基于多体动力学方法的大型水平轴风力机气动弹性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随单机容量的增加,风力机向大型化柔性化的趋势发展,特别是弯扭叶片的应用,使风力机各部件间的耦合振动变得更加剧烈,其气弹问题也变得更为复杂。针对于此,本文首先对气动模型进行研究,以获得准确的气动力;然后,从弯扭叶片固有特性分析耦合机理,以此为理论依据,最终建立了一种新的风力机多体动力学模型,进行气弹分析,主要完成了以下研的研究工作如下:
     第一,研究BEM理论及修正算法发现,诱导因子对计算结果的影响较大。分析现有算法的优缺点,通过挥舞力矩和低速轴转矩的比较,结合气弹应用,指出适用的算法,保证了为气弹模拟提供准确的气动力。
     第二,根据弯扭叶片的结构特点,应用空间曲梁理论,建立了一种新的直—曲混合梁有限元模型,编写程序对1.5MW实例叶片进行计算。结果表明,弯扭叶片的每阶模态,均有耦合现象,只是低阶模态下,并不十分明显,而随着频率阶次的增加,耦合振动逐渐增强。这是由动力学方程的质量矩阵和刚度矩阵中的耦合项所导致,而耦合项的产生是因为模型建立时考虑了弯扭因素。因此气弹计算中需要考虑挥舞、扭转、摆振各方向的自由度。并应用此程序对叶片中梁帽质量分布进行优化,结果表明质量不变,较少叶尖质量,可提高叶片频率,为铺层设计提供参考。
     第三,依据上述结论,耦合特性不可忽略,作者提出应用球铰约束,建立新的旋转叶片多体动力学模型,开发计算程序,并验证程序的正确性。而后采用弱耦合方法,结合BEM程序,对实例叶片在额定转速,恒定均匀风速情况下,进行气弹响应模拟。与FAST软件比较,结果表明,由于叶片耦合变形影响,使挥舞方向上气弹响应变小,摆振方向响应变大。这点为预弯叶片的设计提供了参考。此模型为整机模型建立打下基础。
     第四,针对风力机结构的特点,将其简化为由叶片、轮毂、机舱、塔架四部分组成的机构,建立整机多体动力学模型。参考公开的整机参数,结合本文实例叶片,进行气弹模拟。与FAST软件比较,结果显示,对于本文算例,在无偏航无变桨情况下,稳定均匀风速时,叶片挥舞方向响应变小,摆振方向响应变大,机舱所受载荷降低,塔架响应变小,这些变化均是由于模型中考虑叶片的耦合特性。对整机设计具有参考价值。
     第五,针对实例叶片设计了实验方案,利用中科院工程热物理所与保定国家新能源产业基地合作建立的风电叶片检测台进行全尺寸实验,结果表明,扭转模态确已在低阶模态中出现,且叶片各阶模态均有耦合变形,从而验证了作者提出的混合梁有限元模型。
The modern blade becomes more large and flexible with bending-twist shape. Therefore, it's natural coupling dynamics becomes more complex, and more serious coupling with wind turbine, that will cause aeroelastic damage more easily. So the wind turbine aeroelastic research is very important. A new finite element model is established to study the natural coupling mechanism of bending-twist blade. And then, a new multibody dynamics model is built for aeroelastic analysis based on the the mechanism. The following research works have been finished.
     Firstly, aerodynamic program is written on the study of BEM theory and its correction algorithm. The advantages and disadvantages are compared on the induced factor algorithm. The results show that different algorithm has great influence on BEM computation. Then a new algorithm for induced factor is developed. With comparison to the experiment, this new algorithm is more accurate. This will help the next aeroelastic computation.
     Secondly, A new finite element model is established according to the bending-twist shape with special curved beam theory. And then, the coupling character of a1.5MW blade is studied. Compared to straight beam theory, the results show that twist mode has been appeared in low frequency, and this make the coupling deflection of flap、edgewise and twist. Therefore the twist factor must be accounted for aeroelastic simulation.
     Thirdly, According to the above conclusion, a new multibody dynamics model is built with spherical hinge. Aeroelastic response of the1.5MW blade is simulated with aerodynamics from BEM program. The results show that the coupling response deflection is more serious for the twist deflection. That makes the flap response reduce and edgewise response increase. And this is advantageous for bending design. Also, this is the base of the wind turbine model.
     The fourth, accounting for twist deflection, the wind turbine multidynamics model is established based on the above blade model. The aeroelastic simulation results show that, for the example in this paper, with stable wind, torsional deformation cause leaf root waving pendulum vibration reduced, smaller tower response without yaw and pitch control. This has reference value for wind turbine design.
     The last, the full-scale blade experiment is done with the test bench built by Institute of Engineering Thermophysics and Baoding national new energy base. The results verify the above curved blade theory.
引文
[1]Half-year Report 2011. Bonn:world wind energy Association (WWEA),2011.
    [2]钱伯章,王馨.国际可再生能源新闻.太阳能.2011,18:60-61
    [3]高克强,薛忠民,陈淳,邱桂杰.复合材料风电叶片技术的现状与发展.新材料产业,2010,12:4-7
    [4]P. Gipe. Wind Energy Come of Age. John Wiley & Sons, New York,1995.
    [5]华锐风电科技股份有限公司http://www.sinovel.com/procducts.aspx?ID=67
    [6]National Renewable Energy Laboratory, http://wind.nrel.gov/amestest/,2000
    [7]LM Glasfiber A/S. http://www.lmwindpower.com/UK/News/PressKit/
    [8]李向军,薛忠民,王继辉,冯宾春.大型风轮叶片设计技术的现状与发展趋势.玻璃钢/复合材料.2008,1:48-52.
    [9]J. L. Tangler, D. M. Somers. NREL Airfoil Families for HAWTs. National Renewable Energy Laboratory, Colorado, USA,1995.
    [10]贺德馨.风工程与工业空气动力学.北京:国防工业出版社,2006.
    [11]James L. T. The Evolution of Rotor and Blade Design., NREL/CP-500-28410,2000.
    [12]Flemming Rasmussen, etc. Present Status of Aeroelasticity of Wind Turbines. Wind Energy,2003,6:213-228
    [13]V. A. Riziotis, S. G. Voutsinas, etc. Aeroelastic Stability of Wind Turbines:the Problem, the Methods and the Issues. Wind Energy,2004,7:373-392
    [14]M. H. Hansen. Aeroelastic Instability Problems for Wind Turbines. Wind Energy,2007, 10:551-577
    [15]P. K. Chaviaropoulos. Flap/Lead-lag Aeroelastic Stability of Wind Turbine Blade Sections. Wind Energy,1999,2:99-112
    [16]P. K. Chaviaropoulos. Flap/Lead-lag Aeroelastic Stability of Wind Turbine Blades. Wind Energy,2001,4:183-200
    [17]HouboltJC,BrooksGW. Differential Equations of motion for Combined Flapwise Bending,and Torsion of Twisted Non-uniform Rotor Blade. NACA Report 1346,1958.
    [18]HodgesD H,Dowell E H.Nonlinear Equations of Equilibrium for Elastic Bending and Torsion of Twisted Non-uniform Rotor Blades,NASATND-7818,1974.
    [19]Rosen D H,Friedmann P.Nonlinear Equations of Equilibrium for Elastic Helicopter of Wind Turbine Blade Undergoing Moderate Deformation.UCLA-ENG-7718,NASA CR-159478,1977.
    [20]KazaKRV.Nonlinear Aeroelastic Equations of Motion of Twisted, Non-uniform, Flexible Horizontal-Axis Wind Turbine Blades.NASA-CR-159502,DOE/NASA/ 3139-1,1979.
    [21]WendellJH.Aeroelastic Stability of Wind Turbine Rotor Blade. Wind Energy Conversion, Vol.X,ASRLTR-184-16,1978.
    [22]KottapalliSBR,FriedmannPP,RosenA.Aeroelastic Stability and Response of Horizontal Axis Wind Turbine Blades.AIAAJournal,1979,17(12):1381-1389.
    [23]MillerRH,DugundjiJ,ChopraI,SheuD.Dymanics of Horizontal Axis Wind Turbines. Wind Energy Conversion,Vol.III,MITASRLTR-184-9,1978.
    [24]Chopra 1.Flap-Lag-Torsion Flutter Analys is of a Constant Lift Rotor NASACR-15 2244,1979.
    [25]Chopra.1 Nonlinear Response of Wind Turbine Rotor. Wind Energy Conversion, Vol.VI,MITASRLTR-184-12,1978.
    [26]J. Locke, U. Valencia. Design studies for twist-coupled wind turbine blades. SAND2002-0522, Sandia National Laboratories, Albuquerque, NM,2004
    [27]D. Griffin. Evaluation of Design Concepts for Adaptive Wind Turbine Blades. SAND2002-2424, Sandia National Laboratories, Albuquerque, NM,2002
    [28]Lobitz, D. W., Veers, P. S., Eisler, G. R., etc. The Use of Twist-Coupled Blades to Enhance the Performance of Horizontal Axis Wind Turbines. SAND2001-1003, Sandia National Laboratories, Albuquerque, NM,2001
    [29]Kooijman, H.-J. T. Bending-Torsion Coupling of a Wind Turbine Rotor Blade. ECN-I-96-060, Netherlands Energy Research Foundation ECN, Pettn, The Netherlands. 1996
    [30]Wetzel, K., Locke, J. Uncoupled and Twist-Bend Coupled Carbon-Glass Blades for the LIST Turbine. AIAA-2004-0170.2004.
    [31]Don W. Lobitz. Aeroelastic Stability Predictions for a MW-sized Blade. Wind Energy, 2004,7:211-224
    [32]J. W. Larsen, S. R. K. Nielsen. Non-linear Dynamics of Wind Turbine Wings. International Journal of Non-linear Mechanics,2006,41:629-643
    [33]陈彦.大型水平轴风力机结构动力响应与稳定性研究.[硕士论文],北京:清华大学.1999
    [34]王介龙.大型水平轴风力机耦合动力学系统气弹响应与稳定性分析.[硕士论文],北京:清华大学.2001
    [35]P. Friedmann. Aeroelastic Stability and Response Analysis of Large Horizontal Axis Wind Turbines. Journal of Industrial Aerodynamics,1980,5:373-401
    [36]Anders Ahlstrom. Aeroelastic Simulation of Wind Turbine Dynamics. [D], Stockhom:Roy Institute of Technology.2005
    [37]NWTC Design Codes(FAST by J. Jonkman). http://wind.nrel.gov/designcodes/simulators/fast/.Last modified 12-August-2005
    [38]M. L. Bhuhl, Jr, A. Manjock. A Comparison of Wind Turbine Aeroelastic Codes Used for Certification. NREL/CP-500-39113,2006
    [39]Jessica G. Holierhoek. Rigid Body Modeling of Wind Turbines for Aeroelastic Stability Investigations.45th AIAA Aerospace Science Meeting, Reno. Nev,2007
    [40]Jessica G. Holierhoek. Aeroelasticity of Large Wind Turbines. Enschede:PrintPartners Ipskamp.2008
    [41]Xueyong Zhao, Peter MaiBer, Jingyan Wu. A New Multibody Modeling Methodology for Wind Turbine Structures Using a Cardanic Joint Beam Element. Renewable Energy, 2007,32:532-546
    [42]Donghoon Lee, Dewey H. Hodeges. A Framework for Dynamics and Aeroelastic Analysis of Horizontal Axis Wind Turbines. AIAA 2002-0044
    [43]Donghoon Lee, Dewey H. Hodeges. Multi-flexible-body Dynamic Analysis of Horizontal Axis Wind Turbines. Wind Energy,2002,5:281-300
    [44]O. A. Bauchau, C. L. Bottasso, etc. Modeling Rotorcraft Dynamics with Finite Element Multibody Procedures. Mathematical and Computer Modeling,2001,33:1113-1137
    [45]Carlo L. Bottasso, Alessandro Croce, etc. Aero-servo-elastic Modeling and Control of Wind Turbines Using Finite-element Multibody Procedures. Multibody System Dynamics,2006,16:291-308
    [46]M. H. Hansen. Aeroelastic Stability Analysis of Wind Turbines Using an Eigenvalue Approach. Wind Energy,2004,7:133-143
    [47]Anders Ahlstrom. Influence of Wind Turbine Flexibility on Loads and Power Production. Wind Energy,9:237-249
    [48]S. Heathcote, Z. Wang, I. Gursul. Effect of Spanwise Flexibility on Flapping Wing Propulsion. Journal of Fluids and Structures.2008,24:183-199
    [49]Harson A. Baluch, P. Lisandrin, etc. Effects of Flexibility on Aircraft Dynamics Loads and Structural Optimization.45th AIAA Aerospace Science Meeting, Reno.USA,2007
    [50]刘成.基于CFD/CSD弱耦合的直升机旋翼气弹特性研究.南京航空航天大学硕士论文.2011
    [51]Baxevanou C A, Vlachos N S. A Comparative Study of Numerical Schemes and Turbulence Models for Wind Turbine Aerodynamics Modelling. Wind Engineering, 2004,28(3):275-290
    [52]Benjanirat S, Sankar L N. Evaluation of Turbulence Models for the Prediction of Wind Turbine Aerodynamics. AIAA-2003-0517
    [53]L. J. Vermeer, J. N. Sφrensen, A. Crespo. Wind Turbine Wake Aerodynamics. Progress in Aerospace Science,2003,39:467-510
    [54]Glauert, H. Airplane Propellers AeroDynamic Theory Volume VI edited by William Fredrick Durand. The Dover edition 1963
    [55]Lanzafame R, Messina M. Fluid Dynamics Wind Turbine Design:Critical Analysis, Optimization and Application of BEM Theory. Renewable Energy,2007; 32:2291-2305
    [56]Jaime M, Luca B. An Improved BEM Model for the Power Curve Prediction of Stall-regulated Wind Turbines. Wind Energy.2005; 8:382-402
    [57]David J, Laino A, Craig Hansen. AeroDyn Code. www.NREL.org/wind
    [58]Madsen H, Mikkelsen R. A Detailed Investigation of the Blade Element Momentum(BEM) Model Based on Analytical and Numerical Results and Proposal for Modifications of the BEM Model. Journal of Physics,2007; 75:012013
    [59]Prandtl L, Tietjens O G. Applied Hydro and Aeromechanics. Dover Publications,1957
    [60]J. G. Leishman, T. S. Beddoes. A Semi-empirical Model for Dynamics Stall. Journal of the American Helicopter Society,1989,34(3):3-17
    [61]Buhl Jr, A New Empirical Relationship Between Thrust Coefficient and Induction Factor for The Turbulent Windmill State. Technical Report NREL/TP-500-36834,2005
    [62]窦秀容.水平轴风力机气动性能及结构动力学特性研究.山东工业大学博士论文,1995
    [63]李本立,安玉华.风力机其弹性稳定性的研究.太阳能学报.1996,17(4):314-320.
    [64]P Chaviaropoulos. ALCYNOE:CRES'Time-domain Aeroelastic Tool for HAWTS. Ceter for Renewable Energy Sources(CRES),1996
    [65]Alejandro D. Otero, Fernando L. Ponta. Structural Analysis of Wind-Turbine Blades by Generalized Timoshenko Beam Model. Journal of Solar Energy Engineering, 2010,132/0110115
    [66]Hodges. D. H., Yu. W. A Rigorous Engineering-Friendly Approach for Modeling Realistic Composite Rotor Blades. Wind Energy,2007,10:179-193.
    [67]廖猜猜,王建礼,石可重,徐建中.风力机叶片截面刚度优化设计.工程热物理学报,2010,31(7):1127-1130.
    [68]廖猜猜,赵晓路,王建礼,石可重,徐建中.基于风力机叶片铺层的频率优化设计.工程热物理学报,2011.32(8):1311-1314
    [69]王建礼,赵晓路,廖猜猜,石可重,徐建中.风力机叶片固有频率优化设计研究.工程热物理学报.2010,31(11):1843-1846
    [70]王建礼,石可重,廖猜猜,徐建中.大型水平轴风力机叶片动力学模拟中的直梁与曲梁单元.中国工程热物理学会学术会议流体机械学术会议论.2011
    [71]王建礼,石可重,廖猜猜,徐建中.大型水平轴风力机叶片自由振动力学模拟及实验研究.中国工程热物理学会学术会议流体机械学术会议论.2011
    [72]T. P. I. Parametric Study for Large Wind Turbine Blades. Sandia National Laboratories. SAND2002-2519,2002
    [73]Griffin, D. A. Blade System Design Studies Volume 1:Composite Technologies for Large Wind Turbine Blades. Sandia National Laboratories. SAND2002-1897,2002
    [74]Otero. A. D. and Ponta, F. L. Finite Element Structural Study of the VGOT Wind Turbine. Int. J. Global Energy.2004,21:221-235
    [75]Otero. A. D. and Ponta, F. L. On the Structural Behavior of Variable Geometry Oval-Trajector Darrieus Wind Turbines. Renewable Energy,34(3):827-833
    [76]BOssanyi E. A. GH Bladed:Theory Manual. Garrad Hassan & Partners Ltd.2007
    [77]刘雄,李钢强,陈严,叶枝全.水平轴风力机叶片动态响应分析.机械工程学报.2010,46(12):128-141
    [78]Tony B., David S., etc. Wind Energy Hand Book. New York John Wiley & Sons,2005
    [79]陆萍,秦惠芳,栾芝云.基于有限元方法的风力机塔架结构动态分析.机械工程学报,2002,38(9):127-130
    [80]李德源,刘胜祥,黄小华.大型风力机筒式塔架涡致振动的数值分析.太阳能学报,2008,29(11):1432-1437
    [81]Rachid Y., Ismail E. B. Dynamic study of a Wind Turbine Blade With Horizontal Axis. European Journal of Mechanics-A/Solids.2001,20(2):241-252
    [82]Murtagh P. J., Basu B., Broderick B. M.. Mode Acceleration Approach for Rotating Wind Turbine Blades.2001,218:241-252
    [83]M. H. Hnsen. Improved Modal Dynamics of Wind Turbines to Avoid Stall-induced Vibrations. Wind Energy.2003,6:179-195
    [84]Thomsn K, Petersen JT. A Method for determination of damping for edgewise Blade Vibration. Journal of Wind Energy,2001,3:233-246
    [85]Hansen MH, Thomsen K. Rotor Whirling Modes and the Relation to Their Aerodynamic Damping. European Wind Energy Conference, Copenhagen,2001: 422-425
    [86]Rasmussen F, Petersen JT, Winkelaar D, Rawlinson-Smith R. Response of Stall Regulated Wind Turbines-Stall Induced Vibrations. Risoe-R-691,1993
    [87]Bjorck A, Dahlberg J, Ostman A, Ganander H. Computations of Aerodynamic Damping for Blade Vibrations in Stall. European Wind Energy Conference, Dublin,1997, 503-507
    [88]Rasmussen F, Petersen JT, Madsen HAa. Dynamics Stall and Aerodynamic Damping. ASME Journal of Solar Energy Engineering,1999,121:150-155
    [89]洪嘉振.计算多体系统动力学.北京:高等教育出版社.1999
    [90]Shanzhong Duan. Vibration Analysis of Wind Turbine Via a Multibody Dynamics Approach. ASME, IMECE2009-12653,2009.
    [91]K. Holm-Jorensen, S. R. K. Nielsen. System Reduction in Multibody Dynamics of Wind Turbines. Multibody System Dynamics,2009,21:147-165
    [92]Chang C., Hodges D. H. Coupled Vibration Characteristics of Curved Beams[J]. Journal of Mechanics of Materials and Structures.2009,4(4):675-692.
    [93]谈梅兰.三维曲井内钻柱的双重非线性精力有限元法.南京航空航天大学博士论文.2004.
    [94]Tarnopolskaya, T., De Hoog, F., Fletcher, N.H.. Asymptotic Analysis of the free in-plane Vibration of Beams With Arbitrarily Varying Curvature and Cross-section. Journal of Sound and Vibration,1996,196(6):659-680
    [95]Howson, W., Jemah, A.. Exact Out-of Plane Natural Frequencies of Cureved Timoshenko Beams. Journal of Engineering Mechanics,1999,125(1):19-25.
    [96]王勖成,邵敏.有限单元法基本原理和数值方法(第二版).北京:清华大学出版社,1997
    [97]陈维恒.微分几何.北京;北京大学出版社,2006.
    [98]徐芝纶.弹性力学简明教程.北京;高等教育出版社,2002.
    [99]于清.柔性多体系统单向递推组集建模方法与通用仿真软件的实现.上海交通大学博士论文.1998
    [100]王小明.多柔体系统动力学数值方法研究.西安电子科技大学硕士论文.2009.
    [101]毛火军.风电叶片全尺寸检测和结构分析.中国科学院研究生院(工程热物理研究所)硕士论文,2008.
    [102]白化同,郭继忠译.模态分析理论与实验.北京:北京理工大学出版社,2001.