寒冷地区水工大体积混凝土抗裂技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水工建筑物往往以其体积庞大,所处工作环境恶劣和运营变化而对混凝土的强度变形耐久等性能的要求更加严格。越来越多的工程实践表明,大体积水工混凝凝土的开裂问题,已成为影响其耐久性的主要因素之一。尤其是在寒冷地区。国内外研究表明:虽然混凝土的开裂往往难以避免,但是若采用切实有效的综合防裂措施,则是可以控制其有害程度的。本文以大体积蒲石河水电站闸墩混凝土研究为背景,从国内外文献上了解到国际上对于寒冷地区大体积混凝土的技术指标,确定解决寒冷地区大体积混凝土抗裂问题技术路线,并进行深入探讨,分析确定了本次试验所采用的混凝土矿物掺合料与外加剂的性能,明确多种外加剂在混凝土长期工作中的效应。确定了寒冷地区大体积混凝土的初步配合比,对各种混凝土进行主要性能测试。得出能应用于蒲石河水电站闸墩混凝土实际施工的最佳配合比,并给出该配合比相关试验性能数据。对大体积混凝土的抗裂机理微观分析进行阐述。
     本次研究成果的混凝土配合比,其抗渗等级、抗冻等级均能满足设计要求。特别是抗极限拉伸性能要优于普通混凝土(图5-1、图5-2)。其中最为突出的试验研究结果,是粉煤灰+膨胀剂的掺合料组合混凝土的综合性能(主要侧重于抗裂)要优于其它掺合料组合的混凝土。混凝土水化热峰值变化比较大,初期出现的水化热峰值较高,且水化热出现峰值比较慢,消退也慢,这个可能是由膨胀剂引起的。试验用配合比明显比普通混凝土水化热低(表5-12)。本文的主要研究成果为针对寒冷地区大体积混凝土的抗裂性问题,较以往的研究不同,本次研究是从混凝土自身混凝土抗裂方面来分析并解决问题的。尤其是为混凝土在施工期间采取何种防裂措施以及混凝土掺合膨胀剂UEA采取的防裂措施提供了有效参考,为蒲石河水电站闸墩和混凝土自身抗裂提供理论基础,并提出一个实际可行的施工理论配合比。
The large volume of hydraulic structures , the bad working environment , the changes of operation , all of these make us strict to the performance of concrete as the strength , the deformation , the endurance and so on . More and more engineering practice show that the crack issue of the concrete of large volume hydraulic structure become the major factor which effect the endurance , especially in cold areas . Domestic and international research show that the cracks of the structure are inevitable , but the degree of the harmful could be control if we used feasibly and effectice measures of the comprehensive prevent fissure . This paper based on the study of the large volume pier concrete of the PuShi-river hydropower station , we know the international technical index about large volume concrete in cold areas from the literatures in home and abroad . To solve question of refuse crack of large volume concrete in cold areas and determinate the technology routes and further discussion , analysis and determined the performance of the concrete mineral admixture and the admixture in this time , understand the effect of many kinds of the concrete admixture on long-term working . Determined the primary combining ratios of the large volume concrete in cold areas , performance function test on the different kinds of concrete from JiLin . Obtained the best combining ratios of the practical constructions what can be used in the pier of the PuShi-river hydropower station , and given the experiment performance datas of the combining ratios . The paper expounds the anti-crack mechanism of large volume concrete and made a microanalysis .
     The result of this paper is the impermeability grade and frost resistant grade of concrete mix ratios , all of them meet the design requirements . Especially , the anti-limit tensile is better than the normal concrete . As Fig.5-1 and Fig.5-2 . The most outstanding result of the test is that the comprehensive performance of the concrete which admixture combination by fly ash and expansion agent is better than the other concrete (emphasize anti-crack). The hydration heat peak of concrete changes relatively large , the hydration heat peak appeared at the early time is higher , but the peak of hydration heat occurred slowly and regression slowly too , this maybe caused by expansive agent . The hydration heat of this test with the mixture ratios is lower than normal concrete significantly . As the table 5-12 . The different from the research before is that the main results of this paper is the antifreeze resistance of the large volume concrete in cold area . The main study of this paper is analysis and solve the questions by the concrete itself , especially provide a effective reference for the measures of the concrete prevent fissure during the construction and the measures of concrete with the expansive agent UEA prevent fissure . Provide a powerful and reliable theory combining ratios of the constructions for the pier of the PuShi-river hydropower station and cracking resistance of concrete .
引文
[1]王铁梦.工程结构裂缝控制[M].北京:中国建筑工业出版社,1997:34-36
    [2]覃维祖.混凝土耐久性研究的现状和发展动向[J].建筑技术,2000,32(1):12-15
    [3] W.Sun, Y.M.Zhang,H.D.Yan er at.Damage and its restraint of concrete with different strength grades under double damage factors [J].Cement &Concrete Composites, 1999.(21):439-442
    [4]邓敏、唐明述.混凝土的耐久性与建筑业的可持续发展[J].混凝土,1992,(2):8-12
    [5]唐明述.从国内外碱-集料反应的现状建议我国应采取的对策和研究方向[J].硅酸盐学报,1992,(l):29-34
    [6] H.Mazrouk,S.Lnagdon.The effect of alkali-aggregate reactivity on the mechanical properties of high and normal strength concrete[J].Cement and Concrete Composites, 2003,25(4):549-556
    [7]龚召熊、张锡祥、肖汉江等.水工混凝土的温控与防裂[M].北京:中国水利水电出版社,1999:3-4
    [8]朱伯芳.大体积混凝土温度应力与温度控制[M].北京:中国电力出版社,1999,28- 30
    [9]朱秋菊.闸墩混凝土结构温度应力分析及其应用[D].郑州:郑州大学硕士学位论文,2005:1-3
    [10]李潘武,李慧民.大体积混凝土温度构造钢筋的配置[J],四川建筑科学研究,2005,31(2):31-35
    [11]韩素芳.混凝土工程病害与修补加固[M].北京:海洋出版社,1996.
    [12]黄国兴,陈改新.水工混凝土建筑物修补技术及应用[M].北京:中国水利水电出版社,1998.
    [13]刘崇熙,汪在芹.坝工混凝土耐久寿命的现状和问题[J].长江科学院院报,2000,17(1):17~20.
    [14]尹延国,胡献国,朱元吉.水工高强混凝土抗磨耐蚀性试验研究[J].水利水电技术,1998,29(2):51~52.
    [15] Powers,T.C.The air requirement of frost resistant concrete.Portland Cement Association HighwayResearch Board.SkokieIII,29(1949)184-211.
    [16] Litvan,G.G.Phase transitions of adsorbates-Part 1 V:Mechanism of frost action in hardened cementpaste.J.Amer,Ceram,Soc.1972,55(1)38-42.
    [17] Setzer,M.J.A new approach to describe frost action in hardened cement paste andconcrete.Proc Conference on Hydraulic Cement Paste-Their Structure and Properties,Sheffield,UK,British Cement and Concrete Association.1976,pp.313-325.
    [18]徐定华.混凝土材料科学概论.中国标准出版社,2002.
    [19] Fagerlund G. Critical moisture contents at freezing of porous materials.Second C1BrRILEM symposium on moisture problems in buildings ,Bouw-centrum, Rotterdam, The Netherlands,1974:1-17
    [20]沈兴华,林秋英,王新赋.观音寺闸裂缝处理及效果评价[J].人民长江,2002,33(5):16-17.
    [21]王静莲,贵秋民.新河大闸铺盖裂缝成因及防渗处理措施[J].湖南水利,1998,5:25-26.
    [22]李长城,张晓园等.水闸破坏与修复及法泅闸的整险加固[J].中国农村水利水电,2000,6:35-38.
    [23]朱岳明,黎军,刘勇军.石梁河新建泄洪水闸闸墩裂缝成因分析[J].红水河,2002,21(2):44-47.
    [24]曹磊,祈宝奎.四女寺枢纽北进洪闸闸底板裂缝原因分析与处理措施[J].海河水利,2002,(6):39-40.
    [25]董功强,任玉春.献县枢纽节制闸底板裂缝分析及处理[J].河北水利水电技术,2001,(4):36-37.
    [26]魏涛,蔡胜华,王树清等.新城船闸下闸首裂缝处理[J].长江科学院院报,2000,17(6)56-58.
    [27]丁扑荣.水工沥青混凝土材料选择与配合比设计,北京:水利电力出版社,1990
    [28] Mielenz R C.Mineral Admixtres—History and Background.Concrete In-rernarional,1983(8)
    [29]郭玉顺,沸石岩轻骨料膨胀机理的研究; [D].北京;清华大学,1982.
    [30] ACI 363 Committee.State of the Ares on High Stength Concrere,1994
    [31] J.S. Damtoft, D. Herfort and E.Yde,Concrete Binders, Mineral Additio-ns and Chemical Admixtures: State of the Art and Challenges for the 21st Century, In: Modern Concrete Materials: Binders, Additions and Admixtur-es,Eds. By Ravindra K.Dhir and Thomas D. Dyer Proceedings of the inter-national Conference ,University of Dundee, Scotland, UK, Sep.8-10,1999, 1~16
    [32]上海市建筑科学研究所《学术论文选编》[M],1987年
    [33]沈旦申.粉煤灰混凝土[M].中国铁道出版社.1989年.
    [34]夏佩芬,王培铭,李平江等.混合材料与水泥浆体界面的形貌特征[J].硅酸盐学报.1997. 25(6)738~742
    [35]廉慧珍,郭玉顺,李明琴等.沸石岩活性的研究(中科院科学基金资助课题)中国硅酸盐学会水泥专业委员会第三届全国学术年会,柳州,1986(11)
    [36]曲志忠.底需水量胶结料的性能和应用前景[M].建筑技术,1997(29)1
    [37]罗帆.不同粒级的水泥性能机械强度作用[J].四川建材,1989(5)
    [38]吴中伟,廉慧珍.高性能混凝土.北京[M]:中国铁道部工业出版社,999.199
    [39]胶凝材料学[M]:北京:中国建材工业出版社,1979.97~102
    [40] Eric P.Koehler,David W.Fowler.Summary of Concrete workability Test methods:Research Report ICAR -105-1.August 2003.1~66
    [41] Zhor,J.,and bremmer,T.W.(1998).”Advances in Evaluation of Lignosulph-onates and Concrete Admixtures,”Fourth CANMET/ACI/JCI Conference:Ad-vances in Concrete Technology,SP179-58,American concrete Institute,1011~1042
    [42] Eric P Koehler,David W.Fowler.Summary of Concrete workability Test methods.Research Report ICAR-105-1,August 2003,68
    [43] Rance R.Interactions Intre les Reducteurs d`eau Plastifiants er les cime-nts.Ciments,Betons,Platres,Chaux,1990:782
    [44] Kantro D L.Influence of Water Reducing Admixtres on Properties of Cemet Pastes—A Miniatres Slump Test.Cem.Concr Aggregates,1980(2)
    [45] Tazawa Ei-ichi,Miyazawa Shingo.Wxperimental a study on Mechanism of Autogenous Shrinkage of Concrete.and Concrete Research,1995(25)8
    [46] Tazawa Ei-ichi,Miyazawa Shingo.Wxperimental a study on Mechanism of Autogenous Shrinkage of Concrete.and Concrete Research,1995(25)2
    [47] Lee F M.The Chemistry of Cement and Concrete.London:Anorld,1970
    [48] Jensen O M.Thermodynamic Limitation od Self-Desiccation..Cement and ConcreteResearch,1995(25)1
    [49]惠荣炎,黄国兴,易冰若,安康工程粉煤灰混凝土依时性变形的实验研究[M].实力水电科学研究院论文集(结构、材料),1985
    [50]同济大学材料工程研究所、低热高参量矿渣水泥鉴定文件,1998
    [51]黄士元,蒋家奋,等.近代混凝土技术.西安[J];陕西科学技术出版社,19-94