制麦过程中麦芽风味的产生机制及外源微生物对风味的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以挥发性嗅感物质分析鉴定为主要技术手段,开展啤酒麦芽生产链嗅感物质的构成及变化规律的研究。对制麦过程中影响麦芽风味的微生物进行生态学分析,确定不同制麦工艺阶段的主要微生物,同时考察不同外源微生物自身嗅感物质的构成及其对制麦过程绿麦芽嗅感物质的影响,探究制麦过程中外源微生物对麦芽风味的影响机制。
     论文主要研究结果如下:
     (1)利用固相微萃取与气质联用技术可以快速准确地分析鉴定酿造大麦中嗅感物质的组成。从10个酿造大麦品种中共分析鉴定出41种挥发性嗅感风味化合物,这些嗅感物质由醛类、醇类、酮类、有机酸类以及少量的芳香族和呋喃类化合物所构成。各供试大麦品种的嗅感物质组成基本相同,只是在个别化合物上存在一定的差别。
     (2)通过计算嗅感风味化合物的气味活度值(OAV),确定了构成酿造大麦的16种关键性嗅感物质:其中醛类8种(乙醛、异丁醛、异戊醛、2-甲基丁醛、正己醛、正庚醛、正辛醛、壬醛);醇类2种(异戊醇、环戊醇);酮类2种(2,3-丁二酮、2-庚酮);有机酸类一种(乙酸);其他类化合物3种(乙酸乙酯、2-戊基呋喃、苯乙醛)。
     (3)应用主成分分析法(PCA)对不同产地的酿造大麦进行了分析。国产大麦品种与进口大麦品种的风味构成存在一定的差异,乙醛、异丁醛、异戊醛、2-甲基丁醛、正己醛、正庚醛、正辛醛、异丁醇、正戊醇、2,3-戊二酮、2-庚酮、乙酸、庚酸、乙酸乙酯、正己醇和2-戊基呋喃对进口大麦品种的风味贡献较大;而壬醛、环戊醇、异戊醇、2,3-丁二酮、己酸及苯乙醛则对国产大麦品种的风味贡献较大。
     (4)在工业化制麦过程中共分析鉴定出48种挥发性嗅感物质,它们同样由醛、醇、酮、有机酸、呋喃和一些芳香族化合物所组成,通过将这些化合物分成六大类可以直观地反映出各化合物在制麦过程中的出现时间及其变化规律。同时,通过考察不同嗅感物质在制麦过程中含量变化的趋势发现,麦芽干燥、焙焦过程是整个制麦过程中对挥发性嗅感物质影响较大的主要工艺流程。
     (5)应用变性梯度凝胶电泳技术(PCR-DGGE)对工业制麦过程中的微生物多样性进行了研究。研究结果发现,制麦过程不同工艺阶段的菌群构成差异性较大,而同一工艺阶段、不同时期的微生物群落结构相似度较高。原料大麦的优势微生物菌种为单胞菌属和肠杆菌属两种;浸麦阶段优势菌种同样为单胞菌属和肠杆菌属;发芽阶段菌群构成快速增加,此时的优势菌种为肠杆菌属、奈瑟菌属、欧文氏菌属、克雷伯氏杆菌属;成品麦芽菌群数量最少,此时的优势菌种为肠杆菌属。从整个制麦过程来看,肠杆菌属和欧文氏菌属是制麦过程中的两个最重要菌属,而单胞菌属、肠杆菌属、Sandarakinorhabdus和欧文氏菌属是原料大麦固有的表面微生物,其余菌种均来自于制麦过程中通入的空气。
     (6)应用固相微萃取-气质联用技术(SPME/GC-MS)分析鉴定了制麦过程中主要外源微生物梨孢镰刀菌、草酸青霉菌、大肠杆菌及克雷伯氏杆菌在不同培养时期所产生的主要挥发性物质。结果发现,3-甲基-1-丁醇、1-辛烯-3-醇、3-辛酮和3-辛醇等8个碳的酮类和醇类物质为上述四种微生物的主要挥发性物质。另外,不同培养阶段、各菌体所产生的挥发性物质不同。培养前期主要以碳链较短的醇酮类化合物为主,而培养后期则以脂肪类及烯烃类等长链分子为主。梨孢镰刀菌对整个麦芽生产链条有重要影响,其自身产生的挥发性物质可以基本覆盖大部分大麦品种所能够鉴定出的挥发性成分,对于原料大麦的贮藏、麦芽生产、以及成品阶段的风味影响很大。
     (7)制麦过程中外源微生物对麦芽风味的影响主要体现在对麦芽嗅感风味物质含量的影响上,但没有产生新的风味代谢物质。另外,主要微生物均对各嗅感物质的生成产生一定的抑制作用,该抑制作用的产生机制在于:大麦发芽过程中,醛、酮、醇类及部分有机酸类等嗅感物质主要来源于麦芽中酯类的氧化和水解作用,当外源微生物侵入时,制麦过程中各嗅感风味物质的含量是外源微生物与绿麦芽两个生理代谢系统共同作用的结果。在此过程中,一方面微生物分泌出的蛋白酶会对大麦内部脂类相关水解氧化酶系产生一定的水解作用,从而降低了其酶活力;另一方面微生物利用了相关嗅感物质的前体物质进行自身的生长和代谢。
In this dissertation, the mechanism of microbe effection on the flavors of malt, thecompostions and changing patterns of the flavors during malting process were investigated,with the aids of volatile compounds analysis techniques. Ecological analysis wasimplemented to identifiy the microbes which affected the flavors in malting process and todetermine the major microbes during different stage in malting process. In addition, thecompositions of aroma-active compounds originated from different microbes and theirinfluences on green-malt based flavors in malting process were also studied. The major resultsof this dissertation were summarized as below:
     (1) The techniques of SPME combined with GC-MS were used to fastly and accurately toidentify the compositions of volatile compounds in barley. A total of41volatile compoundswere identified from10barley cultivars. The volatile compounds were constituted byaldehydes, alcohols, ketones, organic acids, and tiny amounts of aromatics and funancompounds. The compositions of the flavors in various barley with different origins weresimilar, with some discrepancies on certain individual compound.
     (2)16volatile compounds were identified as the key aroma compounds of brewing barley, bycalculating the odor active valves (OAV) of each compound. Among these compounds,8aldehydes (acetaldehyde,2-methyl-propanal,3-methyl-butanal,2-methyl-butanal, hexanal,heptanal, octanal and nonanal),2alcohols (3-methyl-1-butanol and cyclopentanol),2ketones(2,3-butanedione and2-heptanone),1organic acid (acitic acid) and3other compounds (ethylacetate,2-pentyl-furan, benzeneacetaldehyde) were found.
     (3) Principal component analysis technique showed that the aroma compositions of domesticbarley cultivars were different from those of the imported ones. The major volatilecompounds contributing the flavors of imported barley cultivars were acetaldehyde,2-methyl-propanal,3-methyl-butanal,2-methyl-butanal, hexanal, heptanal, octanal,2-methyl-1-propanol,1-pentanol,2,3-pentanedione,2-heptanone, hexanoic acid, heptanoicacid, ethyl acetate,1-hexanol, and2-pentyl-furan, while those of domestic barley cultivarswere nonanal, cyclopentanol,3-methyl-1-butanol,2,3-butanedione, hexanoic acid andbenzeneacetaldehyde.
     (4) A total of48volatile compounds were identified in an industrial malting process, and theywere also constituted by the substances of aldehydes, alcohols, ketones, organic acids, funanand aromatic compounds. By classifying these compounds into six catagories, the appearancetime and changing patterns of each volatile compound during malting process could be clearlyindicated. These results also showed that, among the entire malting process, the kilning androasting process had a significant effection on volatile compounds concentration.
     (5) The microbe diversity for industrial malting process was investigated using PCR-DGGE technique. The results indicated that the microbe group constitutions differed largely indifferent malting stage, but they kept higher similarity at different instant within one particularmalting stage. The dominant stains were Sphingomonas spp. and Enterobacter spp. in rawbarley and barley subject to steeping operation. In germinating stage, the microbe floraincreased rapidly, and the dominant species were Enterobacter spp., Neisseria spp., Erwiniaspp. and Klebsiella spp. The mibrobe flora in malt was the least and the dominant strain wasEnterobacter spp. During malting process, Enterobacter spp. and Erwinia spp. were the majorflora, while Sphingomonas spp, Enterobacter spp. Sandarakinorhabdus spp. and Erwinia spp.were microbes existed at the surface of barley, and all the other mibrobes were from theaerated air during operation.
     (6) The volatile compounds at different instant during cultivations of Fusarium poae,Penicillium oxalicum, Escherichia coli and Klebsiella peneunomiae was collected andanalyzed using the techniques of SPME combined with GC-MS. The results showed that3-methyl-1-butanol,1-octen-3-ol,3-octanone and3-octanol were the major volatilemetabolites produced by the four microbes. It was also found that the volatile compoundsproduced were different at different cultivation stage: during the early stages, the majorvolatile metabolites were alcohols and ketones with short-chains; while in the later stage, themain volatile compounds turned to be lipids and terpeness. Fusarium poae was veryimportant for the entire malting process, as its volatile compounds almost covered most ofthose identified in each individual barley. Fusarium poae greatly affected barley storage,malting, and malt flavors.
     (7) During malting process, microbes could affect the flavors by varying volatile compoundscontents or concentrations, but they could not produce new volatile metabolites. The majormicrobes had certain inhibitory effects on the formation of volatile compounds, and theinhibitory mechanism lied on the follwing facts: the volatile metabolites were originated fromlipid oxidation and hydrolysis reactions in malting. When microbe infection occurred, volatilecompounds contents were determined by the coordinate actions of microbes and green-maltmetabolisms. During malting process, proteases secreted from microbes deterioated lipidoxidation and hydrolysis enzymatic system in green-malt, leading to a lower enzymaticactivity; while at the same time, the infected microbes utilized the precurosors of volatilecompounds for their growth and metabolism.
引文
1.王亚楠,肖东光.提高啤酒风味稳定性的方法.酿酒科技[J].2002,112(4):60-62
    2.丁耐克.食品风味化学[M].中国轻工业出版社:北京.1996,2-4
    3. De Schutter D P, Saison D, Delvaux F, et al. Characterization of volatiles in unhopped wort[J]. Journalof agricultural and food chemistry,2008,56:246-254
    4. Fritsch H T, Schieberle P. Identification based on quantitative measurements and aroma recombinationof the character impact odorants in a bavarian pilsner-type beer[J]. Journal of agricultural and foodchemistry,2005,53:7544-7551
    5. Pinho O, Ferreira I M, Santos L H. Method optimization by solid-phase microextraction incombination with gas chromatography with mass spectrometry for analysis of beer volatile fraction[J].Journal of chromatography A,2006,1121:145-153
    6. Vanderhaegen B, Neven H, Coghe S, et al. Evolution of chemical and sensory properties during agingof top-fermented beer[J]. Journal of agricultural and food chemistry,2003,51:6782-6790
    7. Justé A, Malfliet S, Lenaerts M, et al. Microflora during malting of barley: Overview and impact onmalt quality[J]. Brewing science,2011,64:22-31
    8. Laca A, Mousia Z, Díaz M, et al. Distribution of microbial contamination within cereal grains[J].Journal of food engineering,2006,72:332-228
    9. Flannigan B. Brewing Microbiology.3rd edition. New York: Kluwer Academic/Plenum Publishers,2003,168-188
    10. Haikara A, M kinen V, Hakulinen, R. On the microflora of barley after harvesting during storage andin malting. Proceedings of the European Brewery Convention Congress, Amsterdam. Oxford, UK:IRL Press,1997
    11. Noots I, Delcour J, Michiels C. From field barley to malt: detection and specification of microbialactivity for quality aspects[J]. Journal of critical review microbiology,1998,25:121-153
    12. Petters H, Flannigan B, Austin B. Quantitative and qualitative studies of the microflora of barley maltproduction[J]. Journal of applied bacteriology,1988,65:279-297
    13. Wilhelmson A, Laitila A, Heikkil J, et al. Changes in the gas atmosphere during industrial scalemalting, Proceedings of the European Brewery Convention Congress(CD). Dublin. Nürnberg,Germany: Fachverlag Hans Carl,2003,226-233
    14. van Waesberghe J. Microflora management in industrial malting plants, outlook and opportunities[J].Ferment,1991,4:302-308
    15. Etchevers G, Banasik O, Watson C. Microflora of barley and its effect on malt and beer properties: areview[J]. Journal of the institute of brewing,1977,52:46-53
    16. Lowe D P, Arendt E K. The use and effects of lactic acid bacteria in malting and brewing with theirrelationships to antifungal activity, mycotoxins and gushing: a review[J]. Journal of the institute ofbrewing,2004,110:163-180
    17. Kreisz S, Wagner F, Back W. The influence of polysaccharides from yeast and bacteria on thefilterability of wort and beer, Proceedings of the European Brewery Convention Congress (CD).Budapest. Nürnberg, Germany: Fachverlag Hans Carl,2001,1-9
    18. van Nierop S N E, Cameron-Clarke A, Axcell B C. Enzymatic generation of factors from maltresponsible for premature yeast flocculation[J]. Journal of the American society of brewing chemists,2004,62:108-116
    19. Shokribousjein Z, Deckers S M, Gebruers K, et al. Hydrophobins, beer foaming and gushing[J].Cerevisia,2011,35:85-101
    20. Magan N, Evans P. Volatiles as an indicator of fungal activity and differentiation between species, andthe potential use of electronic nose technology for early detection of grain spoilage[J]. Journal ofstored products research,2000,36:319-340.
    21.管敦仪.啤酒工业手册(修订版)[M].北京:中国轻工业出版社,1996
    22. Taylor J R N, Robbins D J. Factor: Influencing amylase activity in sorghum malt[J]. Journal of theinstitute of brewing,1993,99(05):413-416
    23.卢良恕.中国大麦学[M].北京:中国农业出版社,1996
    24. Aniche G N, Palmer G H. Microscopic assessment of increasing foliature treatment on endospermmodification in sorghum Fermentation[J]. Journal of the science of food and agriculture,1990,3:378-380
    25. MacGregor A W, Fincher G B. Carbohydrates of the barley grain[C]. In: MacGregor AW, Bhatty RS,eds. Barley: Chemistry and Technology. St. Paul, MN, USA: American association of cerealchemistry,1993:73-130
    26. Osborne T B. The proteins of barley[J]. American chemical society journal,1895,17:539-567
    27. Osborne T B. The Vegetable Proteins. New York: Longmans Green and Co,1924,66-69
    28. Shewry P R, Pratt H M, Charlton M J, et al. Two-dimensional separation of the prolamins of normaland high lysine barley(Hordeum vulgare L.)[J]. Journal of experimental botany,1977,104:597-606
    29. Jonassen I B, Ingversen J, Brandt A. Synthesis of SPII albumin, β-amylase and chymotrypsin inhibitorCI-1on polysomes from the endoplasmic reticulum of barley endosperm[J]. Carlsberg researchcommunications,1981,46:175-181
    30. Kirkman M A, Shewry P R, Miflin B J. The effect of nitrogen nutrition on the lysine content andprotein composition of barley seeds[J]. Journal of the science of food and agriculture,1982,33:115-127
    31. Shewry P R. Barley seed storage proteins-structure, synthesis and deposition[C]. In 'NitrogenMetabolism in Plants',(K. Mengel and D.J. Pilbeam, eds), Oxford, U.K: Oxford University Press,1989,201-227
    32. Rahman S, Shewry P R, Miflin B J. Differential protein accumulation during barley graindevelopment[J]. Journal of experimental botany,1982,33:717-728
    33. Matthews J A, Miflin B J. Invitro synthesis of barley storage proteins[J]. Planta,1980,149:262-268
    34. Bewley J D, Black M. Seeds physiology of development and germination. New York: Plenum Press,
    1994.10-13
    35. Stuart I M, Gooden J. Barley and malt chemistry. Introduction to malting and brewing short course.University of Ballarat,2001
    36.赵金枝,树杰,郜战宁,等.大麦品种资源的研究与利用[J].大麦科学,2005,4:14-17
    37.张晓鸣.食品风味化学[M].北京:中国轻工业出版社,2009
    38. Cai J B, Liu B Z, Su Q. Comparison of simultaneous distillation extraction and solid-phasemicroextraction for the determination of volatile flavor components[J]. Journal of chromatograph A,2001,930(1/2):1-7
    39. Vichi S, Guadayol J M, Caixach G J, et al. Monoterpene and sesquiterpene hydrocarbons of virginolive oil by head-space solid-phase microextraction coupled to gas chromatography/massspectrometry[J]. Journal of chromatograph A,2006,1125(1):117-123
    40.邓晓军,郭德华,李波,等.葡萄酒中痕量木塞污染物的顶空固相微萃取-气相色谱串联质谱法检测[J].分析测试学报,2008,27(12):1375-1378
    41.彭帮柱,岳田利,袁亚宏,等. SPME/GC-MS在综合评判苹果酒质量中的应用研究[J].分析测试报,2006,25(4):92-94
    42.刘百战,张映,孙磊,等.卷烟烟丝香气成分的固相微萃取-气相色谱-质谱法分析[J].分析测试学报,2000,19(4):28-31
    43.乔宇,谢笔钧,张妍,等.固相微萃取-气相色谱-质谱联用结合嗅觉检测法鉴定血橙汁中的香气活性化合物[J].色谱,2008,26(4):509-514
    44.汪丽,蔡依军,户献雷,等.固相微萃取/气相色谱-质谱检测纺织品中有机磷农药残留[J].分析测试学报,2007,26(3):413-416
    45.吴继红,张美莉,陈芳,等.固相微萃取GC-MS法测定苹果不同品种中主要芳香成分的研究[J].分析测试学报,2005,24(4):101-104
    46. Yang X, Peppard T. Solid-phase microextraction for flavor analysis[J]. Journal of agricultural and foodchemistry,1994,42:1925-1930
    47. Steffen A, Pawliszyn J. Analysis of flavor volatiles using head-space solid-phase microextraction[J].Journal of agricultural and food chemistry,1996,44:2187-2193
    48. Zhou M X, Robards K, Glennie-Holmes M, et al. Analysis of volatile compounds and theircontribution to flavor in cereals[J]. Journal of agricultural and food chemistry,1999,47:3941-3953
    49. Buttery R G, Turnbaugh J G, Ling L C. Contribution of volatiles to rice aroma[J]. Journal ofagricultural and food chemistry,1988,36:1006-1009
    50. Tava A, Bocchi S. Aroma of cooked rice (Oryza sativa): comparison between commercial Basmati andItalian line B5-3[J]. Cereal chemstry,1999,76(4):526-529
    51. Yang D S, Lee K S, Jeong O Y, et al. Characterization of volatile aroma compounds in cooked blackrice[J]. Journal of agricultural and food chemistry,2008,56:235-240
    52. Kim L K, Lee S Y, Chu S M, et al. Variation and correlation analysis of flavonoids and carotenoids inKorean pigmented rice (Oryza sativa L.) cultivars[J]. Journal of agricultural and food chemistry,2010,58:12804-12809
    53. Yang D S, Shewfelt R L, Lee K S, et al. Comparison of odor-active compounds from six distinctlydifferent rice flavor types[J]. Journal of agricultural and food chemistry,2008,56:2780-2787
    54. Zeng Z, zhang H, Chen J Y, et al. Direct extraction of volatiles of rice during cooking using solid-phasemicroextration[J]. Cereal chemistry,2007,84(5):423-427
    55. Jezussek M, Juliano B O, Schieberle P. Comparison of key aroma compounds in cooked brown ricevarieties based on aroma extract dilution analyses[J]. Journal of agricultural and food chemistry,2002,50:1101-1105
    56. Czerny M, Schierberle P. Important aroma compounds in freshly ground wholemeal and white wheatflour-identification and quantitative changes during sourdough fermentation[J]. Journal of agriculturaland food chemistry,2002.50:6835-6840
    57. Kaseleht K, Leitner E, Paalme T. Determining aroma-active compounds in kama flour usingSPME-GC/MS and GC-olfactometry[J]. Flavour and fragrance journal,2010,11:125-129
    58. Ruiz J A, Ouilez J, Guasch J. Solid-phase microextraction method for headspace analysis of volatilecompounds in bread crumb[J]. Cereal chemistry,2003,80(3):255-259
    59. Zhou Q X, Wintersteen C L, Carwallader K R. Identification and quantification of aroma-activecompounds that contribute to the distinct malty flavor of buckwheat honey[J]. Journal of agriculturaland food chemistry,2002.50:2016-2021
    60.刘百战,张映,孙磊,等.卷烟烟丝香气成分的固相微萃取-气相色谱-质谱法分析[J].分析测试学报,2000,19(4):28-31
    61. Felix F, Schieberle P. Changes in key aroma compounds of criollo cocoa beans during roasting[J].Journal of agricultural and food chemistry,2008,56:10244-10251
    62. Habu T, Flath R A, Montr. Volatile components of Rooibos tea (Aspalathus linearis)[J]. Journal ofagricultural and food chemistry,1985,33(2):249-254
    63. Yamaguchi K, Shibamoto T. Volatile constituents of green tea, Gyokuro (Camellia sinensis L. var.Yabukita)[J]. Journal of agricultural and food chemistry,1991,20:366-370
    64.宛晓春,黄继轸,沈生荣,等.茶叶生物化学[M].北京:中国农业出版社,2003.427-451
    65.夏延斌,迟玉杰,朱旗.食品风味化学[M].北京:化学工业出版社,2008
    66. Beal A D, Mottram D S. Compounds contributing to the characteristic aroma of malted barley[J].Journal of agricultural and food chemistry,1994,42:2880-2884
    67. Lermusieau G, Bulens M, Collin, S. Use of GC-Olfactometry to identify the hop aromatic compoundsin beer[J]. Journal of agricultural and food chemistry,2001,49:3867-3874
    68. Cramer A C, Mattinson S D, Fellman J K, et al. Analysis of volatile compounds from various types ofbarley cultivars[J]. Journal of agricultural and food chemistry,2005,53:7526-7531
    69. Fickert B, Schieberle P. Identification of the key odorants in barley malt using GC/MS techniques andodour dilution analyses[J]. Nahrung,1998,42:371-375
    70. Douglas P, Flannigan B. Microbiological evaluation of barley malt production[J]. Journal of institute ofbrewing,1988,94:85-88
    71. Petters H, Flannigan B, Austin B. Quantitative and qualitative studies of the microflora of barley maltproduction[J]. Journal of applied bacteriology,1988,65:279-297
    72. Etchevers G, Banasik O, Watson C. Microflora of barley and its effect on malt and beer properties: areview[J]. Brewers digest,1977,52:46-53
    73. Flannigan B, Okagbue R N, Khalid R, et al. Mould flora of malt in production and storage[J]. Brewingand distilling international,1982,31:56-58
    74. Haikara A, M kinen V, Hakulinen R. On the microflora of barley after harvesting, during storage andmalting, Proceedings of the European Brewery Convention Congress. Amsterdam: Oxford, UK: IRLPress,1977,35-46
    75. Etchevers G, Banasik O, Watson C. Microflora of barley and its effect on malt and beer properties: areview[J]. Brewers digest,1977,52:46-53
    76. Flannigan B. The microflora of barley and malt, In: Priest, F.G. and Campbell, I.(eds.) BrewingMicrobiology. London: Elsevier Applied Science,1987,83-120
    77. Sarlin T, Laitila A, Pekkarinen A, et al. Effects of three Fusarium species on the quality of barley andmalt[J]. Journal of the American society of brewing chemists,2005,63:43-49
    78. Sarlin T, Nakari-Set l T, Linder M, et al. Fungal hydrophobins as predictors of the gushing activity ofmalt[J]. Journal of the institute of brewing,2005b,111:105-111
    79. Sarlin T, Vilpola A, Kotaviita E, et al. Fungal hydrophobins in the barley-to-beer chain[J]. Journal ofthe institute of brewing,2007,113:147-153
    80. Briggs D E, McGuinness G.. Microbes and barley grains[J]. Journal of the institute of brewing,1993,99:249-255
    81. Petters H I, Flannigan B, Austin B. Quantitative and qualitative studies of the microflora of barley maltproduction[J]. Journal of applied bacteriology,1988,65:279-297
    82. Pitt J, Hocking A. Fungi and food spoilage. Cambridge, UK: Blackie Academic and Professional,1997,116-118
    83. Angelino S A G F, Bol J. Impact of microflora during storage and malting on malt properties. Rawmaterials and sweet wort production, Jean De Clerck Chair IV, Leuven: Belgium,1990,1-14
    84. Laitila A, Kotaviita E, Peltola P, et al. Indigenous microbial community of barley greatly influencesgrain germination and malt quality[J]. Journal of institute of brewing,2007,113:9-20
    85. O’Sullivan T, Walsh Y, O’Mahony A, et al. A comparative study of malthouse and brewhousemicroflora[J]. Journal of the institute of brewing,1999,105:55-61
    86. Laitila A, Wilhelmson A, Kotaviita E, et al. Yeasts in an industrial malting ecosystem[J]. Journal ofindustrial microbiology and biotechnology,2006b,33:953-966
    87. Booysen C, Dicks L, Meijering I,et al. Isolation, identification and changes in the composition of lacticacid bacteria during the malting of two different barley cultivars[J]. International journal of foodmicrobiology,2002,76:63-73
    88. Ackermann A. Mycoflora of South African barley and malt[J]. Journal of the American society ofbrewing chemists,1998,56:169-176
    89. Laitila A, Sarlin T, Raulio M, et al. Yeasts in malting, with special emphasis on Wickerhamomycesanomalus (synonym Pichia anomala)[J]. Antonie van Leeuwenhoek,2011,99:75-84
    90. Schwarz P B, Casper H H, Beattie S. Fate and development of naturally occurring Fusariummycotoxins during malting and brewing[J]. Journal of the American society of brewing chemists,1995:121-127
    91. Tuomi T, Laakso S, Rosenqvist. Plant hormones in fungi and bacteria from malting barley[J]. Journalof the institute of brewing,1995,101:351-357
    92. Bol J, Huis in ‘t Veld, J. The occurrence of fungi on barley, in raw materials and in the malthouse:Prevention and consequences of infection[J]. Louvain brewing letters,1988,1:4-9
    93. Hoy J, MacCauley B, Fincher G. Cellulases of plant and microbial origin in germinating barley[J].Journal of the institute of brewing,1981,87:77-80
    94. Evans E, Stenholm K, Vilpola. Pilot scale evaluation of mash filter performance of malts with variablequality[J]. MBAA technical quarterly,1998,35;189-195
    95. Sadosky P, Schwarz P B, Horsley R D. Effect of arabinoxylans, β-glucans, and dextrins on the viscosityand membrane filterability of a beer model solution[J]. Journal of the American society of brewingchemists,2002,60;153-162
    96. Hammes W, Brandt M, Francis K, et al. Microbial ecology of cereal fermentations[J]. Trends in foodscience and technology,2005:16:4-11
    97. Sweeny M J, Dobson A D W. Mycotoxin production by Aspergillus, Fusarium and Penicilliumspecies[J]. International journal of food microbiology,1998,43:141-158
    98. Blechova P, Havlova P, Havel J. The study of premature yeast flocculation and its relationship withgushing of beer[J]. Monatsschrift für brauwissenschaft,2005,58:64-78
    99.董亮,朴永哲,张笑,等.固相微萃取/气相色谱-质谱对酿造大麦嗅感物质组成分析[J].麦类作物学报,2013,33(3):573-577
    100. Yang G, Schwarz P B, Vick B A. Purification and characterization of lipoxygenase isoenzymes ingerminated barley[J]. Cereal chemistry.1993,70:589-595
    101. Baxter E D. Lipoxidases in malting and mashing[J]. Journal of institute of brewing,1982,88:390-396
    102. Drost B, Van Eerde P, Hoekstra S, et al. Fatty acids and staling of beer[C]. Processing of the congressof the European brewery convention,1971:451-458
    103. Greenhoff K, Siiril J, Virtanen H, et al. Carbonyl compounds during beer production and in beer[C].Processing of the congress of the European brewery convention,1981:405-412
    104. Wang P, Siebert K. Determination of trans-2-nonenal in beer[J]. Technical quarterly-master brewersassociation of Americans,1974,11(2):110-117
    105. Ochiai N, Sasamoto K, Daishima S, et al. Determiantion of stale-flavor carbonyl compounds in beerby stir bar sorptive extraction with in-stiu derivatization and thermal desorption gaschromatography-mass spectrometry[J]. Journal of chromatography A,2003,986(1):101-110
    106. Hashimoto N, Kuroiwa Y. Proposed pathway for the formation of volatile aldehydes duing storage ofbottled beer[J]. Proceedings of American society of brewing chemists,1975,33(3):104-111
    107. Mo X L, Xu Y, Fan W L. Characterization of aroma compounds in Chinese rice wine Qu bysolvent-assisted flavor evaporation and headspace solid-phase microextraction[J]. Journal ofagricultural and food chemistry.2010,58:2462-2469
    108. Shu K, Kenji K, Osamu N. Studies on the key Aroma compounds in Soy Milk made from threedifferent soybean cultivars[J]. Journal of agricultural and food chemistry,2011,59:12204-12209
    109.汪正范.色谱定性与定量[M].北京:化学工业出版社,2007:163-164
    110.张妮.樱桃酒致香成分的研究及发酵工艺对其香气成分的影响[D]:[硕士学位论文].上海:华东理工大学,2011
    111.罗涛.清爽型黄酒香气特征及麦曲对其香气的影响[D]:[硕士学位论文].无锡:江南大学,2008
    112. Muyzer G. DGGE/TGGE a method for identifying genes from natural ecosystems[J]. Current opinionin microbiology,1999,2:317-322
    113. Marschner P, Yang C H, Lieberei R, et al. Soil and plant specific effects on bacterial communitycomposition in the rhizosphere[J]. Soil biology and biochemistry,2001,33(11):1437-1445
    114. Araújo da, Silva K R, Salles J F, et al. Application of a novel Paenibacillus-specific PCR-DGGEmethod and sequence analysis to assess the diversity of Paenibacillus spp. in the maize rhizosphere[J].Journal of microbiological methods,2003,54(2):213-231
    115.曹阳.剩余污泥生态稳定化过程中细菌群落的多样性分析[D]:[硕士学位论文].大连:大连工业大学,2012
    116. Juck D, Charles T, Whyte L G, et al. Polyphasic microbial community analysis of petroleumhydrocarbon-contaminated soils from two northern Canadian communities[J]. FEMS microbiologyecology,2000,33(3):241-249
    117. Walter J, Tannock G W, Tilsala-Timisjarvi A, et al. Detection and identification of gastrointestinal1actobacillus species by using denaturing gradient gel electrophoresis and species-specific PCRprimers[J]. Applied and environmental microbiology,2000,66:1297-1303
    118. Tannock G W, Munro K, Harmsen H J, et al. Analysis of the fecal microflora of human subjectsconsuming a probiotic product containing Lactobacillus rhomnosus DR20[J]. Applied andenvironmental microbiology,2000,66(6):2578-2588
    119.朱伟云,姚文,毛胜勇.变性梯度凝胶电泳法研究断奶仔猪粪样细菌区系变化[J].微生物学报,2003,43(4):503-508
    120. Korpi A, Pasanen A, Viitanen H. Volatile metabolites of Serpula lacrymans, Coniophora puteana,Poria placenta, Stachybotrys chartarum and Chaetomium globosum[J]. Building and environment,1999,34:205-211
    121. B rjesson T, St llman U, Adamek P, et al. Analysis of volatile compounds for detection of molds instored cereals[J]. Cereal Chemistry,1989,66(4):300-304
    122. De Lucca, A J, Boué S M, Carter-Wientjes C H, et al. Volatile profiles of toxigenic and non-toxigenicAspergillus flavus using SPME for solid phase extraction[J]. Annales agriculture of environmentalmediterranea,2010,17:301-307
    123. Nilsson T, Larsen T O, Montanarella L, et al. Application of head-space solid-phase microextractionfor the analysis of volatile metabolites emitted by Penicillium species[J]. Journal of microbiologicalmethods,1996,25:245-255
    124. Larsen T O, Frisvad J C. Comparison of different methods for collection of volatile chemical markersfrom fungi[J]. Journal of microbiological methods,1995,24:135-144
    125. B rjesson T, St llman U, Schnürer J. Voliatile metabolites and other indicators of Penicilliumauratiogriseum growth on different substrates[J]. Applied and environmental microbiology,1990,56(12):3705-3710
    126. Jurjevic Z, Rains G C, Wilson D M, et al. Volatile metabolites associated with aflatoxigenic and onenontoxigenic Aspergillus flavus strain grown on two different substrates[J]. PhytopathologiaMediterranea,2008,47:266-271
    127.宋纯鹏,王学路译.植物生理学[M].北京:科学出版社,2009.327-335
    128.程贺.梨孢镰刀菌的PCR检测及生长预测模型建立[D]:[硕士学位论文].大连:大连工业大学,2011