毛囊源性干细胞成牙能力的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
牙齿的发生和发育是在上皮-间充质相互作用的精确调控下完成的,这提示我们在选择种子细胞的时候必须同时考虑两种细胞,即上皮细胞和间充质细胞。目前发现的有望应用于牙组织工程的细胞大部分源于牙本身,如牙髓干细胞、脱落乳牙牙髓干细胞、牙周膜干细胞、根尖牙乳头干细胞等。在非牙源性成体干细胞方面,目前仅发现骨髓来源的细胞具有成牙潜能,而且必须依靠胚胎期的诱导条件才能分化为牙齿形成细胞。目前利用非牙源性细胞实现牙齿再生面临着种子细胞匮乏、诱导条件短缺的困难,另外,在成体中寻找适用于釉质再生的干细胞一直都是牙齿再生的瓶颈问题。毛囊是近年来干细胞研究的热点,毛囊中包含上皮和间充质两种来源的干细胞。本研究从成体干细胞可塑性和干细胞定向分化微环境两个方面入手,探讨利用毛囊来源的干细胞进行牙齿再生的可能性。
     1毛囊真皮细胞的分离培养和干细胞生物学特性的研究
     采用酶消化联合机械分离的方法在体外成功培养了具有较强增殖能力、克隆形成能力的毛囊真皮鞘细胞和毛乳头细胞。通过对其可塑性的研究证实这两类细胞中包含具有多向分化能力的干细胞。但是这些干细胞具有异质性,缺乏特异性表面标志物,难以有效分选。而含有干细胞的混杂细胞可以用来进行干细胞定向分化研究,未经纯化的毛囊真皮细胞在成脂、成骨诱导条件下,其中的所包含的干细胞表现出成脂和成骨潜能。在相同的成骨诱导条件下,毛乳头细胞的碱性磷酸酶活性比真皮鞘细胞更强,因此可能更适用于硬组织再生。
     2毛乳头间充质干细胞分化为成牙本质细胞
     在出生后小鼠下颌切牙根尖蕾牙胚细胞与毛乳头间充质干细胞混合共培养体系中,来自根尖蕾上皮的成牙信号能够促使毛乳头间充质干细胞分化为成牙本质细胞,说明诱导非牙源性干细胞成牙的微环境可以脱离发育早期牙胚的限制。在根尖蕾牙胚细胞条件培养液诱导下,毛乳头间充质细胞的形态和细胞周期明显改变并表达Dspp和Dmp1基因,说明来自根尖蕾细胞的上皮信号也能启动毛乳头间充质细胞的牙向分化。
     3毛乳头间充质干细胞构建牙本质牙髓复合体的实验研究
     为了研究利用非牙源性干细胞在脱离牙胚组织的条件下构建组织工程牙齿的可能性,我们将把经过根尖蕾牙胚细胞条件培养液诱导的毛乳头间充质细胞团进行体内移植后,仅形成骨样组织。将根尖蕾牙胚细胞条件培养液结合到脱蛋白牙本质片制成的支架材料上,种子细胞以细胞团的形式与支架材料进行复合后体内移植。取材结果显示:在结合在支架材料上的条件培养基的作用下,对照组的牙髓干细胞可以分化为成牙本质细胞,规则地排列在支架材料表面,并且形成管状牙本质。而毛乳头细胞只在支架材料表面形成少量无定形基质。这一结果也说明仅仅依靠信号分子的作用,不能实现非牙源性细胞分化为成熟的成牙本质细胞。
     4毛囊表皮干细胞应用于釉质再生的可能性
     利用组织块法成功培养毛囊上段的外根鞘细胞,这些细胞的自我更新能力强,呈克隆样生长,表达表皮干细胞的表面标志物β1整合素和角蛋白19,具有典型的表皮干细胞特征。在此基础上,我们利用E17胎鼠下颌第一磨牙牙乳头和出生后7 d C57BL/6 GFP小鼠下颌切牙根尖蕾间充质,分别与E17胎鼠表皮和体外培养的毛囊表皮干细胞进行重组,结果显示,E17胎鼠下颌第一磨牙牙乳头与生后7 d C57BL/6 GFP小鼠下颌切牙根尖蕾间充质均具有诱导E17胎鼠表皮细胞分化为成釉细胞的能力,但是没有充分的证据表明体外培养的毛囊表皮干细胞在这两种诱导条件下可以分化为成釉细胞
     综上所述,本研究首次证实了毛乳头间充质干细胞在小鼠下颌切牙根尖蕾上皮信号的诱导下能够分化为成牙本质细胞,但是仍无法在脱离牙胚组织的条件下独立成牙。根尖蕾间充质对非牙源性上皮的诱导能力与E17下颌第一磨牙牙乳头相似,本实验暂无直接证据可以证明新生鼠触须部毛囊表皮干细胞具有分化为成釉细胞的潜能。
Morphogenesis and development of tooth initiate from epithelial-mesenchymal interactions,indicating that stem cells of both epithelial and mesenchymal origin should be considered in stem cell based tooth regeneration using tissue engineering approach.Previous studies have demonstrated that tooth germ cells,dental pulp stem cells from adult or deciduous tooth and stem cells from apical papilla have the potential to differentiate into odontoblast lineages and perform the dentinogenesis.However, these cells are very limited and some of them can not be directly isolated from patients themselves in clinical practice.Bone marrow is the only source for non-dental stem cell which can demonstrate odontogenic potential with the induction of oral epithelium from E10 fetal mouse.In addition,the lack of seeding cells for enamel regeneration is always a big rock on the way of tooth regeneration.Recent studies highlighted in stem cells from hair follicle because of their tremendous plasticities and easier accessibility.In this paper,we explored the odontogenic potential of hair-follicle-derived stem cells and main results were listed as follows.
     PartⅠ.Culturing of hair follicle dermal stem cells and evaluation of their multiple differentiation capacity.
     Both cultured hair follicle dermal sheath cells and dermal papilla cells demonstrated a larger CFU efficiency and higher reproductive activity compared with interfollicular dermal fibroblasts.Follicle dermal stem cells were heterogeneous and lacking specific surface markers.However,directed differentiation potential of stem cells could be detected with heterogeneous cells which containing stem cells.We found that cultured follicle dermal cells including putative MSCs from aged GFP transgenic mice still presented plasticity, as indicated by the results of multiple differentiation assays.Stem cells from follicle dermal papilla presented a higher ALP activity than those from dermal sheath under the same osteogenic microenvironment.
     PartⅡ.Odontogenic potential of mesenchymal stem cells from hair follicle dermal papilla.
     In the in vitro mixed co-culture system containing apical bud cells,GFP labeled follicle dermal papilla cells and dental mesenchymal cells,DSP co-localized with GFP,indicating that some GFP~+ DPCs can differentiate to odontoblasts.These results also suggested that odontogenic microenvironment for non-dental stem cells could be obtained from outside of embryo. Tooth-germ-cell conditioned medium produced by apical bud cells and dental mesenchymal cells could also change the morphology and cell cycle of DPC and further drive these cells to express Dspp and Dmpl genes.
     PartⅢ.Tissue engineering a pulp-dentin complex using hair follicle dermal papilla cells.
     We combined an untreated dermal papilla cell pellet with a scaffold which preliminary binded with TGC-CM.Recombinants were cultured under subcutaneous condition of nude mouse.Histological analyses of recoverd explants showed that there was only a small quantity of homogeneous hard tissue instead of typical tubler dentin.Cell pellet of dermal papilla cells treated with TGC-CM preliminary could only form a bone like tissue after cultured in renal capsule for 3 weeks.These results suggested that terminal differentiation of odontoblast is a complicated process which could not accomplished with signaling molecules only.
     PartⅣ.Possibilty of enamel regeration using hair follicle epithelial stem cells.
     Outer root-sheath cells were cultured in vitro and demonstrated some typical characteristics of epithelial stem cells.These cells presented a larger CFU efficiency and higher reproductive activity compared with keratinocytes.Keratin 19 and integrinβ1 could be detected in these cells at the same time.We then recombined these cells with dental mesenchymes from first lower molar of E17 SD rats and apical papilla of 7 dpn C57BL/6 GFP transgenic mice.Epithelial cells from the back of E17 SD rats were used as control groups.Results showed that both dental mesenchymes could initiate the ameloblast differentiation of epithelial cells from the back of E17 SD rats.But there were no sufficient experimental evidence showed that hair follicle epithelial stem cells could differentiate to ameloblasts.
     In summary,our data showed for the first time that mesenchymal stem cells from hair follicle dermal papilla could differentiate to odontoblasts with the induction of dental epithelium from apical bud.Dental mesenchyme from apical papilla of 7 dpn C57BL/6 GFP transgenic mice as well as that from first lower molar of E 17 SD rat could initiate the ameloblast differentiation of epithelial cells from the back of E17 SD rats.We had not found the way to make hair follicle epithelial stem cells differentiate to ameloblasts yet.
引文
1. Young, C.S., Terada, S., Vacanti, J.P., Honda, M., Bartlett, J.D., Yelick, P.C. Tissue engineering of complex tooth structures on biodegradable polymer scaffolds. J Dent Res, 2002, 81(10): 695-700.
    
    2. Gronthos, S., Mankani, M., Brahim, J., Robey, P.G., Shi, S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci U S A, 2000, 97(25): 13625-13630.
    
    3. Deng, M., Shi, J., Smith, A.J., Jin, Y. Effects of transforming growth factor beta1 (TGFbeta-1) and dentin non-collagenous proteins (DNCP) on human embryonic ectomesenchymal cells in a three-dimensional culture system. Arch Oral Biol, 2005, 50(11): 937-945.
    
    4. Ohazama, A., Modino, S.A., Miletich, I., Sharpe, P.T. Stem-cell-based tissue engineering of murine teeth. J Dent Res, 2004, 83(7): 518-522.
    
    5. Linde A, Goldberg M. Dentinogenesis. Crit Rev Oral Biol Med. 1993, 4: 679-728.
    
    6. Cowan CM, Shi YY, Aalami OO, et al. Adipose-derived adult stromal cells heal critical-size mouse calvarial defects. Nat Biotechnol 2004, 22: 560-7.
    
    7. Shi YY, Nacamuli RP, Salim A, Longaker MT. The osteogenic potential of adipose-derived mesenchymal cells is maintained with aging. Plast Reconstr Surg 2005, 116: 1686-96.
    
    8. Pispa, J, and Thesleff, I. Mechanisms of ectodermal organogenesis. Dev. Biol. 2003; 262: 195-205.
    
    9. Trainor PA, Tarn PP. Cranial paraxial mesoderm and neural crest cells of the mouse embryo: co-distribution in the craniofacial mesenchyme but distinct segregation in branchial arches. Development 1995, 121: 2569-2582.
    
    10. Duailibi SE, Duailibi MT, Vacanti JP, Yelick PC. Prospects for tooth regeneration. Periodontol 2000. 2006; 41: 177-187.
    
    11. Du C, Moradian-Oldak J. Tooth regeneration: challenges and opportunities for biomedical material research. Biomed Mater. 2006,1(1): R10-17.
    
    12. Ruch JV, Lesot H, Karcher-Djuricic V, Mever JM, Olive M. Facts and hypotheses concerning the control of odontoblast differentiation. Differentiation. 1982, 21(1): 7-12.
    13. Thesleff I, Vaahtokari A, Partanen AM. Regulation of organogenesis. Common molecular mechanisms regulating the development of teeth and other organs. Int J Dev Biol. 1995,39(1): 35-50.
    
    14. Aberg, T., Cavender, A., Gaikwad, J.S., Bronckers, A.L., Wang, X., Waltimo-Siren, J., Thesleff, I., D'Souza, R.N. Phenotypic changes in dentition of Runx2 homozygote-null mutant mice. J Histochem Cytochem, 2004, 52(1): 131-139.
    
    15. Wang, X.P., Suomalainen, M., Jorgez, C.J., Matzuk, M.M., Werner, S., Thesleff, I. Follistatin regulates enamel patterning in mouse incisors by asymmetrically inhibiting BMP signaling and ameloblast differentiation. Dev Cell, 2004, 7(5): 719-730.
    
    16. Yokohama-Tamaki, T., Ohshima, H., Fujiwara, N., Takada, Y., Ichimori, Y, Wakisaka, S., Ohuchi, H., Harada, H. Cessation of Fgf10 signaling, resulting in a defective dental epithelial stem cell compartment, leads to the transition from crown to root formation. Development, 2006, 133(7): 1359-1366.
    
    17. Sasaki, T., Ito, Y, Xu, X., Han, J., Bringas, P., Jr., Maeda, T., Slavkin, H.C., Grosschedl, R., Chai, Y. LEF1 is a critical epithelial survival factor during tooth morphogenesis. Dev Biol, 2005,278(1): 130-143.
    
    18. Bei, M., Stowell, S., Maas, R. Msx2 controls ameloblast terminal differentiation. Dev Dyn, 2004, 231(4): 758-765.
    
    19. Mina M, Kollar EJ. The induction of odontogenesis in non-dental mesenchyme combined with early murine mandibular arch epithelium. Arch Oral Biol. 1987, 32(2): 123-127.
    
    20. Lumsden AG Spatial organization of the epithelium and the role of neural crest cells in the initiation of the mammalian tooth germ. Development. 1988, 103 Suppl: 155-169.
    
    21. Tucher AS, Matthews KL, Sharpe PT. Transformation of tooth type induced by inhibition of BMP signaling. Science. 1998, 282(5391): 1131-1138.
    
    22. Satokata, I. and Maas, R. Msxl deficient mice exhibit cleft palate and abnormalities of craniofacial and tooth development. Nat. Genet. 1994,6: 348-356.
    
    23. Kratochwil, K., Dull, M., Farinas, I. Galceran, J., and Grosschedl, R. Lefl expression is activated by BMP-4 and regulates inductive tissue interactions in tooth and hair development. Genes Dev. 1996, 10: 1382-1394.
    
    24. Peters, H., Neubuser, A., Kratochwil, K., and Balling, R. Pax9-deficient mice lack pharyngeal pouch derivatives and teeth and exhibit craniofacial and limb abnormalities. Genes Dev. 1998, 12: 2735-2747.
    
    25. D'Souza, R.N., Aberg, T., Gaikwad, J., Cavender, A., Owen, M., Karsenty, G., and Thesleff, I. Cbfa1 is required for epithelial-mesenchymal interactions regulating tooth development in mice. Development. 1999, 126: 2911-2920.
    
    26. Chen, Y., Bei, M., Woo, I., Satokata, I., and Maas, R. Msx1 controls inductive signaling in mammalian tooth morphogenesis. Development. 1996, 122: 3035-3044.
    
    27. Bei, M., and Maas, R. FGFs and BMP4 induce both Msx1-independent and Msx1-dependent signaling pathways in early tooth development Development. 1998, 125: 4325-4333.
    
    28. Jernvall, J., and Thesleff, I. Reiterative signaling and patterning during mammalian tooth morphogenesis. Mech. Dev. 2000, 92: 19-29.
    
    29. Thesleff, I. Genetic basis of tooth development and dental defects. Acta Odontol. Scand. 2000,58:191-194.
    
    30. Vaahtokari, A., Vainio, S., and Thesleff, I. Associations between transforming growth factor beta 1 RNA expression and epithelial-mesenchymal interactions during tooth morphogenesis. Development. 1991, 113: 985-994.
    
    31. Mitsiadis, T.A., and Luukko, K. Neurotrophins in odontogenesis. Int. J. Dev. Biol. 1995, 39: 195-202.
    
    32. Lesot, H., Osman, M., and Ruch, J.V. Immunofiuorescent localization of collagens, fibronectin, and laminin during terminal differentiation of odontoblasts. Dev. Biol. 1981, 82:371-381.
    
    33. Lesot, H., Kubler, M.D., Fausser, J.L., and Ruch, J.V. A 165 kDa membrane antigen mediating fibronectin-vinculin interaction is involved in murine odontoblast differentiation. Differentiation. 1990, 44: 25-35.
    
    34. Gritli-Linde, A., Bei, M., Maas, R., Zhang, X.M., Linde, A., and McMahon, A.P. Shh signaling within the dental epithelium is necessary for cell proliferation, growth and polarization. Development. 2002, 129: 5323-5337
    
    35. MARINKOVICH, M.P., KEENE, D.R, RIMBERG, C.S. And BURGESON. R.E. Cellularorigin olthe dermal-epidermal basement membrane. Dev. Dynamics 1993(197):255-267.
    
    36. Thomas. P. And Dziadek, M. Genes coding lor basement membrane glycoproleins Laminin, Nidogen, and Collagen IV are differentially expressed in the nervous system and by epithelial, endothelial and mesenchymal cells of the mouse embryo. Exp. Cell Res. 1993(208): 54-67.
    
    37. Hurmerinta. K., Thesleff, I. And Saxn, L. Inhibition of tooth germ differentiation in vitro by diazo-oxo-norleucine. J. Embryol. Exp. Morphol. 1979(50): 99-106.
    
    38. Hurmerinta. K., Thesleff, I. And Sax!:N. L. In vitro inhibition of odontoblast diflerentiation by vitamin A. Arch. Oral Bioi. 1980(25): 385-391.
    
    39. THES(?)EFF, I. and PRATT, R.M. Tunicamycin inhibits mouse tooth morphogenesis and odontoblast differentiation in vitro. J. Embryol. Exp. Morphol. 1980(58): 195-203.
    
    40. Karcher-Djuricic, V., Osman, M, Meyer. J.M., Staubli, A And Ruch, J.V. Basement membrane reconstitution and cytodifferentiation of odontoblast in isochronal and heterochronal reassocialions of enamel organs and pulps. J. Bioi. Buccale 1979(6): 257-265.
    
    41. Thesleff, I., Lehtonen. E. And Saxtn, L. Basement membrane formation in transtiller tooth culture and its relations to odontoblast differentiation. Differentiation 1978(10): 71.79.
    
    42. Ruch, J.V. Determinisms of odontogenesis. Revis. Biol. Celular. 1987, 14: 1-99.
    
    43. Duailibi, M.T., Duailibi, S.E., Young, C.S., Bartlett, J.D., Vacanti, J.P., Yelick, P.C. Bioengineered teeth from cultured rat tooth bud cells. J Dent Res, 2004, 83(7): 523-528.
    
    44. Sharpe, P.T., Young, C.S. Test-tube teeth. Sci Am, 2005,293(2): 34-41.
    
    45. Honda, M.J., Tsuchiya, S., Sumita, Y, Sagara, H., Ueda, M. The sequential seeding of epithelial and mesenchymal cells for tissue-engineered tooth regeneration. Biomaterials, 2007, 28(4): 680-689.
    
    46. Miura, M., Gronthos, S., Zhao, M., Lu, B., Fisher, L.W., Robey, P.G, Shi, S.T. SHED: Stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci U S A, 2003, 100(10): 5807-5812.
    
    47. Seo BM, Miura M, Gronthos S, Bartold PM, Batouli S, Brahim J, Young M, Robey PG, Wang CY, Shi S. Investigation of multipotent postnatal stem cells from human periodontal ligament.Lancet. 2004(364);149-55.
    
    48. Sonoyama W, Liu Y, Fang D, Yamaza T, Seo B.M, Zhang C, Liu H, Gronthos S, Wang C.Y, Shi S, Wang S. Mesenchymal stem cell-mediated functional tooth regeneration in Swine. PLoS ONE. 2006 Dec 20;1:e79.
    
    49. Hu, B., Unda, F., Bopp-Kuchler, S., Jimenez, L., Wang, X.J., Haikel, Y, Wang, S.L, Lesot, H. Bone marrow cells can give rise to ameloblast-like cells. J Dent Res, 2006, 85(5): 416-421.
    
    50. Paus R., Muller-Rover S., Botchkarev VA., Chronobiology of the hair follicle: hunting the hair cycle clock. J Invest Dermato Symp Proc 1999,4(3): 338-345.
    
    51. Jahoda CA , Oliver RF, Reynolds AJ, et al. Trans-species hair growth induction by human hair follicle dermal papillae. Exp Dermatol. 2001, 10: 229-237.
    
    52. Noramly S , Freeman A , Morgan BA. Beta-catenin signaling can initiate feather bud development. Development. 1999, 126 (16): 3509.
    
    53. Huelsken J, Vogel R, Erdmann B, et al. Beta-catenin controls hair follicle morphogenesis and stem cell differentiation in the skin. Cell. 2001, 105(4): 533-545.
    
    54. Widelitz RB, Jiang TX, Lu J, et al. Beta-catenin in epithelial morphogenesis: conversion of part of avian foot scales into feather buds with a mutated beta2catenin. Dev Biol. 2000, 219(1):98-114.
    
    55. Millar SE, Willert K, Salinas PC, et al. WNT signaling in the control of hair growth and structure. Dev Biol. 1999,207(1): 133-149.
    
    56. Janes SM., Lowell S., Hutter C, Epithelial stem cells. J Pathol. 2002, 197(4): 479-491.
    
    57. Limat A, Mauri D, Hunziker T. Successful treatment of chronic leg ulcers with epidermal equivalents generated from cultured autologous outer root sheath keratinocytes. J Invest Dermatol. 1996, 107(1): 128-135.
    
    58. Jeschke MG, Richter W, Ruf SG Cultured autologous outer root sheath cells: a new therapeutic alternative for chronic decubitus ulcers. Plast Reconstr Surg. 2001, 107(7): 1803-1806.
    
    59. Limat A, Hunziker T. Use of epidermal equvalents generated from follicular outer root sheath cells in vitro and for autologous grafting of chronic wounds. Cells Tissues Organs. 2002, 172(2): 79-85.
    
    60. Sun TT, Cotsarelis G, Lavker RM. Hair follicular stem cells: the bule-activation hypothesis. J Invest Dermato]. 1991, 96(5): 775-785.
    
    61. Lyle S, Christofidou-Solomidou M, Liu Y, Elder DE, Albelda S, Cotsarelis G Human hair follicle bulge cells are biochemically distinct and possess an epithelial stem cell phenotype. J Invest Dermatol Symp Proc. 1999, 4(3): 296-301.
    
    62. Taylor G, Lehrer MS, Jensen PJ, Lavker RM. Involvement of follicular stem cells in forming not only the hair follicle but also the epidermis. Cell. 2000, 104(2): 233-245.
    63. Oshima H, Rochat A, Kedzia C Barrandon Y. Morphogenesis and renewal of hair follicles from adult multipotent stem cells. Cell. 2001, 104(2): 233-245.
    
    64. Panteleyev AA, Jahoda CA, Christiano AM. Hair follicle predetermination. Journal of Cell Science. 2001, (Pt 19): 3419-3431.
    65. Oliver RF. Whisker growth after removal of the dermal papilla and lengths of follicle in the hooded rat. J Embryol Exp Morphol. 1966, 15(3): 331.
    
    66. Home KA, Jahoda CA. Restoration of hair growth by surgical implantation of follicular dermal sheath. Development, 1992, 116(3): 563.
    
    67. Reynolds AJ, Lawrence C, Cserhalmi-Friedmen, PB, et al. Trans-gender induction of hair follicles. Nature, 1999,402(6757):33.
    
    68. McElwee KJ, Kissling S, Wenzel E, et al. Cultured peribulbar dermal sheath cells can induce hair follicle development and contribute to the dermal sheath and dermal papilla. J Invest Dermatol, 2003, 121 (6): 1267.
    
    69. Jahoda CA, Reynolds AJ. Hair follicle dermal sheath cells: unsung participants in wound healing. Lancet. 2001, 358(9291): 1445.
    
    70. Jahoda CA , Reynolds AJ, Chaponnier C, et al. Smooth muscle alpha-actin is a marker for hair follicle derm is in vivo and in vitro. J Cell Sci. 1991, 99 (Pt3): 627.
    
    71. Gharzi A, Reynolds AJ, Jahoda CA. Plasticity of hair follicle dermal cells in wound healing and induction. Exp Dermatol. 2003, 12 (2): 126.
    
    72. Lako M, Armstrong L, Cairns PM, et al. Hair follicle dermal cells repopulate the mouse haematopoietic system. J Cell Sci. 2002,115 (Pt 20): 3967.
    
    73. Hoogduijn MJ, E Gorjup and PG Genever. (2006). Comparative characterization of hair follicle dermal stem cells and bone marrow mesenchymal stem cells. Stem Cells Dev 15: 49-60.
    
    74. Sieber-Bulm M, Grin M, Hu YF, et al. Pluripotent neural crest stem cells in the adult hair follicle. Dev Dyn, 2004, 231(2): 258-269.
    
    75. Sieber-Bulm M, Schnell L, Grin M, et al. Characterization of epidermal neural crest stem cell (EP-NCSC) grafts in the lesioned spinal cord. Mol Cell Neurosci, 2006, in press.
    
    76. Amoh Y, Li L, Katsuoka K, et al. Multipotent nestin-positive, keratin-negative hair follicle bulge stem cells can form neurons. Proc Natl Acad Sci USA, 2005, 102(15): 5530-5534.
    
    77. Stenn KS, Paus R. Control of hair follicle cycling. Physiol Rev. 2001, 81(1): 449-493.
    
    78. Jahoda CA, CJ Whitehouse, AJ Reynolds and N Hole. (2003). Hair follicle dermal cells differentiate into adipogenic and osteogenic lineages.Exp Dermatol 12:849-859.
    79.Messenger AG.The culture of dermal papilla cells from human hair follicles.Br J Dermal 1984,110(6):685-689.
    80.Jahoda C,Oliver RF.The growth vibrissa dermal papilla cells in vitro.Br J Dermal 1981,105(6):623-627.
    81.伍津津,刘荣卿,叶庆佾,钟白玉,唐书谦.毛乳头细胞高效培养方法探索。中华皮肤科杂志,1997;30(6):383-385.
    82.Randall VA,Hibberts NA,Hamada K.A comparison of the culture and growth of dermal papilla cells from hair follicles from non-balding and balding(androgenetic alopecia)scalp.Br J Dermal 1996,134(3):437-444.
    83.Kishimoto J,Ehama R,Wu L,Jiang S,Jiang N,Burgeson RE.Selective activation of the versican promoter by epithelial-mesenchymal interactions during hair follicle development.Proc Natl Acad Sci USA,1999,96(13):7336-7341.
    84.Inamatsu M,Matsuzaki T,Iwanari H,Yoshizato K.Establishment of rat dermal papilla cell lines that sustain the potency to induce hair follicles from afollicular skin.J Invest Dermatol.1998,111(5):767-775.
    85.Yu Jinhua,Deng Zhihong,Shi Junnan,Zhai Huihong,Nie Xin,Zhuang Heng,Li Yucheng,Jin Yah.Differentiation of dental pulp stem cells into regular-shaped dentin-pulp complex induced by tooth germ cell conditioned medium.Tissue Eng.2006,12(11):3097-3105.
    86.Yu Jinhua,Wang Yijing,Deng Zhihong,Tang Liang,Li Yuanfei,Shi Junnan,Jin Yah.Odontogenic capability:bone marrow stromal stem cells versus dental pulp stem cells.Bioi Cell 2007 Mar 20;[Epub ahead of print].
    87.Ohshima H.,Nakasone N.,Hashimoto E.,Sakai H.,Nakakura-Ohshima K.,Harada H.The eternal tooth germ is formed at the apical end of continuously growing teeth.Arch Oral Biol,2005,50(2):153-157.
    88.Harada,H.,Toyono,T.,Toyoshima,K.,Yamasaki,M.,Itoh,N.,Kato,S.,Sekine,K.,Ohuchi,H.FGF10 maintains stem cell compartment in developing mouse incisors.Development,2002,129(6):1533-1541.
    89.Tummers,M.,Theslef,I.Root or crown:a developmental choice orchestrated by the differential regulation of the epithelial stem cell niche in the tooth of two rodent species.Development 2003,130(6):1049-1057.
    90.Harada,H.,Ohshima,H.New perspectives on tooth development and the dental stem cell niche. Arch Histol Cytol, 2004, 67(1): 1-11.
    
    91. Nakashima, M. Bone morphogenetic proteins in dentin regeneration for potential use in endodontic therapy. Cytokine Growth Factor Rev, 2005,16(3): 369-376.
    
    92. Morotomi, T., Kawano, S., Toyono, T., Kitamura, C., Terashita, M., Uchida, T., Toyoshima, K., Harada, H. In vitro differentiation of dental epithelial progenitor cells through epithelial-mesenchymal interactions. Arch Oral Biol, 2005, 50(8): 695-705.
    
    93. Narayanan, K., Srinivas, R., Ramachandran, A., Hao, J., Quinn, B., George, A. Differentiation of embryonic mesenchymal cells to odontoblast-like cells by overexpression of dentin matrix protein 1. Proc Natl Acad Sci U S A, 2001, 98(8): 4516-4521.
    
    94. Ruch, J.V. Odontoblast commitment and differentiation. Biochem Cell Biol, 1998, 76(6): 923-938.
    
    95. Nakashima, M., Mizunuma, K., Murakami, T., Akamine, A. Induction of dental pulp stem cell differentiation into odontoblasts by electroporation-mediated gene delivery of growth/differentiation factor 11 (Gdf11). Gene Ther, 2002, 9(12): 814-818.
    
    96. Liu, H., Li, W., Shi, S., Habelitz, S., Gao, C, Denbesten, P. MEPE is downregulated as dental pulp stem cells differentiate. Arch Oral Biol, 2005, 50(11): 923-928.
    
    97. Braut, A., Kollar, E.J., Mina, M. Analysis of the odontogenic and osteogenic potentials of dental pulp in vivo using a Collal-2.3-GFP transgene. Int J Dev Biol, 2003, 47(4): 281-292.
    
    98. Qin, C, Brunn, J.C., Cadena, E., Ridall, A., Tsujigiwa, H., Nagatsuka, H., Nagai, N., Butler, W.T. The expression of dentin sialophosphoprotein gene in bone. J Dent Res, 2002, 81(6): 392-394.
    
    99. Shiba, H., Mouri, Y., Komatsuzawa, H., Ouhara, K., Takeda, K., Sugai, M., Kinane, D., Kurihara, H. Macrophage inflammatory protein-3 alpha and beta-defensin-2 stimulate dentin sialophosphoprotein gene expression in human pulp cells. Biochem Biophys Res Commun, 2003, 306(4): 867-871.
    
    100. Xiao, S., Yu, C, Chou, X., Yuan, W., Wang, Y, Bu, L., Fu, G, Qian, M, Yang, J., Shi, Y, Hu, L., Han, B., Wang, Z., Huang, W, Liu, J., Chen, Z., Zhao, G, Kong, X. Dentinogenesis imperfecta 1 with or without progressive hearing loss is associated with distinct mutations in DSPP. Nat Genet, 2001, 27(2): 201-204
    
    101. Kikuchi, H., Suzuki, K., Sakai, N., Yamada, S. Odontoblasts induced from mesenchymal cells of murine dental papillae in three-dimensional cell culture. Cell Tissue Res, 2004, 317(2): 173-185.
    
    102. Hao J, Narayanan K, Ramachandran A, He G, Almushayt A, Evans C, George A. Odontoblast cells immortalized by telomerase produce mineralized dentin-like tissue both in vitro and in vivoJ Biol Chem. 2002(277): 19976-81.
    
    103. Iwatsuki S, Honda MJ, Harada H, Ueda M. Cell proliferation in teeth reconstructed from dispersed cells of embryonic tooth germs in a three-dimensional scaffold. Eur J Oral Sci 2006(114):310-7.
    
    104. 金岩,史俊南,贺慧霞.组织工程化牙齿的研究现状和展望.牙体牙髓牙周病学杂志.2004;14(3):119-122.
    
    105. Richman, J.M., Kollar, E.J. Tooth induction and temporal patterning in palatal epithelium of fetal mice.Am J Anat, 1986, 175(4): 493-505.
    
    106. Jones PH. Isolation and characterization of human epidermal stem cells. Clin Sci. 1996, 91: 141-146.
    
    107. Cotsarelis G, Kaur P, Dhouailly D, et al. Epithelial stem cells in the skin: definition, markers, localization and functions. Exp Dermatol, 1999, 8: 80-88.
    
    108. Li A, Simmons PJ, Kaur P. Identification and isolation of candidate human keratinocyte stem cells based on cell surface phenotype. Proc Natl Acad Sci USA, 1998, 95: 3902-3907.
    
    109. Michel M, Torok N, Godbout MJ, et al. Keratin 19 as a biochemical marker of skin stem cells in vivo and in vitro :Keratin 19 expressing cells are differentially localized in function of anatomic sites and their number varies with donor age and culture stage. J Cell Sci, 1996, 109: 1017-1028.
    
    110. Michel M, L'Heureux N, Auger FA, et al. From newborn to adult: Phenotypic and functional properties of skin equivalent and human skin as a function of donor age. J Cell Physio, 1997, 171: 179-189.
    
    111. Shi, S., Gronthos, S. Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp. J Bone Miner Res, 2003, 18(4): 696-704.
    
    112. Thomas BL, Liu JK, Rubenstein JL, Sharpe PT. Independent regulation of Dlx2 expression in the epithelium and mesenchyme of the first branchial arch. Development. 2000; 127(2):217-224.
    
    113. Pellegrini G, Ranno R, Stracuzzi G, Bondanza S, Guerra L, Zambruno G, Micali G, De
    Luca M. The control of epidermal stem cells in the treatment of massive full thickness burns with autologous keratinocytes cultured on fibrin. Transplantation 1999; 68(6):868-879.