网格结构精细化有限元分析方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
网格结构有限元模型的选择会对计算精度产生很大的影响。如果将网格结构中的每一根杆件和每一个节点都用细小的实体/壳体单元来离散,该有限元模型的计算精度是很高的。但这种方法会造成巨大的计算量,这是现有的计算机水平所无法接受的。通常将网格结构中的每一根杆件采用一个梁/杆单元来离散,并忽略节点的影响。然而,数值分析和模型试验表明,这种有限元模型往往高估网格结构的承载力和延性,精度较差。因此,本文对网格结构的精细化有限元分析方法进行了深入的研究,该方法可以根据网格结构的受力情况选择单元的类型、尺寸、以及离散区域,在保证计算精度的前提下尽可能降低计算量。
     当网格结构的载荷较小,杆件和节点都没有发生塑性屈服时,网格结构可以采用梁单元模型来进行分析。为了判断网格结构有限元模型中梁单元的长度和插值函数是否合理并对此进行相应的调整,首先推导了梁在受拉、受压、纯弯三种情况下的挠曲微分方程,以有限元试算得到的梁单元两端节点力为边界条件,求出了梁单元广义力分布场的解析解,然后根据Zienkiewicz-Zhu后验误差估计理论,以该解析解为广义力相对精确解,推导了广义力有限元解和广义力相对精确解的能量范数以确定梁单元的相对误差。在试算过程中,如果网格结构中每个梁单元的有限元解相对误差满足都精度要求,则终止试算过程,否则调整梁单元的插值函数或长度后再进行试算。
     在节点发生塑性屈服前,节点的刚度是可测的。为了分析节点刚度和体积对结构分析精度的影响,采用与节点半径等长的刚臂来模拟节点的体积,在刚臂与杆件之间设置弹簧单元来模拟节点的刚度,根据经典梁理论,推导了考虑刚臂和节点刚度的梁的单元刚度矩阵;确定了影响节点刚度的主要因素;然后,以焊接球节点为例,根据节点刚度的回归公式,计算出符合施工构造要求的焊接球节点对杆件轴向刚度和弯曲刚度的影响范围。在此基础上,推导了节点体积和刚度对位移解影响的误差估计公式。
     随着载荷的增大,结构的节点和杆件可能会发生塑性屈服和弯曲破坏,无法继续采用全梁单元有限元模型来分析结构的受力,‘需要采用多种不同类型的单元来离散网格结构。
     为了考虑杆件弯曲破坏对网壳性能的影响,将杆件中可能发生弯曲破坏的部分作为微观尺度模型采用壳单元离散,杆件的其余部分作为宏观尺度模型采用梁单元离散,给出了梁-壳单元的耦合方法。在进行梁单元模型自适应分析的基础上,根据梁单元的内力分布来确定弯曲破坏可能发生的位置,并以塑性功的增量为指标来调整微观尺度模型的长度。
     为了分析节点塑性屈服以后网格结构的受力,将可能发生塑性屈服的焊接球节点以及它所连接的杆件长为S的一小段采用作为微观尺度模型采用实体单元离散,结构的其余部分作为宏观尺度模型采用梁单元离散。根据经典梁理论的平截面假定推导了两种尺度模型界面上的位移增量约束方程,给出了梁-实体单元的耦合方法。同时,给出了S的估计值,并采用Zienkiewicz-Zhu后验误差估计理论来检验它是否合理。
     理论推导和数值算例表明,精细化有限元分析方法可以根据结构的载荷状况,来调整有限元模型,它的计算精度和全实体/壳体单元有限元模型基本相似,但可以大幅度降低计算量,具有一定的工程实用价值。最后,论文还给出网格结构精细化有限元分析方法进一步研究工作的建议。
Different finite element models of the grid strctures can affect the analysis accuracy of analysis greatly. If the pipes and joints in the grid structure are all discreted by fine solid elements, this finite element model will achieve the best precision. However, this model has to involve too much computational task to be accecpted by current computer capability. Therefore, each pipe in the structure is always discreted by one beam element, and the joints are igored. Model test and numerical analysis shows this kind of finte element model always overestimate the ductility and loading capacity of the structrure. Therefore, refined finite element method for grid structure is studied in this paper, this method can achieve the same precision as the model using solid element, and reduce the computational task greatly, by selecting the type, size, and zone discrretized automatically.
     If the load on the grid structure is small, the pipes in the structure can be discreted by beam element. To judge if the length and shape functions of a beam element are suitable, firstly the deflection function is derived when the beam are tensiled,pressed, and purely bended according to the boundary conditions from finite element trial analysis, and then the generalised force field are obtained. Secondly, based on the Zienkiewicz-Zhu error post-processing technique, this generalised force field can be used as a relativly accurate solution, the energy norm of the finite element solution and the relatively accurate solution is given to decide the raltive error of the beam element. The computation trials proceeds after the shape function and the length of beam element is adjusted, until the relative error of every beam element in the structure is satisfied.
     Before the joint has plastic strain, its rigidity can be measured. To consider the volume and rigidity of the joint, a rigid panel element with the same length as the radius of the welded hollow spherical joint is set to simulate the volume of the joint, and a spring element is set between the rigid panel and the pipe to simulate the rigidity of the joint. The element matrix of the beam considering both the rigid panel and the joint rigidity is given. With the empirical stiffness equation of hollow sphere joint, the influencing range of the joint to the axial stiffness and the rotation stiffness are calculated. The energy norm is used to analyze the axial rigidness and the rotation rigidness error to the displacement solution.
     The joints and the pipes will yield or collapse as the load increases, and the finite element model with only beam element can not simulate this phenomenon. Multi-scale finite element model is employed to solve this problem.
     To consider the bending collapse of the pipes in the reticulated frames, based on the multi-scale simulation, the part of member that having bending collapse is divided by the shell elements or solid element as a micro-model, and the other part of the member was simulated by beam elements as a macro-model. The method to couple the beam elements and the shell element is given. The location of the micro-model is predicted by the stress field of the beam element, after the beam element is adjusted by adptive finite element method. The length of the micro model is adjusted by the plastic work increment in the microl model.
     To analyze the structure after the joints yielded, based on the multi-scale simulation, the joint and a shot part of each member connecting to it is divided by the solid element as a micro-model, and the other part of structure is simulated by beam elements as a macro-model. The incremental displacement constraint equations for the nodes on the section between the two models are derived based on the plane section premise of classical beam theory. A method to couple the beam element and the solid element is given. The pipe length connecting to the joint is estimated and the Zienkiewicz-Zhu error post-processing technique is used to check its validity.
     Theroy analysis and numerical test show that the refined finite element method can achieve almost the same accuracy with the finite element model using only solid element, while reduce computianal task greatly. Finally, the conclusions and the problems of refined finite element method that can be studied further are summarized about reifined finite element method at the end of this thesis.
引文
[1]董石麟,罗尧治,赵阳等.新型空间结构分析、设计与施工[M].北京:人民交通出版社,2006.
    [2]沈祖炎,陈扬骥.网架与网壳[M].上海:同济大学出版社,1997.
    [3]张文福,刘文洋,刘迎春.网架结构拟夹层板法的有限元验证[J].计算力学学报,2005,22(4):506-510.
    [4]王新志,梁从兴,丁雪兴,韩明君,赵永刚.单层扁锥面网壳非线性动力稳定性分析[J].工程力学,2005,22:172-176.
    [5]丁万尊,陈庆云.拟壳法分析双曲率网状扁壳的竖向地震相应[J].空间结构,1996,2(3):8-15.
    [6]徐佳,贾乃文.圆柱形网壳的塑性极限分析[J].空间结构.2004.10(2):46-54.
    [7]王瑁成,邵敏.有限单元法基本原理和数值方法[M](第二版),北京:清华大学出版社.1997.
    [8]蒋友谅.非线性有限元法[M],北京:北京理工大学出版社,1988.
    [9]唐锦春,孙炳南,郭鼎康.计算结构力学[M].杭州:浙江大学出版社,1989.
    [10]李春艳,李海旺,秦冬祺等.132m跨双层圆柱面网壳的非线性稳定性分析[J].太原理工大学学学报.
    [11]尹越,韩庆华,刘锡良等.北京2008奥运会老山自行车赛馆网壳结构分析与设计[J].天津大学学报.2008,41(5):522-528.
    [12]Kang Wenjiang, Chen Zhuhua, Lam H F, et al. Analysis and design of the general and outmost-ring stiffened suspend-dome structures [J].Engineering structures,2003, 25(13):1685-1695.
    [13]徐芝纶.弹性力学[M].北京:中国教育出版社.1978.
    [14]张华刚,马克俭,黄永等.肋环型球面空腹网壳结构的静力性能分析[J].空间结构.2009.15(6):2-15.
    [15]曹正罡,范锋,沈世钊.大矢跨比单层球面网壳弹塑性稳定性研究[J].哈尔滨工业大学学报.2008.40(2):183-186.
    [16]Feng Fu, Progressive collapse analysis of high-rise building 3-D finite element modeling method[J]. Journal of Constructional steel research.2009,65:1269-1279.
    [17]支旭东,范锋,沈世钊.单层球面网壳在地震下的响应特性与失效机理[J].世界地震工程.2007.23(4):88-94.
    [18]罗永峰,沈祖炎,胡学仁.单层网壳结构弹塑性稳定实验研究[J].土木工程学报,1995,28 (4):33-40.
    [19]张爱林,刘学春,王冬梅等2008奥运会羽毛球馆新型弦支穹顶模型静力试验研究[J].建筑结构学报,2007,28(6):58-67.
    [20]Morris N. Effect of member snap on space truss collapse[J]. Journal of Engineering Mechanics, 1993,119(4):870-886.
    [21]Mutoh I, Kato S, Elastic second-order analysis for design of reticulated shells[C]. Proceedings of LSA98 conference, Lightweight structures in Architecture Engineering and Construction, Sydney, 1998, Vol.1, P.443-450.
    [22]张传成,张宝勤,张爱林.节点刚度对2008奥运羽毛球馆单层球面网壳稳定性影响研究建筑建筑结构学报[J].2007,23(3):32-40.
    [23]康菊,赵金城,宋振森.节点刚度对鞍型网壳稳定性的影响[J].低温建筑技术,2005,6(108):46-49.
    [24]DG/TJ08-52=2004J10508-2005.空间格构结构设计规程[S].上海:上海市新闻出版局,2005.
    [25]熊世树,纪晗,邓娟等.复杂受力大直径焊接空心球节点的有限元分析和足尺试验研究[J].工程力学.2006,23(1):184-188.
    [26]曾毅恒,朱丹,赵基达等.北京A380大跨机库节点承载力实验研究[J].土木工程学报.2008,41(2).
    [27]韩庆华,潘安东,刘锡良.焊接空心球节点的拉压极限承载力分析[J],土木工程学报,2003,36(10):1-6.
    [28]Qing-hua han, Xi-liang Liu. Ultimate bearing capacity of the welded hollow spherical joints in spatial reticulated structures[J]. Engineering Structure,2003:26(1):73-82.
    [29]刘锡良,陈志华,网架焊接空心球节点破坏机理分析及承载能力试验研究[J],建筑结构学报1994,15(3):38-44.
    [30]徐国彬,赵杰,李沐钢.焊接球节点网架整体疲劳破坏断口分析[J].空间结构.1999,5(3).
    [31]谭德远.复杂空间钢结构巨型焊接空心球节点的研究[D].湖南:湖南大学.2002
    [32]刘枫,钱基宏,宋涛,赵鹏飞,张宏,赵基大.某工程彀节点网壳坍塌事故原因分析[J].空间结构.2007,13(4).
    [33]A.Limam, L-H.lee, E.Corona. Inelastic wrinkling.and collapse of tubes under combined bending and internal pressure[J].international journal of mechanical sciences.2009.06:2-11.
    [34]S.Poonaya, U. Teeboonma, C.Thinvongpituk. Plastic collapse analysis of thin-walled circular tubes subjected to bending[J].Thin-walled structures.2009,47:637-645.
    [35]Yu Cheng Liu, Michael L.Day. Bending collapse of thin-walled circular tubes and computational application[J]. International journal of mechanical sciences.2007.07:442-450.
    [36]李传习,夏桂云.大跨度桥梁结构计算理论[D].北京:人民交通出版社.2006.
    [37]Oran C. Tangent stiffness matrix in frames[J]. J Struct Div,1973,99(6):961-978.
    [38]夏逸明,吴胜兴,席瑶.可考虑剪切变形影响的稳定函数单元模型[J].河海大学学报.2003,31(2):180-183.
    [39]许凯.框架结构二阶分析方法[D].武汉:武汉理工大学.2004.
    [40]夏拥军,陆念力.梁杆结构二阶效应分析的一种新型梁单元[J].工程力学.2007,24(7):39-43.
    [41]宋启根,罗穆永,宋丹.框架非线性分析的新梁柱单元[J],力学季刊,2001,22(2):186-191.
    [42]张俊锋,郝际平.精细塑性铰法理论研究及面向对象程序设计[J].华中科技大学学报.2008,25(3):86-94[J].
    [43]刘永华,张耀春.空间钢框架精细塑性铰法高等分析[J].工程力学.2006,23(增刊):108-116.
    [44]Cuong Ngo-Huu, Seung-Eock Kim. Practical advanced analysis of space steel frames using fiber hinge method[J]. Thin-walled structures.2009,47:421-430.
    [45]Chen W F. Structural stability:from theory to pactice[J]. Engeering structures,2000, 22(2):116-122.
    [46]Ariel Hanaor, Joint instability in lattice structures-lessons from a recent collapse[J]. International journal of space structures.1999,14(4):257-267.
    [47]Liew JVR, Chen H, Shanmugam NE, Chen WF. Improved nonlinear plastic hinge analysis of space frame structures. Engeering structures [J],2000,22(10):1324-1328.
    [48]Orbison JG, McGuire W. Abel JF. Yield surface applications in nonlinear steel frame analysis.computer methods in applied mechanical engeering[J].1982,33(1):557-573.
    [49]Chiorean CG, Barsan GM. Large deflection distributed plasticity analysis of 3D steel frameworks. Computers and structures[J].2005,83:1555-1571.
    [50]史俊亮.K8型单层网壳在撞击荷载作用下的动力响应研究[D].太原理工大学.山西:太原.2005.
    [51]Kani IM, McConnel RE. Collapse of shallow lattice domes[J]. J.Struct. Engng, ASCE 1987:113(ST8):1806-19.
    [52]范峰,马会环,沈世钊.半刚性型螺栓球节点单层K8型网壳弹塑性稳定分析[J].土木工程学报,2009.42(2):45-52.
    [53]王星,董石麟,完海鹰.焊接球节点刚度的有限元分析[J].浙江大学学报,2000.34(1):77-82.
    [54]苏玉红节点刚度对网壳结构稳定性影响的研究[D].南京:东南大学,2005.
    [55]丁洁民,沈祖炎.一种半刚性节点的实用计算模型[J].工业建筑,1992(11):29-32.
    [56]罗永锋,沈祖炎.网壳结构节点体对其承载性能的影响[J].同济大学学报1995,23(1):21-25.
    [57]王星.焊接球节点刚度对网架内力和挠度的影响分析[J].空间结构.
    [58]王星,董石麟.考虑节点刚度的网壳杆件切线刚度矩阵[J].工程力学.1999,16(4).25-32.
    [59]Shiro kato, Itaru Mutoh, Masaaki Shomura. Collapse of semi-rigidly jointed reticulated domes with initial geometric imperfections[J]Journal of construction steel research.1998,48:145-168.
    [60]Aitziber Lopez, Inigo Puente, Miguel A. Serna. Numerical model and experimental tests on single-layer latticed domes with semi-rigid joints[J].Computers and Structures.2007(85):360-374.
    [61]M.Sekulovic, M.Nefovska-Danilovic.Contribution to transient analysis of inelastic steel frames with semi-rigid connetions. Engineering structures[J].2008,30:976-989.
    [62]J.Y.Richard Liew, H. Chen. N.E.Shanmugam.Improved nonlinear plastic hinge analysis of space frame structures.2000(22)[J]:1324-1338.
    [63]孙正华,李兆霞,陈鸿天.结构多尺度有限元模型修正实验研究[J].特种结构.2008,25(4).
    [64]陆新征,林旭川,叶列平.多尺度有限元建模方法应用[J].华中科技大学学报.2008:25(4):76-80.
    [65]Abaqus. ABAQUS/Standard. Version6.5. User's manual. Rhode island:ABAQUS Inc:2004.
    [66]Yucheng Liu, Michael L. Day. Bending collapse of thin-walled circular tubes and computational application[J]. Computers and structures.2007(46):442-450.
    [67]T.H.Kim, S.R.Reid. Bending collapse of thin-walled rectangular section columns[J]. Computers and structures.2001,79:1897-1911.
    [68]Kecman D.Bending collapse of rectangular and square section tubes[J]. Int J Mech Sci.1983,25:623-636.
    [69]M.Kotelko, T.H.Lim, J.Rhodes. Post-failure behavior of box section beams under pure bending (an experimental study)[J].Thin-walled structures.2000(38):179-194.
    [70]Kotelko M. Ultimate load and post failure behavior of box-section beams under pure bending[J]. Eng Trans 1996,44(2):229-251.
    [71]Philip Avery, Mahen Mahendran. Distributed plasticity analysis of steel frame structures comprising non-compact sections[J]. Engeering structures.2000,22:901-919.
    [72]R.Tews, W.Rachowicz. Application of an automatic hp adaptive finite element method for thin-walled structures [J]. Comput. Mehods Appl. Mech. Engrg.2009.198:1967-1984.
    [73]Zienkiewicz O.C, Zhu J.Z. A simple error estimator and procedure for practical engineering analysis[J]. Int.J.Numer. Meth. Eng.1987,24:337-357.
    [74]Zienkiewicz, O.C, Zhu J.Z. et al. Effective and practical h-p version adaptive analysis procedures for the finite element method[J]. International journal for numerical methods in engineering.1989,28(3):879-891.
    [75]Zienkiewicz O.C, Zhu J.Z. The three R's of engineering analysis and error estimation and adaptivity. In:Oden J.T(ed). Reliability in computational mechanics[D], Austin, Texas, USA,1990.95-113.
    [76]Babuska I, Strouboulis T, Upadhyay C.S. A model study of the quality of a-posteriori error estimators for linear elliptic problems. Error estimations in the interior of patchwise uniform grids of triangles[J]. Comp Meth Appl Mech Eng,1994,114:307-540.
    [77]Babuska I, Rheinbolt W.C. Reliable error estimation and mesh adaption for the finite element method[D], edition:by ODEN. North-Holland,1988.
    [78]Oden J.T. Demkowicz L, et al. Towad a universal h-p adaptive finite element strategy, Part 2:a posteriori error estimation[J]. Computer methods in apllied mechanics and engineering, 1989,77(1):113-180.
    [79]Zienkiewicz O.C, Zhu J.Z. The superconvergent patch recovery and posterioti error estimates[J]. International journal for numerical methods on engineering,1992,31:1365-1382.
    [80]J.R Cho. J.T. Oden, A priori modeling error estimates of hierarchical modes for elasticity problems for plate and shell-like structures[J]. Math. Comput. Model] 1995,23:117-133.
    [81]M.Ainsworth. A postetiori error estimation for fully discrete hierarchic models of elliptic boundary value problems on thin domains[J]. Numer. Math.1998,80:325-363.
    [82]Babuska I, Zienkiewicz O.C. Accuracy estimates and adaptive refinement in finite element computations [J]. John Wiley & Sons,1986.
    [83]Babuska I, Rheinboklt W.C. Reliable error estimation and mesh adaptation for the finite element method[J]. ed. By Oden. North-Holland,1998.
    [84]Babuska I, Suri M. The P-and H-P versions of the finite element method, an overview[J]. Comp Meth Appl Mech Eng,1990,80:5-20.
    [85]Othsbo H, Kitamura M. element by element a posteriori error estimation and improvement of stress solutions for two dimensional elastic problems[J]. Int J Num Meth Engng,1990, 29:223-244.
    [86]杨令强,马静,陈祖坪.自适应有限元在拱坝破坏追踪中的应用[J].水利发电学报.2008,27(3):48-53.
    [87]杨强,吴浩,周维恒.h-型自适应有限元法分析中的大坝应力取值标准[J].水利学报.2005,36(3):321-327.
    [88]ANSYS.Inc.Commands Reference. ANSYS help.
    [89]刘寒冰,秦绪喜,王淑娟,谭金国。结构参数小幅变化后桥梁固有模态修正的矩阵摄动法[J]。土木工程学报,2006,39(4):33-36。
    [90]Aitziber Lopez, Inigo Puente, Miguel A, Serna. Direct evalution of the buckling loads of semi-rigidly jointed single-layer latticed domes under symmetric loading[J]. Engineering Structure. 2007(29):101-109.
    [91]A.N.T. Ihaddoudene, M.Saidani, M.Chemrouk. Mechanic model for the analysis of steel frames with semi rigid joints[J]. Journal of constructional steel research.,2008,08:2-10.
    [92]Leopez A, Puente I, Serna MA, Numerical model and experimental tests on single-layer latticed domes with semi-rigid joints[J]. Computers and structures 2007:85(7-8):360-74.
    [93]Saidni M. The effect of eccentricity connection on the distribution of axial force and bending moments in RHS lattice girders[J]. Journal of constructional steel research 1998:47(3):211-221.
    [94]Miodrag Sekulovic, Ratko Salatic. Nonlinear analysis of frames with flexible connections[J].Computers and structures.2001,79:1097-1107.
    [95]M.Sekulovic, M. Nefovska-Danilovic. Contribution to transient analysis of inelastic steel frames with semi-rigid connections[J].2008,30:976-989.
    [96]孙炳楠,洪涛,杨骊先.工程弹塑性力学[M].杭州:浙江大学出版社,2005.
    [97]徐秉业,刘信声.应用弹塑性力学[M].北京:清华大学出版社,1995.
    [98]张然,武建勋.圣维南原理的一般性能量衰减指标[J],工程力学,2008:25(3):14-17.
    [99]Jiann-Quo Tarn, Li-Jeng Huang. Saint-Venant end effects in multilayered piezoelectric laminates[J]. International journal of solids and structures.2002:39(19):4979-4998.
    [100]刘锡良,陈志华,网架焊接空心球节点破坏机理分析及承载能力试验研究[J],建筑结构学报,1994,15(3):38-44.
    [101]唐海军.轴力和弯矩共同作用下焊接空心球节点承载力于实用方法研究[D].杭州:浙江大学.
    [102]王娴明.建筑结构试验[M].北京:清华大学出版社,1988.
    [103]邓增杰,周敬恩.结构的断裂与疲劳[M].北京:高等教育出版社,1995
    [104]庄茁.工程断裂与损伤[M].北京:高等教育出版社,2005.
    [105]Fracture and fatigue emanating from stress concentrators[M].Pluvinage.Boston:Kluwer academic publishers,2003.
    [106]熊世树,纪晗,邓娟等.复杂受力大直径焊接空心球节点的有限元分析和足尺试验研究[J].工程力学.2006,23(1):184-188.
    [107]A. Hanaor, PRB Dallard, R.Levy and N. Gelberg. Member buckling with joint instability-design application[J]. International journal of space structures.2000,15(3)
    [108]Khandelwal K, EI-Tawil. Multiscale computational Simulation of Progressive Collapse of Steel Frames[C]. Proceedings of the ASCE Structures Congress, May 2005,NY,NY.
    [109]雷宏刚,裴艳,刘丽君.高强度螺栓疲劳缺口系数的有限元分析[J].工程力学.2008,25(1):49-53.
    [110]童根树.钢结构的平面内稳定[M].北京:中国建筑工业出版社,2006.
    [111]童根树.钢结构的平面外稳定[M].北京:中国建筑工业出版社,2006.
    [112]段梅,周本宽.自适应有限元中误差度量的选择[J].西南交通大学学报.1994,29(5):468-471.
    [113]Gallimard L, Ladevze P. An enhanced error estimator on the constitutive relation for plasticity problems[J].computers and structures 2000,78:801-810.
    [114]Strouboulis T, Haque K A, Recent experiences with estimation and adaptivity. Part Ⅰ:Error estimation for h-adaptive approximations on grids of triangles and quadrilaterals[J]. Comp Meth Appl Mech Eng,1992,100(3):359-430.
    [115]Wiberg N E, Abdulwahab F. A posteriori error estimation based on superconvergent derivatives and equilibrium[J]. Int J Num Meth Engng,1993,36:27:2703-2724.
    [116]H.L. Xing, S.Wang and A.Makinouchi. An adaptive mesh h-refinement algorithm for the finite-element modeling of sheet forming[J]. Journal of material processing technology.1999,91: 183-190.
    [117]Paquette JA, Kyriakides S. Plastic buckling of tubes under combined bending and pressure[J]. International journal solids structures 1988:24:7099-7118.
    [118]王傧,某体育馆网壳工程事故分析和检测处理[J].航海工程,2008,37(6).2002.
    [119]尹德玉,赵红华.网架质量事故实例及原因分析[J].建筑结构学报.1998,19(1):16-23.
    [120]支旭东,范锋,沈世钊.材料损伤积累在网壳强震失效研究中的应用[J].哈尔滨工业大学学报[J].2008,40(2):169-173.
    [121]Castiglioni CA, Brescianini JC, Panzeri N, Variable amplitude, low-cycle fatigue testing of welded steel beam-to-beam joints. Cstruzioni metalliche 2003,2:35-51.
    [122]Rlo A. Castiglioni, Raffaele Pucinotti. Failure criteria and cumulative damage models for steel components under cyclic loading[J]. Journal of constructure steel research. 2009(25):751-765.
    [123]Kato, Uekit, Mukaiyama. Study of dynamic collapse of single layer reticular domes subjuected to earthquake motion and the estimation of statically equivalent seimic forces[J]. International Journal of space structures,1997,12:191-204.
    [124]王连坤,郝际平,张俊峰,王孟鸿.考虑各向同性塑性损伤的钢结构塑性区分析方法[J].2008,42(7):885-890.
    [125]Dusenberry D O. Review of existing guidelines and provisions related to progressive collapse[R]. Washington:National workshop on prevention of progressive collapse in Rosemont. 111,2002.
    [126]Marjanishvili S M. Progressive analysis procedure for progressive collapse[J]. ASCE journal of performance of constructed facilities,2004,18(2):79-85.