Klf4在小鼠成牙本质细胞分化中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一、它莫西芬诱导型可逆永生化小鼠牙乳头细胞系的建立和鉴定
     研究目的:成牙本质细胞是一种可分泌矿化基质的终末分化细胞,在牙髓牙本质复合体中发挥重要作用。小鼠牙乳头细胞(mDPCs)在体外诱导条件下可分化成成牙本质细胞样细胞。但是由于繁琐的原代培养过程和细胞有限的寿命,在实验过程中不易获得稳定的细胞来源。为解决该问题,本研究将传统的基于Cre/LoxP的可逆永生化系统与它莫西芬诱导的Cre重组酶系统相结合,试图建立一个它莫西芬诱导型可逆永生化小鼠牙乳头细胞系,并对其进行鉴定。
     研究方法:首先使用慢病毒介导的方法将已插入LoxP位点的SV40Tag-TK表达载体转染入原代培养的mDPCs。经过GCV筛选和单克隆筛选获得一个稳定表达SV40Tag并持续增值的克隆-mDPC6T,进而在mDPC6T过表达含有雌激素受体的ERT2CreERT2重组酶。经单克隆筛选SV40Tag和Cre阳性细胞,获得细胞系mDPCET。 mDPCET经过4-羟基它莫西芬(4-OHT)处理后获得逆永生化细胞。通过EdU掺入实验和PDLs计数法检测原代mDPCs、mDPCET和逆永生化细胞的细胞增殖动力学,通过免疫荧光、Real-time RT-PCR和Western Blot检测成牙本质相关标志物,茜素红染色检测细胞在诱导条件下矿化结节的形成。
     研究结果:与原代细胞相比,mDPCET增殖能力显著上调,寿命延长,但是同时保持了原代mDPCs的大部分生化和功能特性,当mDPCET细胞在4-OHT处理条件下,ERT2Cre ERT2从细胞质转移到细胞核,从而敲除已转入的SV40Tag-TK,使mDPCET发生逆永生化。与mDPCET相比,逆永生细胞的成牙本质相关基因及矿化结节形成能力显著上调,并重新获得可发生复制性衰老的能力。
     结论:建立并鉴定了一个它莫西芬诱导型可逆永生化小鼠牙乳头细胞系mDPCET。经4-OHT处理后,mDPCET可发生逆永生化,逆永生化细胞呈现低增殖高分化的状态,并重获可衰老的能力,这种状态更加类似分化的成牙本质细胞。
     二、Klf4通过调控Dmp1促进小鼠牙乳头细胞向成牙本质细胞样细胞分化
     研究目的:成牙本质细胞来源于牙乳头,是一种具有分泌基质功能的终未分化细胞。在成牙本质细胞分化过程中多种转录因子参与了调控。本课题组过去的研究发现,Kruppel-like factor4(Klf4)特异性表达在极化和延伸期的成牙本质细胞中,但是Klf4在成牙本质细胞分化过程中的作用尚不明确。本研究试图探索Klf4在成牙本质细胞分化过程中的功能,并分析其调控成牙本质细胞分化的分子机制。
     研究方法:在本研究中,使用矿化诱导液在体外诱导小鼠原代牙乳头细胞(mDPCs)和小鼠牙乳头细胞系即mDPC6T向成牙本质细胞样细胞分化作为研究模型。检测诱导过程中Klf4的mRNA和蛋白质表达水平、碱性磷酸酶活性和成牙本质细胞分化相关基因(Dspp、Dmp1和Alp)的表达:同时通过EdU掺入法检测细胞的增殖能力。在Klf4过表达和抑制条件下检测成牙本质细胞分化相关基因(Dspp、Dmp1和Alp)的表达和碱性磷酸酶活性,同时通过EdU掺入法检测细胞的增殖能力,茜素红染色检测矿化结节的形成。生物信息学预测Klf4潜在的下游基因Dmp1,并通过染色体免疫共沉淀(ChIP)、凝胶电泳迁移实验(EMSA)、双荧光素酶报告实验(DLA)检测Klf4对Dmp1的转录调控。在Klf4抑制条件下过表达Dmp1,检测Dmp1与Klf4间的调控关系。
     研究结果:Klf4在mDPCs和mDPC6T向成牙本质细胞样细胞分化过程中表达显著上调。过表达Klf4显著上调成牙本质相关基因,如Dmp1、Dspp和Alp,并可促进矿化结节的形成。抑制Klf4表达可下调Dmp1、Dspp和Alp的表达,并抑制矿化结节形成。生物信息学预测Klf4潜在的下游基因Dmp1。通过ChIP、EMSA和DLA的进一步分析,表明Klf4特异性结合于Dmp1启动子区,并转录激活其表达。Dmp1过表达可部分挽救由抑制Klf4表达对成牙本质分化的阻碍作用。
     结论:Klf4通过结合于Dmp1启动子上特定区域,转录上调Dmp1表达,从而促进成牙本质细胞分化。
     三、间充质中条件性敲除Klf4影响牙本质的矿化
     研究目的:Klf4(Kruppel-like factor4)又称为GKlf或Ezf,是Klf4锌指蛋白转录因子家族中的一员,在器官发育、干细胞干性维持和肿瘤发生发展中发挥重要作用。过去的研究发现Klf4特异性表达在极化和延伸期的成牙本质细胞中。在实验二中,通过体外研究探索了Klf4在成牙本质细胞分化中的作用。但是,体内环境下Klf4对成牙本质细胞分化和牙本质形成的调控作用还未可知。本研究试图探索在牙胚间充质中条件性敲除Klf4对成牙本质细胞分化和牙本质形成的影响。
     研究方法:将Wnt1-Cre:Klf4f/+小鼠与Klf4f/f小鼠交配就可以得到Wnt1-Cre;Klf4f/f,即在神经嵴来源的细胞中特异的失活Klf4的小鼠。Wnt1-Cre与R26R-LacZ(?)小鼠交配获得Wnt1-cre;R26R-LacZ即神经嵴来源的细胞呈x-gal染色阳性的小鼠。胎龄计算时以查到孕栓的当天中午计为胚胎E0.5天,小鼠出生当天中午计为出生后PN0.5天。按胎龄或出生后日龄获得的小鼠,分离尾鼠织,提取基因组DNA进行基因型鉴定。同一窝小鼠中基因型为Klf4f/+小鼠设为对照组小鼠,将基因型为Wnt1-cre;Klf4f/f小鼠设为实验组小鼠,即条件性敲除小鼠。分离小鼠下颌骨,体式显微镜照相,X-ray检测矿化组织密度,另外一部分组织经过固定,脱水,透明,石蜡包埋,切片用来进行组织学染色分析和免疫组化分析实验。
     研究结果:Wnt1-cre;R26R-LacZ经X-gal染色确认Cre重组酶在牙胚间充质细胞中被激活。免疫组织化学检测结果显示,在对照组(Klf4f/+)中,KLF4表达在E18.5与PN0.5的牙尖顶端分化的成牙本质细胞和成釉细胞中,在实验组中(Wnt1-cre;Klf4f/f) KLF4仅表达在PN0.5的牙尖顶端分化的成釉细胞中,成牙本质细胞不表达KLF4。HE染色结果显示在PN1W和PN2W的Klf4条件性敲除小鼠标本中,前期牙本质显著增厚。而Azan染色结果也发现Klf4条件性敲除小鼠的牙本质出现淡染。高分辨X-ray显示Klf4条件性敲除小鼠牙本质灰度显著下降,而牙釉质未发现显著的灰度改变。更有意思的是在PN3M时,2/4的Klf4条件性敲除小鼠出现龋损,并累及所有下颌磨牙,而对照小鼠未见龋损发生。
     结论:牙胚间充质中条件性敲除Klf4影响牙本质的矿化。
1. Tamoxifen-mediated reversible immortalization of mouse dental papilla cell line
     Objectives:Odontoblasts are a kind of non-proliferating and terminally differentiated cells which play an important part in pulpo-dentinal complex. Mouse dental papilla cells (mDPCs), which can differentiate into odontoblast-like cells in vitro, have a limited lifespan. To solve this problem, we combined the traditional strategy of "Cre/LoxP-based reversible immortalization" with tamoxifen-regulated Cre recombination system to generate a tamoxifen-mediated reversibly immortalized mouse dental papilla cell line.
     Methods:mDPCs were sequentially transduced with a floxed SV40Tag-TK and an ERT2CreERT2expressing plasmid. Clonal isolated SV40Tag and Cre positive cells were designated as mDPCET. The reverted cells were acquired by4-hydroxytamoxifen treatment. Primary mDPCs, mDPCET and the reverted cells were examined by investigation of cell proliferation kinetics, expression of odontoblastic-related makers and mineralization ability.
     Results:mDPCET showed upregulated growth rate and significantly extended lifespan, but retained most of the biochemical and functional characteristics of primary mDPCs. When mDPCET cells were treated with4-hydroxy tamoxifen, ERT2CreERT2was translocated from cytoplasm to nucleus which caused the excision of the SV40Tag-TK and led to the reversion of mDPCET. After the immortalization was reversed, cells underwent replicative senescence, showed higher expression level of odontoblastic-related genes and increased mineral deposition rate.
     Conclusions:Tamoxifen-mediated reversible immortalization, therefore, allows the expansion of primary mDPCs, leads to production of odontoblast-like cells that retain most odontoblast-specific properties, and can represent as a safe and ready-to-use method due to its simple manipulation.
     2. Klf4promoted odontoblastic differentiation of mouse dental papilla cells via Dmpl
     Objectives:Odontoblast cells, which derive from dental papilla, are a type of terminally differentiated matrix-secreting cells. Previous studies have identified various transcription factors involved in the differentiation process of odontoblasts. We have recently found that Kriippel-like factor4(Klf4) was expressed in the polarizing and elongating odontoblasts, but the function of Klf4in the differentiation of odontoblasts is still unclear. We hypothesized Klf4promoted the differentiation of odontoblasts by up-regulating some odontoblast-related genes.
     Methods&Results:In this study, we found that the expression of Klf4increased significantly during the odontoblastic differentiation of primary mouse dental papilla cells and the mouse dental papilla cell line-mDPC6T. Overexpression of Klf4significantly up-regulated odontoblast-related genes, such as Dmpl, Dspp, and Alp, and promoted the accumulation of mineral nodules. Knock-down of Klf4down-regulated expression of Dmpl, Dspp, and Alp, and inhibited mineral deposition. We applied in silico analysis and identified one target gene of Klf4-Dmp1. Based on further analysis of ChIP data, EMSA and dual luciferase activity assays, we confirmed that Klf4was able to specifically bind to the Dmpl promoter and transactivate its expression. Furthermore, forced expression of Dmpl in the Klf4knock-down mDPC6T cell line significantly recovered its odontoblastic differentiation ability.
     Conclusions:Our data confirmed our hypothesis that Klf4promotes the differentiation of odontoblasts via the up-regulation of Dmpl.
     3. Conditional knockout Klf4in dental mesenchyme affected dentin formation.
     Objectives:Kriippel-like factor4(Klf4) is a member of Klf zink finger transcriptional factor family. The Klf4plays a pivotal role in cellular differentiation. Previously, we have found that Klf4was expressed in the polarizing and elongating odontoblasts. In Part2, we applied in vitro study and showed that Klf4transcriptional activate the expression of Dmpl and promoted odontoblastic differentiation of mouse dental papilla cells. In this study, we hypothesized conditional knockout of Klf4in odontoblasts may affect differentiation of odontoblasts and dentin formation.
     Methods:Mouse containing inactivated Klf4in their neural crest cells (Wnt1-Cre; Klf4f/f) were obtained by crossing Wntl-Cre; Klf4f/+mice with Klf4mf/f line. Mouse containing activated LacZ in their neural crest cells was obtained by crossing Wntl-Cre mice with R26R-LacZ line. Mouse tail was dissected and the genome DNA was isolated for genotyping. Embryonic head samples were dissected and fixed individually in4%paraformaldehyde (PFA) overnight at4℃, and processed for paraffin section for histological and immunostaining or for X-ray scan.
     Results:Wntl-cre;R26R-LacZ mouse showed positive X-gal staining in dental mesenchyme. Immunostaining showed that, for the control mice (Klf4f/+), KLF4was expressed in the differentiated odontoblasts and ameloblasts in the cusp of E18.5and PN0.5molar germ. But in conditional knockout mice, expression of Klf4was detected only in the ameloblasts but not the odontoblasts. HE staining showed thicken predentin layer in the conditional knockout mice but not the control mice. Besides conditional knockout mice also showed weaker blue in the dentin for the azan staining. By high resolution X-ray, we have found decrease of the grey scale in the dentin but not the enamel in the conditional knockout mice. More interestingly, we observed caries involve all the mandibular molar in2/4of the3month old conditional knockout mice but none in the control mice.
     Conclusions:Klf4is essential in the odontoblasts for the dentin mineralization.
引文
1. Ben-Tabou de-Leon, S. and E.H. Davidson, Gene regulation:gene control network in development. Annu Rev Biophys Biomol Struct,2007.36:p.191.
    2. Mitsiadis, T.A. and D. Graf, Cell fate determination during tooth development and regeneration. Birth Defects Res C Embryo Today,2009.87(3):p.199-211.
    3. Tompkins, K., Molecular mechanisms of cytodifferentiation in mammalian tooth development. Connect Tissue Res,2006.47(3):p.111-8.
    4. Thesleff, I., A. Vaahtokari, P. Kettunen, and T. Aberg, Epithelial-mesenchymal signaling during tooth development. Connect Tissue Res,1995.32(1-4):p.9-15.
    5. Thesleff, I. and T. Aberg, Molecular regulation of tooth development. Bone, 1999.25(1):p.123-5.
    6. Latchman, D.S., Transcription factors:an overview. Int J Biochem Cell Biol, 1997.29(12):p.1305-12.
    7. Jung, H.S., Y. Hitoshi, and H.J. Kim, Study on tooth development, past, present, and future. Microsc Res Tech,2003.60(5):p.480-2.
    8. Aberg, T., X.P. Wang, J.H. Kim, T. Yamashiro, M. Bei, R. Rice, H.M. Ryoo, and I. Thesleff, Runx2 mediates FGF signaling from epithelium to mesenchyme during tooth morphogenesis. Dev Biol,2004.270(1):p.76-93.
    9. Andreeva, V., J. Cardarelli, and P.C. Yelick, Rbl mRNA expression in developing mouse teeth. Gene Expr Patterns,2012.
    10. Chen, S., J. Gluhak-Heinrich, Y.H. Wang, Y.M. Wu, H.H. Chuang, L. Chen, G.H. Yuan, J. Dong, I. Gay, and M. MacDougall, Runx2, osx, and dspp in tooth development. J Dent Res,2009.88(10):p.904-9.
    11. D'Souza, R.N., T. Aberg, J. Gaikwad, A. Cavender, M. Owen, G. Karsenty, and I. Thesleff, Cbfal is required for epithelial-mesenchymal interactions regulating tooth development in mice. Development,1999.126(13):p.2911-20.
    12. Duverger, O., A. Zah, J. Isaac, H.W. Sun, A.K. Bartels, J.B. Lian, A. Berdal, J. Hwang, and M.I. Morasso, Neural crest deletion of Dlx3 leads to major dentin defects through down-regulation of Dspp. J Biol Chem,2012.287(15):p. 12230-40.
    13. Narayanan, K., A. Ramachandran, M.C. Peterson, J. Hao, A.B. Kolsto, A.D. Friedman, and A. George, The CCAAT enhancer-binding protein (C/EBP)beta and Nrfl interact to regulate dentin sialophosphoprotein (DSPP) gene expression during odontoblast differentiation. J Biol Chem,2004.279(44):p. 45423-32.
    14. Steele-Perkins, G., K.G. Butz, G.E. Lyons, M. Zeichner-David, H.J. Kim, M.I. Cho, and R.M. Gronostajski, Essential role for NFI-C/CTF transcription-replication factor in tooth root development. Mol Cell Biol,2003. 23(3):p.1075-84.
    15. Chen, Z., M.L. Couble, N. Mouterfi, H. Magloire, and F. Bleicher, Spatial and temporal expression of KLF4 and KLF5 during murine tooth development. Arch Oral Biol,2009.54(5):p.403-11.
    16. Ghaleb, A.M., M.O. Nandan, S. Chanchevalap, W.B. Dalton, I.M. Hisamuddin, and V.W. Yang, Kruppel-like factors 4 and 5:the yin and yang regulators of cellular proliferation. Cell Res,2005.15(2):p.92-6.
    17. Yu, T., X. Chen, W. Zhang, J. Li, R. Xu, T.C. Wang, W. Ai, and C. Liu, Kruppel-like factor 4 regulates intestinal epithelial cell morphology and polarity. PLoS One,2012.7(2):p. e32492.
    18. Zheng, H., D.M. Pritchard, X. Yang, E. Bennett, G. Liu, C. Liu, and W. Ai, KLF4 gene expression is inhibited by the notch signaling pathway that controls goblet cell differentiation in mouse gastrointestinal tract. Am J Physiol Gastrointest Liver Physiol,2009.296(3):p. G490-8.
    19. Segre, J.A., C. Bauer, and E. Fuchs, Klf4 is a transcription factor required for establishing the barrier function of the skin. Nat Genet,1999.22(4):p.356-60.
    20. An, J., S. Golech, J. Klaewsongkram, Y. Zhang, K. Subedi, G.E. Huston, W.H. Wood,3rd, R.P. Wersto, K.G. Becker, S.L. Swain, and N. Weng, Kruppel-like factor 4 (KLF4) directly regulates proliferation in thymocyte development and IL-17 expression during Thl7 differentiation. FASEB J,2011.25(10):p. 3634-45.
    21. Swamynathan, S., D. Kenchegowda, and J. Piatigorsky, Regulation of corneal epithelial barrier function by Kruppel-like transcription factor 4. Invest Ophthalmol Vis Sci,2011.52(3):p.1762-9.
    22. Yoshida, T., Q. Gan, and G.K. Owens, Kruppel-like factor 4, Elk-1, and histone deacetylases cooperatively suppress smooth muscle cell differentiation markers in response to oxidized phospholipids. Am J Physiol Cell Physiol,2008.295(5): p. C1175-82.
    23. Qin, S., M. Liu, W. Niu, and C.L. Zhang, Dysregulation of Kruppel-like factor 4 during brain development leads to hydrocephalus in mice. Proc Natl Acad Sci U S A,2011.108(52):p.21117-21.
    24. Yang, G.B., X.Y. Li, G.H. Yuan, H. Liu, and M.W. Fan, Immortalization and characterization of human dental papilla cells with odontoblastic differentiation. Int Endod J,2012.
    25. Thonemann, B. and G. Schmalz, Bovine dental papilla-derived cells immortalized with HPV 18 E6/E7. Eur J Oral Sci,2000.108(5):p.432-41.
    26. MacDougall, M., F. Thiemann, H. Ta, P. Hsu, L.S. Chen, and M.L. Snead, Temperature sensitive simian virus 40 large T antigen immortalization of murine odontoblast cell cultures:establishment of clonal odontoblast cell line. Connect Tissue Res,1995.33(1-3):p.97-103.
    27. Kowolik, C.M., S. Liang, Y. Yu, and J.K. Yee, Cre-mediated reversible immortalization of human renal proximal tubular epithelial cells. Oncogene, 2004.23(35):p.5950-7.
    28. Kobayashi, N., H. Noguchi, K.A. Westerman, T. Watanabe, T. Matsumura, T. Totsugawa, T. Fujiwara, P. Leboulch, and N. Tanaka, Cre/loxP-based reversible immortalization of human hepatocytes. Cell Transplant,2001.10(4-5):p.383-6.
    29. Berghella, L., L. De Angelis, M. Coletta, B. Berarducci, C. Sonnino, G. Salvatori, C. Anthonissen, R. Cooper, G.S. Butler-Browne, V. Mouly, G. Ferrari, F. Mavilio, and G. Cossu, Reversible immortalization of human myogenic cells by site-specific excision of a retrovirally transferred oncogene. Hum Gene Ther, 1999.10(10):p.1607-17.
    30. Ruch, J.V., H. Lesot, and C. Begue-Kirn, Odontoblast differentiation. Int J Dev Biol,1995.39(1):p.51-68.
    31. Ruch, J.V., Odontoblast commitment and differentiation. Biochem Cell Biol, 1998.76(6):p.923-38.
    32. Lesot, H., Odontoblast differentiation and tooth morphogenesis. J Dent Res, 2000.79(9):p.1640-4.
    33. Ruch, J.V., Odontoblast differentiation and the formation of the odontoblast layer. J Dent Res,1985.64 Spec No:p.489-98.
    34. Lesot, H., C. Begue-Kirn, A.J. Smith, J.L. Fausser, and J.V. Ruch, [Cell-matrix interactions and odontoblast differentiation]. C R Seances Soc Biol Fil,1992. 186(5):p.485-500.
    35. Bleicher, F., M.L. Couble, R. Buchaille, J.C. Farges, and H. Magloire, New genes involved in odontoblast differentiation. Adv Dent Res,2001.15:p.30-3.
    36. Butler, W.T., Dentin matrix proteins and dentinogenesis. Connect Tissue Res, 1995.33(1-3):p.59-65.
    37. Fujita, S., K. Hideshima, and T. Ikeda, Nestin expression in odontoblasts and odontogenic ectomesenchymal tissue of odontogenic tumours. J Clin Pathol, 2006.59(3):p.240-5.
    38. Quispe-Salcedo, A., H. Ida-Yonemochi, M. Nakatomi, and H. Ohshima, Expression patterns of nestin and dentin sialoprotein during dentinogenesis in mice. Biomed Res,2012.33(2):p.119-32.
    39. MacDougall, M., D. Simmons, X. Luan, J. Nydegger, J. Feng, and T.T. Gu, Dentin phosphoprotein and dentin sialoprotein are cleavage products expressed from a single transcript coded by a gene on human chromosome 4. Dentin phosphoprotein DNA sequence determination. J Biol Chem,1997.272(2):p. 835-42.
    40. Feng, J.Q., X. Luan, J. Wallace, D. Jing, T. Ohshima, A.B. Kulkarni, R.N. D'Souza, C.A. Kozak, and M. MacDougall, Genomic organization, chromosomal mapping, and promoter analysis of the mouse dentin sialophosphoprotein (Dspp) gene, which codes for both dentin sialoprotein and dentin phosphoprotein. J Biol Chem,1998.273(16):p.9457-64.
    41. Prasad, M., Q. Zhu, Y. Sun, X. Wang, A. Kulkarni, A. Boskey, J.Q. Feng, and C. Qin, Expression of dentin sialophosphoprotein in non-mineralized tissues. J Histochem Cytochem,2011.59(11):p.1009-21.
    42. Alvares, K., Y.S. Kanwar, and A. Veis, Expression and potential role of dentin phosphophoryn (DPP) in mouse embryonic tissues involved in epithelial-mesenchymal interactions and branching morphogenesis. Dev Dyn, 2006.235(11):p.2980-90.
    43. Suzuki, S., N. Haruyama, F. Nishimura, and A.B. Kulkarni, Dentin sialophosphoprotein and dentin matrix protein-1:Two highly phosphorylated proteins in mineralized tissues. Arch Oral Biol,2012.57(9):p.1165-75.
    44. Prasad, M., W.T. Butler, and C. Qin, Dentin sialophosphoprotein in biomineralization. Connect Tissue Res,2010.51(5):p.404-17.
    45. Begue-Kirn, C., J.V. Ruch, A.L. Ridall, and W.T. Butler, Comparative analysis of mouse DSP and DPP expression in odontoblasts, preameloblasts, and experimentally induced odontoblast-like cells. Eur J Oral Sci,1998.106 Suppl 1: p.254-9.
    46. Rabie, A.M. and A. Veis, An immunocytochemical study of the routes of secretion of collagen and phosphophoryn from odontoblasts into dentin. Connect Tissue Res,1995.31(3):p.197-209.
    47. Boskey, A.L., M. Maresca, S. Doty, B. Sabsay, and A. Veis, Concentration-dependent effects of dentin phosphophoryn in the regulation of in vitro hydroxyapatite formation and growth. Bone Miner,1990.11(1):p.55-65.
    48. Sreenath, T., T. Thyagarajan, B. Hall, G. Longenecker, R. D'Souza, S. Hong, J.T. Wright, M. MacDougall, J. Sauk, and A.B. Kulkarni, Dentin sialophosphoprotein knockout mouse teeth display widened predentin zone and develop defective dentin mineralization similar to human dent ino gene sis imperfecta type Ⅲ. J Biol Chem,2003.278(27):p.24874-80.
    49. MacDougall, M., T.T. Gu, and D. Simmons, Dentin matrix protein-1, a candidate gene for dentinogenesis imperfecta. Connect Tissue Res,1996. 35(1-4):p.267-72.
    50. George, A., R. Silberstein, and A. Veis, In situ hybridization shows Dmpl (AG1) to be a developmentally regulated dentin-specific protein produced by mature odontoblasts. Connect Tissue Res,1995.33(1-3):p.67-72.
    51. Terasawa, M., R. Shimokawa, T. Terashima, K. Ohya, Y. Takagi, and H. Shimokawa, Expression of dentin matrix protein 1 (DMP1) in nonmineralized tissues. J Bone Miner Metab,2004.22(5):p.430-8.
    52. Narayanan, K., R. Srinivas, A. Ramachandran, J. Hao, B. Quinn, and A. George, Differentiation of embryonic mesenchymal cells to odontoblast-like cells by overexpression of dentin matrix protein 1. Proc Natl Acad Sci U S A,2001. 98(8):p.4516-21.
    53. Ye, L., M. MacDougall, S. Zhang, Y. Xie, J. Zhang, Z. Li, Y. Lu, Y. Mishina, and J.Q. Feng, Deletion of dentin matrix protein-1 leads to a partial failure of maturation of predentin into dentin, hypomineralization, and expanded cavities of pulp and root canal during postnatal tooth development. J Biol Chem,2004. 279(18):p.19141-8.
    54. Qin, C., J.C. Brunn, R.G. Cook, R.S. Orkiszewski, J.P. Malone, A. Veis, and W.T. Butler, Evidence for the proteolytic processing of dentin matrix protein 1. Identification and characterization of processed fragments and cleavage sites. J Biol Chem,2003.278(36):p.34700-8.
    55. George, A., B. Sabsay, P.A. Simonian, and A. Veis, Characterization of a novel dentin matrix acidic phosphoprotein. Implications for induction of biomineralization. J Biol Chem,1993.268(17):p.12624-30.
    56. Hirst, K.L., K. Ibaraki-O'Connor, M.F. Young, and M.J. Dixon, Cloning and expression analysis of the bovine dentin matrix acidic phosphoprotein gene. J Dent Res,1997.76(3):p.754-60.
    57. Tartaix, P.H., M. Doulaverakis, A. George, L.W. Fisher, W.T. Butler, C. Qin, E. Salih, M. Tan, Y. Fujimoto, L. Spevak, and A.L. Boskey, In vitro effects of dentin matrix protein-1 on hydroxyapatite formation provide insights into in vivo functions. J Biol Chem,2004.279(18):p.18115-20.
    58. Ye, L., Y. Mishina, D. Chen, H. Huang, S.L. Dallas, M.R. Dallas, P. Sivakumar, T. Kunieda, T.W. Tsutsui, A. Boskey, L.F. Bonewald, and J.Q. Feng, Dmpl-deficient mice display severe defects in cartilage formation responsible for a chondrodysplasia-like phenotype. J Biol Chem,2005.280(7):p.6197-203.
    59. Feng, J.Q., L.M. Ward, S. Liu, Y. Lu, Y. Xie, B. Yuan, X. Yu, F. Rauch, S.I. Davis, S. Zhang, H. Rios, M.K. Drezner, L.D. Quarles, L.F. Bonewald, and K..E. White, Loss of DMP1 causes rickets and osteomalacia and identifies a role for osteocytes in mineral metabolism. Nat Genet,2006.38(11):p.1310-5.
    60. Wiese, C., A. Rolletschek, G. Kania, P. Blyszczuk, K.V. Tarasov, Y. Tarasova, R.P. Wersto, K.R. Boheler, and A.M. Wobus, Nestin expression--a property of multi-lineage progenitor cells? Cell Mol Life Sci,2004.61(19-20):p.2510-22.
    61. Banerjee, C., L.R. McCabe, J.Y. Choi, S.W. Hiebert, J.L. Stein, G.S. Stein, and J.B. Lian, Runt homology domain proteins in osteoblast differentiation: AML3/CBFA1 is a major component of a bone-specific complex. J Cell Biochem, 1997.66(1):p.1-8.
    62. Li, S., H. Kong, N. Yao, Q. Yu, P. Wang, Y. Lin, J. Wang, R. Kuang, X. Zhao, J. Xu, Q. Zhu, and L. Ni, The role of runt-related transcription factor 2 (Runx2) in the late stage of odontoblast differentiation and dentin formation. Biochem Biophys Res Commun,2011.410(3):p.698-704.
    63. Miyazaki, T., N. Kanatani, S. Rokutanda, C. Yoshida, S. Toyosawa, R. Nakamura, S. Takada, and T. Komori, Inhibition of the terminal differentiation of odontoblasts and their transdifferentiation into osteoblasts in Runx2 transgenic mice. Arch Histol Cytol,2008.71(2):p.131-46.
    64. Yamashiro, T., T. Aberg, D. Levanon, Y. Groner, and I. Thesleff, Expression of Runx1,-2 and -3 during tooth, palate and craniofacial bone development. Mech Dev,2002.119 Suppl 1:p. S107-10.
    65. Chen, S., S. Rani, Y. Wu, A. Unterbrink, T.T. Gu, J. Gluhak-Heinrich, H.H. Chuang, and M. Macdougall, Differential regulation of dentin sialophosphoprotein expression by Runx2 during odontoblast cytodifferentiation. J Biol Chem,2005.280(33):p.29717-27.
    66. Bronckers, A.L., M.A. Engelse, A. Cavender, J. Gaikwad, and R.N. D'Souza, Cell-specific patterns of Cbfal mRNA and protein expression in postnatal murine dental tissues. Mech Dev,2001.101(1-2):p.255-8.
    67. Gaikwad, J.S., M. Hoffmann, A. Cavender, A.L. Bronckers, and R.N. D'Souza, Molecular insights into the lineage-specific determination of odontoblasts:the role of Cbfal. Adv Dent Res,2001.15:p.19-24.
    68. Nagata, K., R.A. Guggenheimer, T. Enomoto, J.H. Lichy, and J. Hurwitz, Adenovirus DNA replication in vitro:identification of a host factor that stimulates synthesis of the preterminal protein-dCMP complex. Proc Natl Acad Sci U S A,1982.79(21):p.6438-42.
    69. Gronostajski, R.M., Roles of the NFI/CTF gene family in transcription and development. Gene,2000.249(1-2):p.31-45.
    70. Lee, D.S., W.J. Yoon, E.S. Cho, H.J. Kim, R.M. Gronostajski, M.I. Cho, and J.C. Park, Crosstalk between nuclear factor I-C and transforming growth factor-beta1 signaling regulates odontoblast differentiation and homeostasis. PLoS One,2011.6(12):p. e29160.
    71. Gronthos, S., S. Chen, C.Y. Wang, P.G. Robey, and S. Shi, Telomerase accelerates osteogenesis of bone marrow stromal stem cells by upregulation of CBFA1, osterix, and osteocalcin. J Bone Miner Res,2003.18(4):p.716-22.
    72. Price, J.A., D.W. Bowden, J.T. Wright, M.J. Pettenati, and T.C. Hart, Identification of a mutation in DLX3 associated with tricho-dento-osseous (TDO) syndrome. Hum Mol Genet,1998.7(3):p.563-9.
    73. Ghoul-Mazgar, S., D. Hotton, F. Lezot, C. Blin-Wakkach, A. Asselin, J.M. Sautier, and A. Berdal, Expression pattern of Dlx3 during cell differentiation in mineralized tissues. Bone,2005.37(6):p.799-809.
    74. Deshpande, A. and P.W. Hinds, The retinoblastoma protein in osteoblast differentiation and osteosarcoma. Curr Mol Med,2006.6(7):p.809-17.
    75. Ramji, D.P. and P. Foka, CCAAT/enhancer-binding proteins:structure, function and regulation. Biochem J,2002.365(Pt 3):p.561-75.
    76. Savage, T., T. Bennett, Y.F. Huang, P.L. Kelly, N.E. Durant, D.J. Adams, M. Mina, and J.R. Harrison, Mandibular phenotype of p20C/EBPbeta transgenic mice:Reduced alveolar bone mass and site-specific dentin dysplasia. Bone, 2006.39(3):p.552-64.
    77. Bieker, J.J., Kruppel-like factors:three fingers in many pies. J Biol Chem,2001. 276(37):p.34355-8.
    78. Yet, S.F., M.M. McA'Nulty, S.C. Folta, H.W. Yen, M. Yoshizumi, C.M. Hsieh, M.D. Layne, M.T. Chin, H. Wang, M.A. Perrella, M.K. Jain, and M.E. Lee, Human EZF, a Kruppel-like zinc finger protein, is expressed in vascular endothelial cells and contains transcriptional activation and repression domains. J Biol Chem,1998.273(2):p.1026-31.
    79. Miller, K.A., E.A. Eklund, M.L. Peddinghaus, Z. Cao, N. Fernandes, P.W. Turk, B. Thimmapaya, and S.A. Weitzman, Kruppel-like factor 4 regulates laminin alpha 3A expression in mammary epithelial cells. J Biol Chem,2001.276(46):p. 42863-8.
    80. Ghaleb, A.M. and V.W. Yang, The Pathobiology of Kruppel-like Factors in Colorectal Cancer. Curr Colorectal Cancer Rep,2008.4(2):p.59-64.
    81. Godmann, M., J.P. Katz, F. Guillou, M. Simoni, K.H. Kaestner, and R. Behr, Kruppel-like factor 4 is involved in functional differentiation of testicular Sertoli cells. Dev Biol,2008.315(2):p.552-66.
    82. Hagos, E.G., A.M. Ghaleb, A. Kumar, A.S. Neish, and V.W. Yang, Expression profiling and pathway analysis of Kruppel-like factor 4 in mouse embryonic fibroblasts. Am J Cancer Res,2011.1(1):p.85-97.
    83. Katz, J.P., N. Perreault, B.G. Goldstein, L. Actman, S.R. McNally, D.G. Silberg, E.E. Furth, and K.H. Kaestner, Loss of Klf4 in mice causes altered proliferation and differentiation and precancerous changes in the adult stomach. Gastroenterology,2005.128(4):p.935-45.
    84. Wei, D., M. Kanai, Z. Jia, X. Le, and K. Xie, Kruppel-like factor 4 induces p27Kipl expression in and suppresses the growth and metastasis of human pancreatic cancer cells. Cancer Res,2008.68(12):p.4631-9.
    85. Moore, D.L., M.G. Blackmore, Y. Hu, K.H. Kaestner, J.L. Bixby, V.P. Lemmon, and J.L. Goldberg, KLF family members regulate intrinsic axon regeneration ability. Science,2009.326(5950):p.298-301.
    86. Shields, J.M., R.J. Christy, and V.W. Yang, Identification and characterization of a gene encoding a gut-enriched Kruppel-like factor expressed during growth arrest. J Biol Chem,1996.271(33):p.20009-17.
    87. Evans, P.M. and C. Liu, Roles of Krupel-like factor 4 in normal homeostasis, cancer and stem cells. Acta Biochim Biophys Sin (Shanghai),2008.40(7):p. 554-64.
    88. Dang, D.T., J. Pevsner, and V.W. Yang, The biology of the mammalian Kruppel-like family of transcription factors. Int J Biochem Cell Biol,2000. 32(11-12):p.1103-21.
    89. Garrett-Sinha, L.A., H. Eberspaecher, M.F. Seldin, and B. de Crombrugghe, A gene for a novel zinc-finger protein expressed in differentiated epithelial cells and transiently in certain mesenchymal cells. J Biol Chem,1996.271(49):p. 31384-90.
    90. Geiman, D.E., H. Ton-That, J.M. Johnson, and V.W. Yang, Transactivation and growth suppression by the gut-enriched Kruppel-like factor (Kruppel-like factor 4) are dependent on acidic amino acid residues and protein-protein interaction. Nucleic Acids Res,2000.28(5):p.1106-13.
    91. Wei, D., M. Kanai, S. Huang, and K. Xie, Emerging role of KLF4 in human gastrointestinal cancer. Carcinogenesis,2006.27(1):p.23-31.
    92. McConnell, B.B., A.M. Ghaleb, M.O. Nandan, and V.W. Yang, The diverse functions of Kruppel-like factors 4 and 5 in epithelial biology and pathobiology. Bioessays,2007.29(6):p.549-57.
    93. Liu, H., H. Lin, L. Zhang, Q. Sun, G. Yuan, S. Chen, and Z. Chen, miR-145 and miR-143 Regulate Odontoblast Differentiation through Targeting Klf4 and Osx Genes in a Feedback Loop. J Biol Chem,2013.288(13):p.9261-71.
    94. Sherr, C.J. and J.M. Roberts, CDK inhibitors:positive and negative regulators of G1-phase progression. Genes Dev,1999.13(12):p.1501-12.
    95. Vidal, A. and A. Koff, Cell-cycle inhibitors:three families united by a common cause. Gene,2000.247(1-2):p.1-15.
    96. Yoon, H.S., X. Chen, and V.W. Yang, Kruppel-like factor 4 mediates p53-dependent G1/S cell cycle arrest in response to DNA damage. J Biol Chem, 2003.278(4):p.2101-5.
    97. Yoon, H.S. and V.W. Yang, Requirement of Kruppel-like factor 4 in preventing entry into mitosis following DNA damage. J Biol Chem,2004.279(6):p. 5035-41.
    98. Bloethner, S., K. Hemminki, R.K. Thirumaran, B. Chen, J. Mueller-Berghaus, S. Ugurel, D. Schadendorf, and R. Kumar, Differences in global gene expression in melanoma cell lines with and without homozygous deletion of the CDKN2A locus genes. Melanoma Res,2006.16(4):p.297-307.
    99. Wassmann, S., K. Wassmann, A. Jung, M. Velten, P. Knuefermann, V. Petoumenos, U. Becher, C. Werner, C. Mueller, and G. Nickenig, Induction of p53 by GKLF is essential for inhibition of proliferation of vascular smooth muscle cells. J Mol Cell Cardiol,2007.43(3):p.301-7.
    100. Chen, X., D.C. Johns, D.E. Geiman, E. Marban, D.T. Dang, G. Hamlin, R. Sun, and V.W. Yang, Kruppel-like factor 4 (gut-enriched Kruppel-like factor) inhibits cell proliferation by blocking G1/S progression of the cell cycle. J Biol Chem, 2001.276(32):p.30423-8.
    101. Chen, X.H., R.L. Gao, and W.H. Xu, [Effect of ginsenosides in inducing proliferation and transcription factor of erythrocytic, granulo-monocytic and megakarocytic cell lines]. Zhongguo Zhong Xi Yi Jie He Za Zhi,2001.21(1):p. 40-2.
    102. Shie, J.L., Z.Y. Chen, M. Fu, R.G. Pestell, and C.C. Tseng, Gut-enriched Kruppel-like factor represses cyclin D1 promoter activity through Spl motif. Nucleic Acids Res,2000.28(15):p.2969-76.
    103. Zhang, W., D.E. Geiman, J.M. Shields, D.T. Dang, C.S. Mahatan, K.H. Kaestner, J.R. Biggs, A.S. Kraft, and V.W. Yang, The gut-enriched Kruppel-like factor (Kruppel-like factor 4) mediates the transactivating effect of p53 on the p21WAF1/Cipl promoter. J Biol Chem,2000.275(24):p.18391-8.
    104. Katz, J.P., N. Perreault, B.G. Goldstein, C.S. Lee, P.A. Labosky, V.W. Yang, and K.H. Kaestner, The zinc-finger transcription factor Klf4 is required for terminal differentiation of goblet cells in the colon. Development,2002.129(11):p. 2619-28.
    105. Zhang, W., J.M. Shields, K. Sogawa, Y. Fujii-Kuriyama, and V.W. Yang, The gut-enriched Kruppel-like factor suppresses the activity of the CYPlA1 promoter in an Spl-dependent fashion. J Biol Chem,1998.273(28):p.17917-25.
    106. Higaki, Y., D. Schullery, Y. Kawata, M. Shnyreva, C. Abrass, and K. Bomsztyk, Synergistic activation of the rat laminin gammal chain promoter by the gut-enriched Kruppel-like factor (GKLF/KLF4) and Spl. Nucleic Acids Res, 2002.30(11):p.2270-9.
    107. Brembeck, F.H. and A.K. Rustgi, The tissue-dependent keratin 19 gene transcription is regulated by GKLF/KLF4 and Spl. J Biol Chem,2000.275(36): p.28230-9.
    108. Okano, J., O.G. Opitz, H. Nakagawa, T.D. Jenkins, S.L. Friedman, and A.K. Rustgi, The Kruppel-like transcriptional factors Zf9 and GKLF coactivate the human keratin 4 promoter and physically interact. FEBS Lett,2000.473(1):p. 95-100.
    109. Swamynathan, S.K., J. Davis, and J. Piatigorsky, Identification of candidate Klf4 target genes reveals the molecular basis of the diverse regulatory roles ofKlf4 in the mouse cornea. Invest Ophthalmol Vis Sci,2008.49(8):p.3360-70.
    110. Alder, J.K., R.W. Georgantas,3rd, R.L. Hildreth, I.M. Kaplan, S. Morisot, X. Yu, M. McDevitt, and C.I. Civin, Kruppel-like factor 4 is essential for inflammatory monocyte differentiation in vivo. J Immunol,2008.180(8):p.5645-52.
    111. Jean, J.C., E. George, K.H. Kaestner, L.A. Brown, A. Spira, and M. Joyce-Brady, Transcription factor Klf4, induced in the lung by oxygen at birth, regulates perinatal fibroblast and myofibroblast differentiation. PLoS One,2013.8(1):p. e54806.
    112. Zhang, R., M. Han, B. Zheng, Y.J. Li, Y.N. Shu, and J.K. Wen, Kruppel-like factor 4 interacts with p300 to activate mitofusin 2 gene expression induced by all-trans retinoic acid in VSMCs. Acta Pharmacol Sin,2010.31(10):p. 1293-302.
    113. Lebson, L., A. Gocke, J. Rosenzweig, J. Alder, C. Civin, P.A. Calabresi, and K.A. Whartenby, Cutting edge:The transcription factor Kruppel-like factor 4 regulates the differentiation of Thl7 cells independently of RORgammat. J Immunol,2010.185(12):p.7161-4.
    114. Rivero, S., M.J. Diaz-Guerra, E.M. Monsalve, J. Laborda, and J.J. Garcia-Ramirez, DLK2 is a transcriptional target of KLF4 in the early stages of adipogenesis. J Mol Biol,2012.417(1-2):p.36-50.
    115. Birsoy, K.., Z. Chen, and J. Friedman, Transcriptional regulation of adipogenesis by KLF4. Cell Metab,2008.7(4):p.339-47.
    116. Yoshida, T., M. Yamashita, and M. Hayashi, Kruppel-like factor 4 contributes to high phosphate-induced phenotypic switching of vascular smooth muscle cells into osteogenic cells. J Biol Chem,2012.287(31):p.25706-14.
    117. Li, X., Y. Song, D. Wang, C. Fu, Z. Zhu, Y. Han, C. Li, N. Wang, and Y. Zhu, LIF maintains progenitor phenotype of endothelial progenitor cells via Kruppel-like factor 4. Microvasc Res,2012.84(3):p.270-7.
    118. Takahashi, K., K. Tanabe, M. Ohnuki, M. Narita, T. Ichisaka, K. Tomoda, and S. Yamanaka, Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell,2007.131(5):p.861-72.
    119. Yamanaka, S. and K. Takahashi, [Induction of pluripotent stem cells from mouse fibroblast cultures]. Tanpakushitsu Kakusan Koso,2006.51(15):p.2346-51.
    120. Li, Y, J. McClintick, L. Zhong, H.J. Edenberg, M.C. Yoder, and R.J. Chan, Murine embryonic stem cell differentiation is promoted by SOCS-3 and inhibited by the zinc finger transcription factor Klf4. Blood,2005.105(2):p.635-7.
    121. Zhang, W., X. Chen, Y. Kato, P.M. Evans, S. Yuan, J. Yang, P.G. Rychahou, V.W. Yang, X. He, B.M. Evers, and C. Liu, Novel cross talk of Kruppel-like factor 4 and beta-catenin regulates normal intestinal homeostasis and tumor repression. Mol Cell Biol,2006.26(6):p.2055-64.
    122. Flandez, M., S. Guilmeau, P. Blache, and L.H. Augenlicht, KLF4 regulation in intestinal epithelial cell maturation. Exp Cell Res,2008.314(20):p.3712-23.
    123. Ohishi, K., B. Varnum-Finney, and I.D. Bernstein, The notch pathway: modulation of cell fate decisions in hematopoiesis. Int J Hematol,2002.75(5):p. 449-59.
    124. Perdigoto, C.N. and A.J. Bardin, Sending the right signal:Notch and stem cells. Biochim Biophys Acta,2013.1830(2):p.2307-22.
    125. Hansson, E.M., U. Lendahl, and G. Chapman, Notch signaling in development and disease. Semin Cancer Biol,2004.14(5):p.320-8.
    126. Jensen, J., E.E. Pedersen, P. Galante, J. Hald, R.S. Heller, M. Ishibashi, R. Kageyama, F. Guillemot, P. Serup, and O.D. Madsen, Control of endodermal endocrine development by Hes-1. Nat Genet,2000.24(1):p.36-44.
    127. Ghaleb, A.M., G. Aggarwal, A.B. Bialkowska, M.O. Nandan, and V.W. Yang, Notch inhibits expression of the Kruppel-like factor 4 tumor suppressor in the intestinal epithelium. Mol Cancer Res,2008.6(12):p.1920-7.
    128. Nakamura, T., K. Tsuchiya, and M. Watanabe, Crosstalk between Wnt and Notch signaling in intestinal epithelial cell fate decision. J Gastroenterol,2007.42(9): p.705-10.
    129. Samarakoon, R. and P.J. Higgins, Integration of non-SMAD and SMAD signaling in TGF-betal-induced plasminogen activator inhibitor type-1 gene expression in vascular smooth muscle cells. Thromb Haemost,2008.100(6):p. 976-83.
    130. Rezaei, H.B., D. Kamato, G. Ansari, N. Osman, and P.J. Little, Cell biology of Smad2/3 linker region phosphorylation in vascular smooth muscle. Clin Exp Pharmacol Physiol,2012.39(8):p.661-7.
    131. Li, H.X., M. Han, M. Bernier, B. Zheng, S.G. Sun, M. Su, R. Zhang, J.R. Fu, and J.K. Wen, Kruppel-like factor 4 promotes differentiation by transforming growth factor-beta receptor-mediated Smad and p38 MAPK signaling in vascular smooth muscle cells. J Biol Chem,2010.285(23):p.17846-56.
    132. Kawai-Kowase, K., T. Ohshima, H. Matsui, T. Tanaka, T. Shimizu, T. Iso, M. Arai, G.K.. Owens, and M. Kurabayashi, PIAS1 mediates TGFbeta-induced SM alpha-actin gene expression through inhibition of KLF4 function-expression by protein sumoylation. Arterioscler Thromb Vasc Biol,2009.29(1):p.99-106.
    133. Davis-Dusenbery, B.N., M.C. Chan, K.E. Reno, A.S. Weisman, M.D. Layne, G. Lagna, and A. Hata, down-regulation of Kruppel-like factor-4 (KLF4) by microRNA-143/145 is critical for modulation of vascular smooth muscle cell phenotype by transforming growth factor-beta and bone morphogenetic protein 4. J Biol Chem,2011.286(32):p.28097-110.
    134. Bourillot, P.Y., I. Aksoy, V. Schreiber, F. Wianny, H. Schulz, O. Hummel, N. Hubner, and P. Savatier, Novel STAT3 target genes exert distinct roles in the inhibition of mesoderm and endoderm differentiation in cooperation with Nanog. Stem Cells,2009.27(8):p.1760-71.
    135. Hall, J., G. Guo, J. Wray, I. Eyres, J. Nichols, L. Grotewold, S. Morfopoulou, P. Humphreys, W. Mansfield, R. Walker, S. Tomlinson, and A. Smith, Oct4 and LIF/Stat3 additively induce Kruppel factors to sustain embryonic stem cell self-renewal. Cell Stem Cell,2009.5(6):p.597-609.
    136. Kobayashi, N., T. Okitsu, S. Nakaji, and N. Tanaka, Hybrid bioartificial liver: establishing a reversibly immortalized human hepatocyte line and developing a bioartificial liver for practical use. J Artif Organs,2003.6(4):p.236-44.
    137. Zhang, Y., E. Nuglozeh, F. Toure, A.M. Schmidt, and G. Vunjak-Novakovic, Controllable expansion of primary cardiomyocytes by reversible immortalization. Hum Gene Ther,2009.20(12):p.1687-96.
    138. Thonemann, B. and G. Schmalz, Immortalization of bovine dental papilla cells with simian virus 40 large t antigen. Arch Oral Biol,2000.45(10):p.857-69.
    139. Galler, K.M., H. Schweikl, B. Thonemann, R.N. D'Souza, and G. Schmalz, Human pulp-derived cells immortalized with Simian Virus 40 T-antigen. Eur J Oral Sci,2006.114(2):p.138-46.
    140. Wu, L.A., J. Feng, L. Wang, Y.D. Mu, A. Baker, K.J. Donly, J. Gluhak-Heinrich, S.E. Harris, M. MacDougall, and S. Chen, Immortalized mouse floxed Bmp2 dental papilla mesenchymal cell lines preserve odontoblastic phenotype and respond to BMP2. J Cell Physiol,2010.225(1):p.132-9.
    141. Paillard, F., Reversible cell immortalization with the Cre-lox system. Hum Gene Ther,1999.10(10):p.1597-8.
    142. May, T., W. Lindenmaier, D. Wirth, and P.P. Mueller, Application of a reversible immortalization system for the generation of proliferation-controlled cell lines. Cytotechnology,2004.46(2-3):p.69-78.
    143. Jullien, N., I. Goddard, S. Selmi-Ruby, J.L. Fina, H. Cremer, and J.P. Herman, Use of ERT2-iCre-ERT2 for conditional transgenesis. Genesis,2008.46(4):p. 193-9.
    144. Fisher, L.W. and N.S. Fedarko, Six genes expressed in bones and teeth encode the current members of the SIBLING family of proteins. Connect Tissue Res, 2003.44 Suppl1:p.33-40.
    145. Struys, T., T. Krage, F. Vandenabeele, W.H. Raab, and I. Lambrichts, Immunohistochemical evidence for proteolipid protein and nestin expression in the late bell stage of developing rodent teeth. Arch Oral Biol,2005.50(2):p. 171-4.
    146. Ali, S.H. and J.A. DeCaprio, Cellular transformation by SV40 large T antigen: interaction with host proteins. Semin Cancer Biol,2001.11(1):p.15-23.
    147. Sullivan, C.S. and J.M. Pipas, T antigens of simian virus 40:molecular chaperones for viral replication and tumorigenesis. Microbiol Mol Biol Rev, 2002.66(2):p.179-202.
    148. Meng, F.Y., Z.S. Chen, M. Han, X.P. Hu, X.X. He, Y. Liu, W.T. He, W. Huang, H. Guo, and P. Zhou, Porcine hepatocyte isolation and reversible immortalization mediated by retroviral transfer and site-specific recombination. World J Gastroenterol,2010.16(13):p.1660-4.
    149. Lisi, S., R. Peterkova, M. Peterka, J.L. Vonesch, J.V. Ruch, and H. Lesot, Tooth morphogenesis and pattern of odontoblast differentiation. Connect Tissue Res, 2003.44 Suppl1:p.167-70.
    150. Feinberg, M.W., A.K. Wara, Z. Cao, M.A. Lebedeva, F. Rosenbauer, H. Iwasaki, H. Hirai, J.P. Katz, R.L. Haspel, S. Gray, K. Akashi, J. Segre, K.H. Kaestner, D.G. Tenen, and M.K. Jain, The Kruppel-like factor KLF4 is a critical regulator of monocyte differentiation. EMBO J,2007.26(18):p.4138-48.
    151. Lin, H., L. Xu, H. Liu, Q. Sun, Z. Chen, and G. Yuan, KLF4 promotes the odontoblastic differentiation of human dental pulp cells. J Endod,2011.37(7):p. 948-54.
    152. Lee, D.H., B.S. Lim, Y.K. Lee, and H.C. Yang, Effects of hydrogen peroxide (H2O2) on alkaline phosphatase activity and matrix mineralization of odontoblast and osteoblast cell lines. Cell Biol Toxicol,2006.22(1):p.39-46.
    153. Li, R., L. Peng, L. Ren, H. Tan, and L. Ye, Hepatocyte growth factor exerts promoting functions on murine dental papilla cells. J Endod,2009.35(3):p. 382-8.
    154. Chen, X., E.M. Whitney, S.Y. Gao, and V.W. Yang, Transcriptional profiling of Kruppel-like factor 4 reveals a function in cell cycle regulation and epithelial differentiation. J Mol Biol,2003.326(3):p.665-77.
    155. Zhang, P., R. Andrianakos, Y. Yang, C. Liu, and W. Lu, Kruppel-like factor 4 (Klf4) prevents embryonic stem (ES) cell differentiation by regulating Nanog gene expression. J Biol Chem,2010.285(12):p.9180-9.
    156. Adam, P.J., C.P. Regan, M.B. Hautmann, and G.K. Owens, Positive-and negative-acting Kruppel-like transcription factors bind a transforming growth factor beta control element required for expression of the smooth muscle cell differentiation marker SM22alpha in vivo. J Biol Chem,2000.275(48):p. 37798-806.
    157. Zhang, P., P. Basu, L.C. Redmond, P.E. Morris, J.W. Rupon, G.D. Ginder, and J.A. Lloyd, A functional screen for Kruppel-like factors that regulate the human gamma-globin gene through the CACCC promoter element. Blood Cells Mol Dis,2005.35(2):p.227-35.
    158. Gardiner, M.R., M.M. Gongora, S.M. Grimmond, and A.C. Perkins, A global role for zebrafish klf4 in embryonic erythropoiesis. Mech Dev,2007.124(9-10): p.762-74.
    159. Yu, K., B. Zheng, M. Han, and J.K. Wen, ATRA activates and PDGF-BB represses the SM22alpha promoter through KLF4 binding to, or dissociating from, its cis-DNA elements. Cardiovasc Res,2011.90(3):p.464-74.
    160. Jenkins, T.D., O.G. Opitz, J. Okano, and A.K. Rustgi, Transactivation of the human keratin 4 and Epstein-Barr virus ED-L2 promoters by gut-enriched Kruppel-like factor. J Biol Chem,1998.273(17):p.10747-54.
    161. Sharpe, P.T., Neural crest and tooth morphogenesis. Adv Dent Res,2001.15:p. 4-7.
    162. Jernvall, J. and I. Thesleff, Reiterative signaling and patterning during mammalian tooth morphogenesis. Mech Dev,2000.92(1):p.19-29.
    163. Zhang, Y.D., Z. Chen, Y.Q. Song, C. Liu, and Y.P. Chen, Making a tooth:growth factors, transcription factors, and stem cells. Cell Res,2005.15(5):p.301-16.
    164. Dassule, H.R. and A.P. McMahon, Analysis of epithelial-mesenchymal interactions in the initial morphogenesis of the mammalian tooth. Dev Biol, 1998.202(2):p.215-27.
    165. Jaubert, J., J. Cheng, and J.A. Segre, Ectopic expression of kruppel like factor 4 (Klf4) accelerates formation of the epidermal permeability barrier. Development, 2003.130(12):p.2767-77.
    166. Nakamura, H., Mesenchymal derivatives from the neural crest. Arch Histol Jpn, 1982.45(2):p.127-38.
    167. Chai, Y., X. Jiang, Y. Ito, P. Bringas, Jr., J. Han, D.H. Rowitch, P. Soriano, A.P. McMahon, and H.M. Sucov, Fate of the mammalian cranial neural crest during tooth and mandibular morphogenesis. Development,2000.127(8):p.1671-9.
    168. Sun, Y., Y. Lu, L. Chen, T. Gao, R. D'Souza, J.Q. Feng, and C. Qin, DMP1 processing is essential to dentin and jaw formation. J Dent Res,2011.90(5):p. 619-24.
    169. Kamata, N., R. Fujimoto, M. Tomonari, M. Taki, M. Nagayama, and S. Yasumoto, Immortalization of human dental papilla, dental pulp, periodontal ligament cells and gingival fibroblasts by telomerase reverse transcriptase. J Oral Pathol Med,2004.33(7):p.417-23.
    170. Westerman, K.A. and P. Leboulch, Reversible immortalization of mammalian cells mediated by retroviral transfer and site-specific recombination. Proc Natl Acad Sci U S A,1996.93(17):p.8971-6.
    171. Salmon, P., J. Oberholzer, T. Occhiodoro, P. Morel, J. Lou, and D. Trono, Reversible immortalization of human primary cells by lentivector-mediated transfer of specific genes. Mol Ther,2000.2(4):p.404-14.
    172. Garcia, E.L. and A.A. Mills, Getting around lethality with inducible Cre-mediated excision. Semin Cell Dev Biol,2002.13(2):p.151-8.
    173. Matsuda, T. and C.L. Cepko, Controlled expression of transgenes introduced by in vivo electroporation. Proc Natl Acad Sci U S A,2007.104(3):p.1027-32.
    174. Naldini, L., U. Blomer, F.H. Gage, D. Trono, and I.M. Verma, Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector. Proc Natl Acad Sci U S A,1996.93(21): p.11382-8.
    175. Dimri, G.P., X. Lee, G. Basile, M. Acosta, G. Scott, C. Roskelley, E.E. Medrano, M. Linskens, I. Rubelj, O. Pereira-Smith, and et al., A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci U S A,1995.92(20):p.9363-7.
    176. Wu, H.L., Y. Wang, P. Zhang, S.F. Li, X. Chen, Y.K. Chen, J.G. Li, S.M. Yang, Y.P. Su, J.P. Wang, and B. Chen, Reversible immortalization of rat pancreatic beta cells with a novel immortalizing and tamoxifen-mediated self-recombination tricistronic vector. J Biotechnol,2011.151(3):p.231-41.
    177. Michikami, I., T. Fukushi, M. Tanaka, H. Egusa, Y. Maeda, T. Ooshima, S. Wakisaka, and M. Abe, Kruppel-like factor 4 regulates membranous and endochondral ossification. Exp Cell Res,2012.318(4):p.311-25.
    178. Tziafas, D. and K. Kodonas, Differentiation potential of dental papilla, dental pulp, and apical papilla progenitor cells. J Endod,2010.36(5):p.781-9.
    179. Qin, W., F. Yang, R. Deng, D. Li, Z. Song, Y. Tian, R. Wang, J. Ling, and Z. Lin, Smad 1/5 is involved in bone morphogenetic protein-2-induced odontoblastic differentiation in human dental pulp cells. J Endod,2012.38(1):p.66-71.
    180. Zhou, Y, M. Qian, Y Liang, Y. Liu, X. Yang, T. Jiang, and Y. Wang, Effects of leukemia inhibitory factor on proliferation and odontoblastic differentiation of human dental pulp cells. J Endod,2011.37(6):p.819-24.
    181. Qin, C., R. D'Souza, and J.Q. Feng, Dentin matrix protein 1 (DMP1):new and important roles for biomineralization and phosphate homeostasis. J Dent Res, 2007.86(12):p.1134-41.
    182. Hao, J., A. Ramachandran, and A. George, Temporal and spatial localization of the dentin matrix proteins during dentin biomineralization. J Histochem Cytochem,2009.57(3):p.227-37.
    183. Narayanan, K., S. Gajjeraman, A. Ramachandran, J. Hao, and A. George, Dentin matrix protein 1 regulates dentin sialophosphoprotein gene transcription during early odontoblast differentiation. J Biol Chem,2006.281(28):p.19064-71.
    184. Lu, Y, C. Qin, Y. Xie, L.F. Bonewald, and J.Q. Feng, Studies of the DMP1 57-kDa functional domain both in vivo and in vitro. Cells Tissues Organs,2009. 189(1-4):p.175-85.
    185. Pacifici, M., E.B. Golden, M. Iwamoto, and S.L. Adams, Retinoic acid treatment induces type X collagen gene expression in cultured chick chondrocytes. Exp Cell Res,1991.195(1):p.38-46.
    186. Han, D., H. Zhao, C. Parada, J.G. Hacia, P. Bringas, Jr., and Y. Chai, A TGFbeta-Smad4-Fgf6 signaling cascade controls myogenic differentiation and myoblast fusion during tongue development. Development,2012.139(9):p. 1640-50.
    187. Lin, Y., Y.S. Cheng, C. Qin, C. Lin, R. D'Souza, and F. Wang, FGFR2 in the dental epithelium is essential for development and maintenance of the maxillary cervical loop, a stem cell niche in mouse incisors. Dev Dyn,2009.238(2):p. 324-30.
    188. Wang, Y., J.P. Macke, S.L. Merbs, D.J. Zack, B. Klaunberg, J. Bennett, J. Gearhart, and J. Nathans, A locus control region adjacent to the human red and green visual pigment genes. Neuron,1992.9(3):p.429-40.
    189. Ma, D., R. Zhang, Y. Sun, H.F. Rios, N. Haruyama, X. Han, A.B. Kulkarni, C. Qin, and J.Q. Feng, A novel role of periostin in postnatal tooth formation and mineralization. J Biol Chem,2011.286(6):p.4302-9.
    190. Lin, H., H. Liu, Q. Sun, G. Yuan, L. Zhang, and Z. Chen, KLF4 promoted odontoblastic differentiation of mouse dental papilla cells via regulation of DMP1. J Cell Physiol,2013.