultiphase materials. Journal of the Mechanics and Physics of Solids,1963,11:127-140.
    [30] D. P. Miller, J. J. Lannutti. Fabrication and properties of functionally graded NiAl/Al2O3composites. J. Mater. Res.,1993,8(8):2004-2013.
    [31] E. H. Kerner. The elastic and thermo-elastic properties of composite media. Proc. Phys. Soc.,B,1956,69:808-813.
    [32] M. Taki. A fundamental study on the application of FGM to high temperature rotatingmembers. In Proc. of the First International Symposium on FGM’90, Functionally GradientMaterials Forum, Toranomom, Minato-Ku, Tokyo, Japan,1990,353-358.
    [33] M. Sasaki, Y. Wang, T. Hirano, T. Hirai. Design of Sic/C functionally gradient material andits preparation by chemical vapor deposition. J. Ceram. Soc. Jap. Inter, Ed.1989,97:530-534.
    [34] Y. Tanigawa, N. Oka, T. Akai, R. Kawamura. One-dimensional transient thermal stressproblem for nonhomogeneous hollow circular cylinder and its optimization. Transaction ofthe Japan Society of Mechanical Engineers, Series A,1996,62(599):1656-1664.
    [35] M. Arai, M. Kambe, T. Ogata, Y. Takahashi. Graded compositional design of FGM compliantpad for thermoelectric conversion module based on residual thermal stress analysis.Transactions of the Japan Society of Mechanical Engineers, Series A.1996,62(594):488-492.
    [36] N. Sumi, Y. Sugano. Dynamic thermal stresses in a functionally graded material withtemperature-dependent material properties [J]. Transactions of the Japan Society ofMechanical Engineers A,1995,61(590):2296-2301.
    [37] N. Sumi, Y. Sugano. Thermally induced stress waves in functionally graded materials withtemperature-dependent material properties [J]. Journal of Thermal Stresses,1997,20(3-4):281-294.
    [38] C. W. Nan, R. Z. Yuan, L. M. Zhang. The physics of metal/ceramic functionally gradientmaterials. In ceramic Transaction: Functionally Gradient Materials, The American CeramicSociety, Westerville, OH,1993,34:75-82
    [39] G. Bao, L. Wang. Multiple cracking in functionally graded ceramic/metal coatings,International Journal of Solids and Structures,1995,32(19):2853-2871.
    [40] R. M. Christensen, K. H. Lo. Solutions for effective shear properties in three phase sphereand cylinder models. Journal of the Mechanics and Physics of Solids,1979,27:315-330.
    [41] R. M. Christensen. Mechanics of composite materials. Krieger, Malabar, FL,1991.
    [42] T. Hirano, J. Teraki, T. Yamada. On the design of functionally gradient materials. Proceedingof the First International Symposium on Functionally Gradient Materials. FunctionallyGradient Materials Forum, Sendai, Japan,1990,5-10.
    [43] K. Tanaka, Y. Tanaka, K. Enomoto, V. F. Poterasu, Y. Sugano. Design of thermoelasticmaterials using directed sensitivity and optimization method, reduction of thermal stresses infunctionally gradient materials. Computer Meth. Appl. Mech. Eng.,1993,106:271-284.
    [44] K. Tanaka, et al. An improved solution to thermoelastic material design in functionallygradient materials: scheme to reduce thermal stresses. Computer Mech. Appl. Mech. Eng.,1993,109:377-389.
    [45] H. M. Yin, L. Z. Sun, G. H. Paulino. Micromechanics-based elastic modeling for functionallygraded materials with particle interactions. Acta Mater,2004,52(12):3535–3543.
    [46] T. Reiter, G. J. Dvorak. Micromechanical models for graded composite materials: IIThermomechanical loading. Journal of the Mechanics and Physics of Solids,1998,46(9):1655–1673.
    [47] T. Reiter, G. J. Dvorak, V. Tvergaard. Micromechanical models for graded compositematerials. Journal of the Mechanics and Physics of Solids,1997,45:1281-1302.
    [48] M. Grujicic, Y. Zhang. Determination of effective elastic properties of functionally gradedmaterials using cell finite element method. Mat.Sci.Eng.A-Struct,1998,251:64-76.
    [49] Cho J.R, Ha D.Y. Averaging and finite-element discretization approaches in the numericalanalysis of functionally graded materials. Mat.Sci.Eng.A-Struct,2001,302:187-196.
    [50] J. Aboudi, M. J. Pindera, S. M. Arnold. Higher-order theory for functionally graded materials.Composites Part B,1999,30(8):777-832.
    [51] J. Aboudi, M. J. Pindera, S. M. Arnold. Higher-order theory for periodic multiphasematerials with inelastic phases. International Journal of Plasticity,2003,19:805-847.
    [52] X. Peng, N. Hu, H. Zheng, H. Fukkunaga. Evaluation of mechanical properties of particulatecomposites with a combined self-consistent and Mori-Tanaka approach. Mechanics ofMaterials,2009,41(12):1288-1297.
    [53] J. N. Reddy, C. D. Chin. Thermomechanical analysis of functionally graded cylinders andplates. Journal of Thermal stresses,1998,21:593-626.
    [54] F. Erdogan. Fracture mechanics of functionally graded materials [J]. Composites Engineering,1995,5(7):753-770
    [55] D. L. Clements, J. Kusuma, W. T. Ang. A note on antiplane deformations of inhomogeneousmaterials. Int.J.Eng.Sci,1997,35:593–601.
    [56] M. Nemat-Alla, N. Noda. Thermal stress intensity factor for functionally gradient half spacewith an edge crack under thermal load. Arch.Appl.Mech,1996a,66(8):569–580.
    [57] M. Nemat-Alla, N. Noda. Study of an edge crack problem in a semi-infinite functionallygraded medium with two dimensionally non-homogenous coefficient of thermal expansionunder thermal load.J. Therm.Stresses,1996b,19:863–888.
    [58] M. Nemat-Alla, N. Noda. Edge crack problem in a semi-infinite FGM plate with abi-directional coefficient of thermal expansion under two-dimensional thermal loading. ActaMech,2000,144(2–3):211–229.
    [59] M. Nemat-Alla, N. Noda, I. Hassab-Allah. Analysis and investigation of thermal stressintensity factor for edge cracked FGM plates. Bulletin of the Faculty of Engineering, AssiutUniversity.2001,29(3(1/2)):89–102.
    [60] M. Marin. Numerical solution of the Cauchy problem for steady-state heat transfer intwo-dimensional functionally graded materials. International Journal of Solids and Structures,2005,42:4338–4351.
    [61] L. L. Ke, Y. S. Wang. Two-dimensional contact mechanics of functionally graded materialswith arbitrary spatial variations of material properties. International Journal of Solids andStructures,2006,43:5779–5798.
    [62] L. C. Guo, N. Noda, L. Z. Wu. Modeling method for a crack problem of function-ally gradedmaterials with arbitrary properties─piecewise-exponential model [J]. International Journal ofSolids and Structures,2007,44:6768-6790.
    [63] L. C. Guo, N. Noda, L. Z. Wu. Thermal fracture model for a functionally graded plate with acrack normal to the surfaces and arbitrary thermomechanical properties [J]. CompositesScience and Technology,2008,68(3-4):1034-1041.
    [64]王继辉,张清杰,吴代华.金属-陶瓷梯度材料的热弹塑性分析.复合材料学报,1996,13(2):89-93.
    [65] G. P. Tandon, G. J. Weng. A theory of particle-reinforced plasticity. ASME, Journal ofApplied Mechanics,1988,55(3):126-135.
    [66] C. W. Nan. The elastoplastic behavior of metal/ceramic functionally gradient materials.Ceramic Transactions,1993,34:91-98.
    [67] J. H. Wang, Q. J. Zhang, J. L. Deng. Micro-macro design of thermal stress of ceramic-metalgradient composite materials. Pro. Of9thICCM. Vol.1Mafria Spian,1993,442-447.
    [68]张宝生,王建华,李立波,安阁英. Al/Ti系金属间化合物梯度功能材料抗热冲击性的研究.复合材料学报,1997,29(3):112-115.
    [69] A. E. Giannakopoulos, S. Suresh, M. Finot, M. Olsson. Elastoplastic analysis thermal cycling:layered materials with compoisition gradients. Acta Metal. Meter.1995,43:1335-1354.
    [70] R. L. Williamson, B. H. Rabin, J. T. Drake. Finite element analysis of thermal residual stressat graded ceramic interfaces part I-model description and geometerical effects. Appl. Phy,1993,74:1310-1320.
    [71]李臻熙,张同俊,李星国. Al2O3-Ti系功能梯度材料的优化设计.宇航材料工艺,1998,1:30-35.
    [72] M. J. Pindera, T. O. Williams. Thermoplastic response of metal-matrix composites withhomogenized and functionally graded interface. Composites Engineering,1994,4(1):129-145.
    [73] S. Ueda, M. Gasik. Thermal-elasto-plastic analysis of W-Cu functionally graded materialssub-jected to a uniform heat flow by micromechanical model. J. Therm. Stresses,2000,23:395–409.
    [74] Y. M. Shabana, N. Noda. Thermo-elasto-plastic stresses in functionally graded materialssubjected to thermal loading taking residual stresses of the fabrication process intoconsideration. Compos Part B,2001,32:111–21.
    [75] Z. H. Jin, G. H. Paulino, R. H. Dodds. Cohesive fracture modeling of elastic–plastic crackgrowth in functionally graded materials. Eng. Fract. Mech,2003,70:1885–1912.
    [76] Z. H. Jin, R. H. Dodds. Cohesive growth resistance behaviour of a functionally gradedmaterial: computational studies. Eng Fract. Mech.,2004,71:1651-1672.
    [77] I. Tamura, Y. Tomato, H. Ozawa. Strength and ductility of Fe–Ni–C alloys composed ofaustenite and martensite with various strength. Proceedings of the third conference onstrength of metals and alloys. Cambridge: Institute of Metals,1973,1:611–615.
    [78] G. Recep, A. Murat, M. K. Apalak, J. N. Reddy. The elasto-plastic impact analysis offunctionally graded circular plates under low-velocities. Composite Structures,2011,93:860-869.
    [79] V. Tvergaard. Theoretical investigation of the effect of plasticity on crack growth along afunctionally graded region between dissimilar elastic–plastic solids. Eng. Fract. Mech.,2002,69:1635–1645.
    [80] O. Ali, G. Mufit. Elastic–plastic stress analysis in a long functionally graded solid cylinderwith fixed ends subjected to uniform heat generation. International Journal of EngineeringScience,2011,49:1047-1061
    [81] Z. Zhong, T. Yu. Two-dimensional analysis of functionally graded beams. AIAA Journal,2006,44(12):3160-3164.
    [82]于涛,仲政.均布载荷作用下功能梯度悬臂梁弯曲问题的解析解.固体力学学报,2006,27(1):15-20.
    [83]仲政,于涛.功能梯度悬臂梁弯曲问题的解析解.同济大学学报(自然科学版),2006,34(4):443-447.
    [84] Z. Zhong, T. Yu. Analytical solution of a cantilever functionally graded beam. CompositesScience and Technology,2007,67(3-4):481-488.
    [85] T. Yu, Z. Zhong. Bending analysis of a functionally graded piezoelectric cantilever beam.Science in China (Series G),2007,50(1):97-108.
    [86] Z. Zhong, T. Yu. Electroelastic analysis of functionally graded piezoelectric material beams.Journal of Intelligent Material Systems and Structures,2008,19(6):707-713.
    [87] H. J. Ding, D. J. Huang, W. Q. Chen. Elasticity solutions for plane anisotropic functionallygraded beams. International Journal of Solids and Structures,2007,44(1):176-196.
    [88] D. J. Huang, H. J. Ding, W. Q. Chen. Analytical solution for functionally graded anisotropiccantilever beam subjected to linearly distributed load. Applied Mathematics and Mechanics,2007,28(7):855-860.
    [89] D. J. Huang, H. J. Ding, W. Q. Chen. Piezoelasticity solutions for functionally gradedpiezoelectric beams. Smart Materials and Structures,2007,16(3):687-695.
    [90] D. J. Huang, H. J. Ding, W. Q. Chen. Analytical solution for functionally gradedmagneto-electro-elastic plane beams. International Journal of Engineering Science,2007,45(2-8):467-485.
    [91] D. J. Huang, H. J. Ding, W. Q. Chen. Analytical solution for functionally graded anisotropiccantilever beam under thermal and uniformly distributed load. Journal of Zhe jiangUniversity (Science A),2007,8(9):1351-1355.
    [92] D. J. Huang, H. J. Ding, W. Q. Chen. Analysis of function-ally graded and laminatedpiezoelectric cantilever actuators subjected to constant voltage. Smart Materials andStructures,2008,17(1):1-11.
    [93] A. M. Jiang, H. J. Ding. The analytical solutions for orthotropic beam (II): Solutions fordensity functionally graded beams. Journal of Zhejiang University (Science A),2005,6A(3):155-158.
    [94] A. M. Jiang, H. J. Ding. Analytical solutions for density functionally gradientmagneto-electro-elastic cantilever beams. Smart Structures and Systems,2007,3(2):173-188
    [95]陈伟球,赵莉.功能梯度材料平面问题的辛弹性力学解法.力学学报,2009,41(4):588-594.
    [96]钟万勰.弹性力学求解新体系.大连:大连理工大学出版社,1995.
    [97] L. Zhao, W.Q. Chen. On the numerical calculation in symplectic approach for elasticityproblems. Journal of Zhejiang University (Science A),2008,9(5):583-588.
    [98] L. Zhao, W.Q. Chen. Symplectic analysis of plane problems of functionally gradedpiezoelectric materials. Mechanics of Materials,2009,41(12):1330-1339.
    [99] S. P. Timoshenko, J. N. Goodier. Theory of Elasticity,3rd Ed. New York: McGraw Hill,1970.
    [100] C. O. Horgan, A. M. Chan. The stress response of functionally graded isotropic linearlyelastic rotating disks. Journal of Elasticity,1999,55(3):219-230.
    [101] X. Y. Li, H. J. Ding, W. Q. Chen. Pure bending of simply supported circular plate oftransversely isotropic functionally graded material. Journal of Zhejiang University (ScienceA),2006,7(8):1324-1328.
    [102] X. Y. Li, H. J. Ding, W. Q. Elasticity solutions for a transversely isotropic functionallygraded circular plate subject to an axisymmetric transverse load qrk. International Journal ofSolids and Structures,2008,45(1):191-210.
    [103]范家让.强厚度叠层板壳的精确理论.北京:中国科学出版社,1996.
    [104] W. Q. Chen, C. F. Lv, Z. G. Bian. Elasticity solution for free vibration of laminated beams.Composite Structures,2003,62(1):75-82.
    [105] W. Q. Chen, C. F. Lv, Z. G. Bian. Free vibration analysis of generally laminated beams viastate-space-based differential quadrature. Composite Structures,2004,63(3-4):417-425.
    [106] C. F. Lv, W. Q. Chen. Free vibration of orthotropic functionally graded beams with variousend conditions. Structural Engineering and Mechanics,2005,20(4):465-476.
    [107] C. F. Lv, Z. Y. Huang, W. Q. Chen. Semi-analytical solutions for free vibration ofanisotropic laminated plates in cylindrical bending. Journal of Sound and Vibration,2007,304(3-5):987-995.
    [108] C. F. Lv, C. W. Lim, F. Xu. Stress analysis of anisotropic thick laminates in cylindricalbending using a semi-analytical approach. Journal of Zhejiang University (Science A),2007,8(11):1740-1745.
    [109] J. Ying, C. F. Lu, W. Q. Chen. Two-dimensional elasticity solutions for functionally gradedbeams resting on elastic foundations. Composite Structures,2008,84(3):209-219.
    [110] Y. Y. Zhou, W. Q. Chen, C. F. Lv, et al. Free vibration of crossply piezoelectric laminates incylindrical bending with arbitrary edges. Composite Structures,2009,87(1):93-100.
    [111] M. H. Santare, J. Lambros. Use of graded finite elements to model the behavior ofnonhomogeneous materials. ASME Journal of Applied Mechanics,2000,67(4):819-822.
    [112] C. Y. Li, Z. Z. Zou, Z. P. Duan. Multiple isoparametric finite element method fornonhomogeneous media. Mechanics Research Communications,2000,27(2):137-142.
    [113] J. H. Kim, G. H. Paulino. Isoparametric graded finite elements for nonhomogeneousisotropic and orthotropic materials. ASME Journal of Applied Mechanics,2002,69(4):502-514.
    [114] M. H. Santare, P. Thamburaj, G. A. Gazonas. The use of graded nite elements in the study ofelastic wave propagation in continuously nonhomogeneous materials. International Journal ofSolids and Structures,2003,40(21):5621-5634.
    [115] F. Delale, F. Erdogan. The crack problem for a nonhomogeneous plane. ASME Journal ofApplied Mechanics,1983,50(3):609-614.
    [116] F. Delale, F. Erdogan. Interface crack in a nonhomogeneous elastic medium. InternationalJournal of Engineering Science,1988,26(6):559-568.
    [117] H. J. Choi. A periodic array of cracks in a functionally graded nonhomogeneous mediumloaded under in-plane normal and shear. International Journal of Fracture,1997,88(2):107-128
    [118] Y. S. Chan, G. H. Paulino, Fannjiang. The crack problem for nonhomogeneous materialsunder antiplane shear loading a displacement based formulation. International Journal ofSolids and Structures,2001,38(17):2989-3005
    [119] Y. D. Li, B. Jia, N. Zhang, et al. Anti-plane fracture analysis of functionally gradient materialinfinite strip with finite width. Applied Mathematics and Mechanics,2006,27(6):773-780
    [120] B. L. Wang, Y. W. Mai, Y. G. Sun. Anti-plane fracture of a functionally graded material strip.European Journal of Mechanics A/Solids,2003,22(3):357-368
    [121]程站起,仲政.功能梯度板条断裂分析.力学季刊,2005,26(4):544-548
    [122] Z. Q. Cheng, Z. Zhong. Fracture analysis of a functionally graded strip under planedeformation. Acta Mechanica Solida Sinica,2006,19(2):114-121
    [123] Z. Q. Cheng, Z. Zhong. Fracture analysis of a functionally graded interfacial zone betweentwo dissimilar homogeneous materials. Science in China (Series G),2006,49(5):540-552
    [124]程站起,仲政.功能梯度材料涂层平面裂纹分析.力学学报,2007,9(5):685-691
    [125] Z. Zhong, Z. Q. Cheng. Fracture analysis of a functionally graded strip with arbitrarydistributed material properties. International Journal of Solids and Structures,2008,45(13):3711-3725
    [126] L. C. Guo, N. Noda. Modeling method for a crack problem of functionally graded materialswith arbitrary properties piecewise-exponential model. International Journal of Solids andStructures,2007,44(21):6768-6790
    [127] S. Dag, F. Erdogan. A surface crack in a graded medium loaded by a sliding rigid stamp.Engineering Fracture Mechanics,2002,69(1416):1729-1751
    [128] F. Erdogan, B. H. Wu. The surface crack problem for a plate with functionally gradedproperties. ASME Journal of Applied Mechanics,1997,64(3):449-456
    [129] L. C. Guo, L. Z. Wu, T. Zeng, et al. Mode I crack problem for a functionally gradedorthotropic strip. European Journal of Mechanics|A/Solids,2004,23(2):219-234
    [130] S. Ueda. The surface crack problem for a layered plate with a functionally gradednonhomogeneous interface. International Journal of Fracture,2001,110(2):189-204
    [131] L. C. Guo, L. Z. Wu, L. Ma, et al. Fracture analysis of a functionally gradedcoating-substrate structure with a crack perpendicular to the interface-Part I: Static problem.International Journal of Fracture,2004,127(1):21-38
    [132] Y. D. Li, K. Y. Lee. An anti-plane crack perpendicular to the weak/micro-discontinuousinterface in a bi-FGM structure with exponential and linear non-homogeneities. InternationalJournal of Fracture,2007,146(4):203-211
    [133] H. D. Yong, Y. H. Zhou. Analysis of a mode III crack problem in a functionally gradedcoating-substrate system with finite thickness. International Journal of Fracture,2006,141(3-4):459-467
    [134] L. C. Guo, N. Noda. Fracture mechanics analysis of functionally graded layered structureswith a crack crossing the interface. Mechanics of Materials,2008,40(3):81-99
    [135] S. Itou. Stress intensity factors around a crack in a nonhomogeneous interfacial layerbetween two dissimilar elastic half-planes. International Journal of Fracture,2001,110(2):123-135
    [136] B. L. Wang, Y. W. Mai, N. Noda. Fracture mechanics analysis model for functionally gradedmaterials with arbitrarily distributed properties. International Journal of Fracture,2002,116(2):161-177
    [137] Y. S. Wang, D. Gross. Analysis of a crack in a functionally gradient interface layer understatic and dynamic loading. Key Engineering Materials,2000,183-187:331-336
    [138] G. Y. Huang, Y. S. Wang, S. W. Yu. Fracture analysis of a functionally graded interfacialzone under plane deformation. International Journal of Solids and Structures,2004,41(3-4):731-743
    [139]李春雨,邹振祝,段祝平.功能梯度材料裂纹尖端动态应力场.力学学报,2001,33(2):270-274
    [140] C. Y. Li, G. J. Weng, Z. P. Duan. Dynamic behavior of a cylindrical crack in a functionallygraded interlayer under torsional loading. International Journal of Solids and Structures,2001,38(42-43):7473-7485
    [141] J. Chen, Z. X. Liu, Z. Z. Zou. Transient internal crack problem for a nonhomogeneousorthotropic strip (Mode I). International Journal of Engineering Science,2002,40(15):1761-1774
    [142] Y. D. Li, W. Tan, H. C. Zhang. Anti-plane transient fracture analysis of the functionallygradient elastic bi-material weak/infinitesimal-discontinuous interface. International Journalof Fracture,2006,142(1-2):163-171
    [143] L. C. Guo, L. Z. Wu, T. Zeng. The dynamic response of an edge crack in a functionallygraded orthotropic strip. Mechanics Research Communications,2005,32(4):385-400
    [144] L. C. Guo, L. Z. Wu, Y. G. Sun, et al. The transient response of a crack in a functionallygraded strip under an in-plane impact load. ZAMM,2005,85(10):711-720
    [145] L. C. Guo, L. Z. Wu, Y. G. Sun, et al. The transient fracture behavior for a functionallygraded layered structure subjected to an in-plane impact load. Acta Mechanica Sinica,2005,21(3):257-266
    [146] L. C. Guo, L. Z. Wu, T. Zeng, et al. The transient response of a coating-substrate structurewith a crack in the functionally graded interfacial layer. Composite Structures,2005,70(1):109-119
    [147] L. Ma, L. Z. Wu, L. C. Guo, et al. On the moving Griffith crack in a non-homogeneousorthotropic medium. European Journal of Mechanics|A/Solids,2005,24(3):393-405
    [148] L. Ma, L. Z. Wu, L. C. Guo. On the moving Griffith crack in a nonhomogeneous orthotropicstrip. International Journal of Fracture,2005,136(14):185-203
    [149] Z. Q. Cheng, Z. Zhong. Analysis of a moving crack in a func tionally graded strip betweentwo homogeneous layers. International Journal of Mechanical Sciences,2007,49(9):10381046
    [150] L. Ma, L. Z. Wu, L. C. Guo, et al. Dynamic behavior of a finite crack in the functionallygraded materials. Mechanics of Materials,2005,37(11):1153-1165
    [151] L. Ma, W. Nie, L. Z. Wu, et al. Scattering of anti-plane stress waves by a crack in anon-homogeneous orthotropic medium. Composite Structures,2007,79(2):174-179.
    [152] L. Ma, J. Li, R. Abdelmoula, et al. Dynamic stress intensity factor for cracked functionallygraded orthotropic medium under time-harmonic loading. European Journal of MechanicsA/Solids,2007,26(2):325-336.
    [153] B. L. Wang, J. C. Han, S. Y. Du. Crack problems for nonhomogeneous composites subjectedto dynamic loading. International Journal of Solids and Structures,2000,37(9):1251-1274.
    [154] L. C. Guo, N. Noda. Dynamic investigation of a functionally graded layered structure with acrack crossing the interface. International Journal of Solids and Structures,2008,45(1):336-357.
    [155] Z. H. Jin, N. Noda. Crack-tip singular fields in nonhomogeneous materials. ASME Journal ofApplied Mechanics,1994,61(3):738-740.
    [156] F. Erdogan, B. H. Wu. Crack problem in FGM layers under thermal stresses. Journal ofThermal Stresses,1996,19(3):237-265.
    [157] N. Noda. Thermal stresses in functionally graded materials. Journal of Thermal Stresses,1999,22(4):477-512.
    [158]王保林,杜善义,韩杰才.非均匀复合材料的动态热弹性断裂力学分析.力学学报,1999,31(5):550-562.
    [159] N. Noda, L. C. Guo. Thermal shock analysis for a functionally graded plate with a surfacecrack. Acta Mechanica,2008,195(1-4):157-166.
    [160] Z. H. Jin, G. H. Paulino. Transient thermal stress analysis of an edge crack in a functionallygraded material. International Journal of Fracture,2001,107(1):73-98.
    [161] V. Parameswaran, A. Shukla. Dynamic fracture of a functionally gradient material havingdiscrete property variation. Journal of Material Science,1998,33(13):3303-3311
    [162] R. J. Butcher, C. E. Rousseau, H. V. Tippur. A functionally graded particulate composite:preparation, measurements and failure analysis. Acta Materialia,1999,47(1):259-268
    [163] P. R. Marur, H. V. Tippur. Dynamic response of bimaterial and graded interface cracks underimpact loading. International Journal of Fracture,2000,103(1):95-109
    [164] C. E. Rousseau, H. V. Tippur. In°uence of elastic gradient profiles on dynamically loadedfunctionally graded materials: cracks along the gradient. International Journal of Solids andStructures,2001,38(44-45):7839-7856
    [165] J. Abanto-Bueno, J. Lambros. Investigation of crack growth in functionally graded materialsusing digital image correlation. Engineering Fracture Mechanics,2002,69(14-16):1695-1711
    [166]程军,陈英,李禾. SiC/Al梯度功能材料在机械载荷及热载下的应变测试.力学季刊,2006,27(1):70-75
    [167] W. Xu, X. F. Yao, L. Z. Wu. Experimental study on K-dominance of static crack tip infunctionally gradient materials. Key Engineering Materials,2007,348349:789-792
    [168]许蔚,孟庆杰,李俊.功能梯度材料的数字散斑相关方法实验研究.哈尔滨工业大学学报,2008,40(9):1408-1411
    [169]许蔚.功能梯度材料静态断裂的CGS方法实验研究.哈尔滨工业大学学报,2007,39(5):765-770
    [170]许蔚,姚学锋.性性规律对功能梯度材料断裂行为实验研究.力学学报,2008,40(4):485-495
    [171] X. Jin, L. Z. Wu, L. C. Guo, et al. Experimental investigation of the mixed-mode crackpropagation in ZrO2/NiCr functionally graded materials. Engineering Fracture Mechanics,2009,76(12):1800-1810
    [172] B. Ilschner. Processing-microstructure-property relationships in graded materials. Journal ofthe Mechanics and Physics of Solids,1996,44(5):647-656.
    [173] F. Wataria, A. Yokoyama, M. Omori, T. Hirai, H. Kondo, M. Uo, T. Kawasaki.Biocompatibility of materials and development to functionally graded implant forbio-medical application. Composites Science and Technology,2004,64:893–908.
    [174] Y. M. Shabana, N. Noda. Numerical evaluation of the thermo mechanical effective propertiesof a functionally graded material using the homogenization method. International Journal ofSolids and Structures,2008,45:3494–3506.
    [175] Tanigawa Y. Some basic thermoelastic problems for nonhomogeneous structural materials.Applied Mechanics Reviews,1995;48(6):287–300.
    [176] C. T. Loy, K. Y. Lam, J. N. Reddy. Vibration of functionally graded cylindrical shells.International Journal of Mechanical Sciences,1999,41(3):309-324.
    [177] J. Yang, H. S. Shen. Dynamic response of initially stressed functionally graded rectangularthin plates. Composite Structures,2001,54(4):497-508.
    [178] E. Melan. Theorie statisch unbestimmter tragwerke aus idealplastischem baustoff.Sitzungsbericht der Akademie der Wissenscha ften (Wien) Abt. IIA,1938,195:145-195.
    [179] E. Melan. Zur plastizitat dea raurnlichen kontinuums. Ina. Archiv8.,1938,116-126.
    [180] W. T. Koiter. General theorems for elastic-plastic bodies. Sneddon I N and Hill R(eds).Progress in solid Mechanics, North-Holland, Amsterdam,1960,1:165-221.
    [181] B. G. Neal. The behavior of framed structures under repeated loading. Quart. Appl. Mech.,1951,4:78-94.
    [182] G. A. Maleg. A shakedown matrix theory allowing for work hardening and a second ordergeomrtric effects. Proc. Symp. Foundations of Plasticity, Warsaw,1972,417-433.
    [183] J. A. Konig. On shakedown of structures in a material exhibiting strain hardening, PraceIPPT.1971.
    [184] A. R. Ponter. A general shakedown theroren for elastic-plastic bodies with work-hardening.Report75-11, University of Leicester.
    [185]彭向和.非经典塑性理论:非比例循环塑性和极值性质.重庆大学博士学位论文,1991.
    [186]彭向和.考虑材料强化的塑性安定性分析.应用力学学报,1993,10(4):28-37.
    [187] A. R. Ponter, S. Karadeniz. An extended shakedown theory for structures that suffer cyclicthermal loading. J. Appl. Mech.1985,52:877-889.
    [188] X. Peng, H. Zheng, N. Hu, C. Fang. Static and kinematic shakedown analysis of FG platesubjected to constant mechanical load and cyclically varying temperature change. CompositeStructures.2009,91:212-221
    [189] X. Peng, N. Hu, H. Zheng, C. Fang. Analysis of shakedown of FG Bree plate subjected tocoupled thermal-mechanical loadings. Acta Mechanica Solida Sinica.2009,22(2):95-108.
    [190] T. Hirano, T. Yamada, J. Teraki, M. Niine, A. Kumakawa. Proceeding of the16th internati-onal symposium on space Technology and Science, Sapporo-Japan,1988.
    [191] J. R. Cho, D. Y. Ha. Volume fraction optimization for minimizing thermal stress inNi–Al2O3functionally graded materials. Materials Science and Engineering A,2002,334:147–155.
    [192] T. Sergio. Optimal control and optimization of functionally graded materials forthermomechanical processes. Int J Solids and Struc,2002,39:3175-3197.
    [193] A. J. Goupee, S. V. Senthil. Multi-objective optimization of functionally graded materialswith temperature-dependent material properties. Materials and Design,2007,28:1861–1879.
    [194] A. J. Goupee, S. V. Senthil. Two-dimensional optimization of material composition offunctionally graded materials using meshless analyses and a genetic algorithm. Comput.Methods Appl. Mech. Engrg.,2006,195:5926–5948.
    [195] N. Noda, Z. H. Jin. Thermal stress intensity facto rs fo r a crack in a strip of a functionallygradient materials[J]. Int. J. Solids Structures,1993,30(5):1039-1056.
    [196] X. Peng, J. Fan, X. Zeng. Analysis for plastic buckling of thin-walled cylinders vianon-classical constitutive theory of plasticity. International Journal of Solids and Structures,1996,33(30):4495-4509.
    [197] X. Peng, A. R. S. Ponter. Extremal properties of Endochronic plasticity, Part II: Extremalpath of the Endochronic constitutive equation with a yield surface and application.International Journal of Plasticity,1993,9:567-581.
    [198] J. A. K nig. Shakedown of Elastic-Plastic Structures. PWN-Polish Scientific Publishers,1987.
    [199] J. Bree. Elastic plastic behavior of thin tubes subjected to internal pressure and intermittenthigh heat fluxes with application to fast nuclear reactor fuel elements. Journal of StrainAnalysis,1967,2:226–38.
    [200] B. V. Sankar. An elasticity solution for functionally graded beams. Composites Science andTechnology.2001,61(5):689-696.
    [201] T. Mori, K. Tanaka. Average stress in matrix and average elastic energy of materials withmisfitting inclusions. Acta Metallurgica,1973,21(5):571-574.
    [202] R. Hill. A self-consistent mechanics of composite materials. Journal of the Mechanics andPhysics of Solids,1965,13(4):213-222.
    [203] B. Budiansky. On the elastic moduli of some heterogeneous materials. Journal of theMechanics and Physics of Solids,1965,13(4):223-227.
    [204] S. Suresh, A. Mortensen. Fundamental of functionally graded materials. IOMCommunications Ltd.,1998.
    [205] Y. Miyamoto, W. A. Kaysser, B. H. Rabin, A. Kawasaki, R. G. Ford. Functionally gradedmaterials: design, processing and applications. Dordrecht:Kluwer Academic Piblishers,1999.
    [206] J. R. Zuiker, G. J. Dvorak. The effective properties of functionally graded composites-I.Extension of the Mori-Tanaka method to linearly varying fields. Composites Engineering,1994,4(1):19-35.
    [207] M. M. Gasik. Micromechanical modeling of functionally graded materials. ComputationalMaterials Science,1998,13:42-55.
    [208] S. S. Vel, R. C. Batra. Three-dimensional analysis of transient thermal stresses infunctionally graded plates. International Journal of Solids and Structures,2003,40(25):7181-7196.
    [209] J. H. Kim, G. H. Paulino. An accurate scheme for mixed-mode fracture analysis offunctionally graded materials using the interaction integral and micromechanics models.International Journal for Numerical Methods in Engineering,2003,58(10):1457–1497.
    [210] G. H. Paulino, Z. H. Jin, R. H.Dodds. Failure of functionally graded materials. In:Comprehensive Structural Integrity. Elsevier Science Publisher, Amsterdam,2003.2:607–644.
    [211] S. Torquato. Random Heterogeneous Materials: Microstructure and Macroscopic Properties.Springer, New York,2002.
    [212] T. Hirano, J. Teraki, T. Yamada. Application of fuzzy theory to the design of functionallygradient materials. SMiRT11Transactions, SD1,1991,49-54.
    [213] J. W. Ju, T. M. Chen. Effective elastic moduli of two-phase composites containing randomlydispersed spherical inhomogeneities. Acta Metallurgica,1994,103(1-4):123-144
    [214] J. D. Eshelby. The determination of the elastic field of an ellipsoidal inclusion and relatedproblems. Proceedings of the Royal Society, A241,1957,(1226):376-396.
    [215] J. D. Eshelby. The elastic field outside an ellipsoidal inclusion. Proceedings of the RoyalSociety, A252,1959,(1271):561-569
    [216]张研,张子明.材料细观力学.科学出版社,2008, pp:189-199.
    [217] T. Mura. Micromechanics of defects in solids. second ed. Kluwer Academic Publishers,Dordrecht,1987.(给出参考文献的页码)
    [218] S. Nemat-Nasser, M. Hori. Micromechanics: overall properties of heterogeneous materials,second ed. North-Holland, Amsterdam,1999.
    [219]秦庆华,杨庆生,非均匀材料多场耦合行为的宏细观理论.高等教育出版社,2006, pp:13-17.
    [220] J. K. Percus, G. J. Yevick. Analysis of classical statistical mechanics by means of collectivecoordinates. Physical Review,1958,110(1):1-13.
    [221] J. R. Zuiker. Functionally graded materials: choice of micromechanics model and limitationsin property variation. Composite Engineering,1995,5:807-819.
    [222] S. Itou. Stress intensity factors around a crack in a nonhomogeneous interfacial layerbetween two dissimilar elastic half-planes. International Journal of Fracture,2001,110:123-135.
    [223] L. Marin, D. Lesnic. The method of fundamental solutions for nonlinear functionally gradedmaterials. International Journal of Solids and Structures,2007,44:6878-6890.
    [224] A. C. Fischer-Cripps. Analysis of instrumented indentation test data for functionally gradedMaterials. Surface and Coatings Technology2003,168:136-141.
    [225] B. V. Sankar. An elasticity solution for functionally graded beams. Composites Science andTechnology,2001,61(5):689-696.
    [226] X. Y. Ding, H. J. Li, W. Q. Chen. Three-dimensional analytical solution for functionallygraded magnetoelectro-elastic circular plates subjected to uniform load. CompositeStructures,2008,83(4):381-390.
    [227] G. J. Nie, Z. Zhong. Vibration analysis of functionally graded annular sectorial plates withsimply supported radial edges. Composite Structures,2008,84(2):167-176.
    [228] H. J. Choi, G. H. Paulino. Thermoelastic contact mechanics for a flat punch sliding over agraded coating/substrate system with frictional heat generation. Journal of the Mechanics andPhysics of Solids,2008,56(4):1673-1692.
    [229] X. He, J. S. Wang, Q. H. Qin. Saint-Venant decay analysis of FGPM laminates and dissimilarpiezoelectric laminates. Mechanics of Materials,2007,39(12):1053-1065.
    [230] Z. S. Shao, G. W. Ma. Thermo-mechanical stresses in functionally graded circular hollowcylinder with linearly increasing boundary temperature. Composite Structures,2008,83(3):259-265.
    [231] M. A. Guler, F. Erdogan. Contact mechanics of two deformable elastic solids with gradedcoatings. Mechanics of Materials,2006,38(7):633-647.
    [232] E. Pan, F. Han. Green’s functions for transversely isotropic piezoelectric functionally gradedmultilayered half spaces. International Journal of Solids and Structures,2005,42(11-12):3207-3233.
    [233] L. Guo, N. Noda. Fracture mechanics analysis of functionally graded layered structures witha crack crossing the interface. Mechanics of Materials,2008a,40:81-99.
    [234] L. Guo, N. Noda, L. Wu. Thermal fracture model for a functionally graded plate with a cracknormal to the surfaces and arbitrary thermomechanical properties. Composites Science andTechnology,2008b,68:1034-1041.
    [235] J. R. Cho, J. T. Oden. Functionally graded material: a parametric study on thermal stresscharacteristics using the Crank-Nicolson-Galerkin scheme. Computer Methods in AppliedMechanics and Engineering,2000,188:17-38.
    [236] Y. L. Shen. Thermal expansion of metal–ceramic composites: a three dimensional analysis.Materials Science and Engineering,1998, A252:269-275.
    [237] Peng X, Fan J. A new approach to the analysis of polycrystal plasticity. Arch. Mech.,2000,52(1):103-125
    [238]玄光男[日].陈润伟著.汪定伟译.遗传算法与工程设计[M].北京:科学出版社,2000.
    [239]周明,孙树栋.遗传算法原理及应用[M].北京:国防工业出版社,1999.
    [240] J.R. Cho, J.H. Choi, A yield-criteria tailoring of the volume fraction in metal-ceramicfunctionally graded material Material and simulation data, European Journal of MechanicsA/Solids,2004,23:271–281.