混凝土收缩徐变预测模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
收缩和徐变是混凝土材料本身固有的时变特性,正确的估计和预测收缩徐变对大型预应力混凝土桥梁(尤其是城市轻轨高架桥梁中的预应力混凝土箱梁)的反拱和挠度及长期变形的影响,是我国当前城市轨道交通建设工程设计与施工中急待研究解决的问题。国内对混凝土收缩徐变预测模型虽然已经开展过一些研究,但限于当时的技术水平和条件,所建立的混凝土收缩徐变预测模型过于粗略,难以适应我国现代混凝土结构和大型预应力混凝土结构的发展要求,急需改进。
     本文根据已收集到的国内外混凝土收缩徐变研究的文献资料和最新研究进展情况,详细讨论了混凝土收缩徐变的物理机理和影响因素,为建立较为合理的混凝土收缩徐变预测模型奠定了坚实的理论基础;比较研究了建科院(1986)模型、CEB-FIP系列模型、ACI 209系列模型、BS系列模型、B-P系列模型、GZ(1993)模型和GL 2000模型等国内外常用的混凝土收缩徐变预测模型的理论基础、考虑的因素及与试验数据符合的程度,基本上摸清楚了各种模型的特点和存在的不足;在此基础上,参考国内混凝土收缩徐变试验研究的主要成果——建科院(1986)模型,提出了混凝土收缩徐变预测的建议模型;按照能量原理和有限元的基本理论,推导了同时考虑混凝土收缩和徐变的有限元计算的基本方程,编制了相应的预应力混凝土桥梁收缩徐变分析程序CAPB(Creep Analysis Programme for Bridge of Prestressed Concrete),分别采用本文建议的混凝土收缩徐变预测模型和桥梁规范JTJ 023-85采纳的CEB-FIP(1978)模型,对武汉市轻轨一号线一期工程中的预应力箱梁的收缩徐变变形进行了计算,并将计算结果与原型观测结果进行了比较。文章最后对所作的工作进行了总结,并就今后值得进一步研究的问题和研究方向进行了展望。
     本文研究的主要成果有:
     (1) 通过对混凝土收缩徐变机理和影响因素的分析,认为构件体表比主要是对混凝土收缩和徐变的发展进程产生较大影响,其对混凝土收缩和徐变的影响程度与时间有关,在建立混凝土收缩徐变预测模型时,应将其放在时间函数中考虑;混凝土的抗压强度虽然与混凝土的收缩徐变没有直接的关系,但间接反映了混凝土水灰比和水泥用量对混凝土收缩和徐变的影响。鉴于当前实际工程中的混凝土强度等级有较大提高,建议在混凝土的收缩徐变预测模型中考虑混凝土强度等级的影响。
     (2) 对国外几种典型的混凝土收缩徐变预测模型的对比研究发现,在ACI 209R(1992)模型、CEB-FIP(1990)模型、RILEM B3(1995)模型和GL2000模型这四种国外
    
    较新的预测模型中,整体上与试验数据符合最好的是GL 2000模型,其次是RILEM
    B3(1995)模型和eEB一FIP(1990)模型,ACI 209R(1992)模型表现最差。因此,在缺
    乏试验资料,需要引用国外模型对混凝土结构和预应力混凝土结构进行收缩徐变计
    算时,推荐采用GL 2000模型和RILEM B3(1995)模型。
     (3)通过对混凝土收缩徐变的产生机理和影响因素及国内外预测模型的综合研
    究,提出了混凝土收缩徐变预测的建议模型。理论分析和国内实测资料验证表明,
    建议模型的物理概念清楚,公式形式简单,实用方便,考虑的因素比建科院(1986)
    模型及桥梁规范JTJ 023一85采用的CEB一FIP(1 978)模型全面,对混凝土收缩徐变的预
    测精度较高。
     (4)推导了同时考虑混凝土收缩和徐变的有限元计算的基本方程,采用本文建议
    的混凝土收缩徐变预测模型,用FORTRAN语言编制了预应力混凝土桥梁收缩徐变
    分析的电算程序CAPB,程序使用方便,运行快速稳定,计算结果可靠。
     (5)采用本文编制的程序CAPB,对武汉市轻轨一号线一期工程中的预应力箱梁
    的收缩徐变变形进行了计算,得到了预应力箱梁在不同时刻的变形数据。并与原型
    观测结果及采用桥梁规范JTJ 023一85采纳的cEB一FIP( 1 978)模型的计算结果进行了比
    较,结果表明,采用本文建议的预测模型的计算结果与实测结果吻合程度更好一些。
    从计算结果可知,箱梁施加预应力后3个月左右的变形已基本趋于稳定,与箱梁的
    原型观测结果一致,从理论上证实了设计单位关于箱梁的变形在预应力施加后3个
    月左右即趋于稳定可以铺轨施工的推测,为保证轻轨一号线一期工程于2002年11
    月按期进入铺轨施工提供了科学依据和重要参考。
     上述研究成果不仅为大型预应力混凝土桥梁的收缩徐变预测提供了一个方便实
    用的工具,而且对于推动我国混凝土收缩徐变研究的进一步开展也具有重要的理论
    意义和实用价值,可供我国预应力混凝土桥梁等相关设计规范今后修订时参考。
The shrinkage and creep are the inherent time-dependent characteristics of concrete materials. It is urgent to accurately estimate and predict the influence of concrete shrinkage and creep on the deflections of large-scale prestressed concrete bridges (especially the prestressed box-sectional beams in light rail trestle projects). The research on prediction model of concrete shrinkage and creep has been paid less attention at home, and the current model can't meet the requirement of modern concrete and prestressed concrete structures. The introduction about the finite element method considering shrinkage and creep of concrete is mostly sketchy, and the factors taken into account are not comprehensive, which goes against widely applications of the method. The reasonable construction time for tracklaying after completing the civil work of the Wuhan Light Rail Trestle Project has to be confirmed. Those problems urgently need to be resolved through some special research work.
    The mechanisims and influential factors, as well as the newly research findings, are firstly expatiated before the factors that should be involved in a reasonable prediction model are clarified. Then the the main characteristics and disadvantages of the current prediction models at home and abroad are clear understood, after the detailed comparison and commentary on the theoretical principle, factors considered and the fitting precision to the test data of those models are carried out. Based on the foregoing research and the ASRI (1986) model, which sumarried the main results of the domestic experimental research, a prOpositional prediction model for the shrinkage and creep of concrete is developed by the author. In addition, the basic equation of the age-adjusted finite element method considering shrinkage and creep of concrete in the same time is derivated by means of the energy principle before the calculation procedures of the FEM are presented. Finally, the according computer programme CAPB is compiled,
     to calculate the creep displacements of some partial prestressed box beams of the Line one in the first stage of the Wuhan Light Rail Trestle Project adopting the propositional model and CEB-FIP (1978) model respectively, and the calculation results are compared with the prototype observed data.
    Through the foregoing research work, the major findings are as follows:
    (1) By analyzing the mechanisims and influential factors of concrete shrinkage and creep, it is deemed that the member volumn-surface ratio have a significant impact on the developing process rather than the ultimate value of that. The compression strength of concrete have no direct relation to shrinkage and creep, but it can reflect the influences of
    
    
    
    water-cement ratio and cement content on shrinkage and creep, and it should be take into account in the predition model with the enhancement of concrete compression strength of current structures.
    (2) Comparison research indicate the GL 2000 model performs best for predicting shrinkage and creep, followed by RILEM B3 (1995) model, CEB-FIP (1990)model and ACI 209R (1992) model, among the four neoteric prediction models. So the GL 2000 model RILEM B3 (1995) model are firstly recommended in case of lack of test data and the overseas models have to be chosen.
    (3) Based on the comprehensive research on the mechanisims, influential factors and prediction models of concrete shrinkage and creep, a prepositional prediction model for the shrinkage and creep of concrete is developed by the author. The prepositional prediction model reveals explicit concept, considers more factors and has a better prediction precision than the ASRI (1986) model or the CEB-FIP(1978)model adopted by the design code JTJ 023-85.
    (4) The basic equation of the age-adjusted finite element method considering shrinkage and creep of concrete in the same time is derivated by means of the energy principle, and the shrinkage and creep analysis computer programme CAPB for prestressed concrete bridges, which involves the author's prepositional prediction model, is co
引文
[1] 项海帆.高等桥梁结构理论[M].北京:人民交通出版社,2001.4
    [2] 周履,陈永春.收缩徐变[M].北京:中国铁道出版社,1994.1
    [3] 杨丽,郭志恭.高层钢筋混凝土结构设计中如何考虑徐变、收缩的作用[J].工业建筑,1995(4):40-46
    [4] 王家全.多层框架温度与收缩应力[J].建筑结构,1993(4):41-45
    [5] 邹小江,寿楠椿,韩大建.高层建筑考虑施工过程的徐变收缩分析[J].建筑结构,2002(3):3-6
    [6] 邓志恒,秦荣.考虑施工过程收缩徐变对高层建筑结构影响理论分析[J].哈尔滨建筑大学学报,2002(10):28-31
    [7] 刘西拉,方东平,宋晓冰.沿着结构“生命周期”的探索[A].见:中国土木工程学会第九届年会论文集[C].杭州,2000.5
    [8] Z. P., Bazant. Prediction of concrete creep and shrinkage: past, present and future[J]. Nuclear Engineering and Design, 203(2001):27-38
    [9] 唐崇钊.混凝土的徐变力学与试验技术[M].北京:水利电力出版社,1982
    [10] 惠荣炎,黄国兴,易冰若.混凝土的徐变[M].北京:中国铁道出版社,1988
    [11] 黄国兴,惠荣炎.混凝土的收缩[M].北京:中国铁道出版社,1990
    [12] 陈永春.混凝土徐变问题的中值系数法忉.建筑科学,1991(2)
    [13] 林南熏.混凝土徐变的试验研究[J].华南工学院学报,1965(12)
    [14] 龚洛书,惠满印等21人(十个试验研究单位).混凝土收缩与徐变的试验研究[R].建筑科学研究报告,中国建筑科学研究院,1987No.4-1
    [15] 龚洛书,惠满印,杨蓓.砼收缩与徐变的实用数学表达式[J].建筑结构学报,1988(5):37-42
    [16] Model Code for Concrete Structures[S]. CEB-FIP, Paris, 1978
    [17] CEB欧洲国际混凝土委员会.1990年CEB-FIP模式规范(混凝土结构)[S].中国建筑科学研究院结构所规范室译.1991.12:57-70
    [18] ACI Committee 209. Prediction of Creep, Shrinkage and Temperature Effects in Concrete Structures(ACI209-82)[S]. ACI, 1982
    [19] ACI Committee 209(1992). Prediction of creep, shrinkage and temperature effects in concrete structures[S], Manual of concrete practice, Part 1. American Concrete Institute, 209R 1-92.
    [20] BS 5400: Part 4:1984. Code of Practice for Design of Concrete Bridges[S]. British Standard
    
    Institute, 1984
    [21] 英国标准协会.BS 8110《英国混凝土结构规范》[S].中国建筑科学研究院结构所规范室译.1993.5:191-195
    [22] Z. P., Bazant and S. Baweja. Creep and Shrinkage Prediction Model for Analysis and Design of Concrete Structures-Model B3, RILEM Recommendation [J]. Materials and Structures, V. 28, 1995, pp. 357-365
    [23] N. J. Gardner, J. W. Zhao. Creep and Shrinkage Revisited[J]. ACI Materials Journal, V. 90, No. 3, May-June 1993, pp. 236-246
    [24] N. J. Gardner and M. J. Lockman. Design Provisions for Drying Shrinkage and Creep of Normal-Strength Concrete[J]. ACI Materials Journal, V. 98, No. 2, March-April 2001, pp. 159-167
    [25] JTJ 023-85公路钢筋混凝土及预应力混凝土桥涵设计规范[S].北京:人民交通出版社,1985
    [26] Z. P., Bazant. Prediction of concrete creep effects using age-adjusted effective modulus method[J]. ACI Journal, 69: 212-217
    [27] 肖汝诚.桥梁结构分析及程序系统[M].北京:人民交通出版社,2002.10
    [28] 王南方,毛明武,崔风华.武汉轻轨交通一号线一期轨道工程开始铺轨[N].长江日报:2002年11月21日
    [29] David W. Mokarem. Development of concrete shrinkage performance specification[D]. Faculty of the Virginia Polytechnic Institute and State University, 2002.5
    [30] A. M., Neville, W. H. , Dilger, J. J. , Brooks. Creep of plain and structure concrete[M]. London, Construction Press, 1983
    [31] H. E., Davis. Autogenous volume change of concrete [A]. Proceeding of the 43rd Annual American Society for Testing Materials[C]. Atlantic City, ASTM 40, 1940:1103-1110
    [32] 蒋正武,孙振平等.国外混凝土自收缩研究进展评述[J].混凝土,2001(4):30-33
    [33] 高建明,王边.高性能水泥基材料的自生收缩及测试技术[J].江苏建材,2001(3):6-9
    [34] Paul Acker, Franz-Josef Ulna. Creep and shrinkage of concrete: physical origin and practical measurements[J]. Nuclear Engineering and Design, 203(2001): 143-158
    [35] Hubert Rusch, Dieter Jungwirth, Hubert K Hilsdorf. Creep and shrinkage: their effects on the behavior of concrete structures[M]. New York, Spdnger-Verlag, 1993
    [36] R.I. Gilbert. Time effects in concrete structures [M]. Amsrerdam, Elsevier, 1988
    [37] 刘巽伯.粉煤灰陶粒混凝土的收缩和徐变[J].粉煤灰,1999(4):8-11
    [38] GBJ 82-85普通混凝土长期性能和耐久性能试验方法[S].见:现行建筑材料规范大全3.北京:中国建筑工业出版社,1993
    [39] 龚洛书,丁威.轻集料混凝土收缩与徐变标定意见和建议[J].混凝土,2002(2):16-17,63
    
    
    [40] 吴彬,张璐明等.100MPa粉煤灰高性能混凝土的研究[J].粉煤灰,2002(3):7-9
    [41] Michael L. Lcming. Creep and shrinkage of lightweight concrete[R]. Department of Civil Engineering, North Carolina State University at Raleigh.
    [42] 叶欧译,宋培建校.掺合料对混凝土收缩和徐变的影响[J].建工技术,1999(4):33-37
    [43] 陈肇元,朱金铨,吴佩刚著.高强混凝土及其应用[M].北京:清华大学出版社,1992年12月:120-123
    [44] Fang I., Yen S., Wang Ch., and Hong K.. Cyclic behaviour of moderately deep HSC beams[J]. Journal of Structural Engineering, v119, n9 Sep:2573-2592
    [45] H.S.Muller,C.H.Kuttner.高性能混凝土的徐变性能及其预测[A].载于:F.H.Wittmann,P.Schwcsingcr著,冯乃谦等译.高性能混凝土——材料特性与设计[C].北京:中国铁道出版社,1997年6月:72-82
    [46] 李传习,夏桂云.大跨度桥梁结构计算理论[M].北京:人民交通出版社,2002
    [47] Torben C. Hansen and Alan H. Mattock. Influence of size and shape of member on the shrinkage and creep of concrete[R]. Journal of the American Concrete Institute, February 1966, Proceedings Vol. 63, p. 267
    [48] Jamal A. Almudaiheem and Will Hansen. Effect of specimen size and shape on drying shrinkage of concrete. ACI Materials Journal, 1987, Vol. 84, No. 2, pp130-135
    [49] 陈云鹤,唐崇钊,邓学钧.配筋混凝土粘弹性参数的徐变试验研究[J].工程力学,2000(10):105-110
    [50] 苏清洪.加筋混凝土收缩徐变的试验研究[J].桥梁建设,1994(4):11-18
    [51] 尹志府.混凝土强度等级与收缩的关系[J].混凝土,1991(6):21-23
    [52] 高虎,刘光廷。陈凤岐.混凝土双轴压缩徐变实验初步研究[J].清华大学学报(自然科学版),2001(11):110-113
    [53] 杜国华,毛昌时,司徒妙龄著.桥梁结构分析[M].上海:同济大学出版社,1994.2
    [54] 中国建筑科学研究院结构所规范室译.验证论文选集(90年CEB-FIP模式规范应用指南):混凝土结构[C].北京:中国建筑科学研究院,1993.4:28
    [55] Code Canadien sur le calcul des ponts routiers[S],CAN/CSA-S6-00, chapitre 8
    [56] 石现峰,梁志广,李建中.几种常用混凝土收缩徐变模式的比较分析[J].石家庄铁道学院学报,1998(3):8-13
    [57] EUROCODES AFNOR-1999, Annexe 1 Dispositions eomplèmentaires relatives à la détermination des effets des déformations différés du béton[S]. Page A. 3
    [58] Denis Lefebvre. Shrinkage and creep Effects on prestressed concrete structures [A]. 4th Structural Specialty Conference of the Canadian Society for Civil Engineering. Montréal, Québec, Canada. June, 2002
    [59] 孔嘉慧.大跨度预应力混凝土连续梁桥的几个关键问题的探讨[D].华南理工大学,2001.6
    
    
    [60] Jian-Ping Lam. Evaluation of concrete shrinkage and creep prediction models[D]. San Jose State university, May 2002
    [61] George C Fanourak, Yunus Ballim. Predicting creep deformation of concrete: a comparison of results from different investigations[A]. Proceedings, 11th FIG Symposium on Deformation Measurements, Santorini, Greece, 2003
    [62] 徐有邻,周氐.混凝土结构设计规范理解与应用[M].北京:中国建筑工业出版社,2002.5:50
    [63] 中国建筑科学研究院结构所规范室译.验证论文选集(90年CEB-FIP模式规范应用指南):混凝土结构[C].中国建筑科学研究院,1993.4:12
    [64] 周氏.现代钢筋混凝土基本理论[M].上海:上海交通大学出版社,1989
    [65] GB 50010-2002混凝土结构设计规范[S].北京:中国建筑工业出版社,2002
    [66] 段明德.《公路钢筋混凝土及预应力混凝土桥涵设计规范》徐变系数的计算和应用[J].中国公路学报,1998(10):70-76
    [67] 徐金声,薛立红.现代预应力混凝土楼盖结构[M].北京:中国建筑工业出版社,1999.6
    [68] Edenek P. Bazant. Advanced Topics in Inelasticity and Failure of Concrete[M]. Stockholm, CBI, 1979
    [69] 余凤翔.城市轨道交通高架桥设计的两个特殊问题的探讨[A].见:城市轨道交通论文集(1999~2001)
    [70] 轨道交通一号线一期工程预应力箱梁徐变监测报告01:武汉市轨道交通一号线一期工程预应力箱梁徐变监测阶段报告[R].武汉大学土木建筑工程学院,2002.11
    [71] 轨道交通一号线一期工程预应力箱梁徐变监测报告02:武汉市轨道交通一号线一期工程预应力箱梁徐变监测报告[R].武汉大学土木建筑工程学院,2003.3
    [72] 李传才,侯建国编著.结构分析程序设计(第三版)[M].武汉水利电力大学建筑工程学院,1996.9
    [73] 杜拱辰.现代预应力混凝土结构[M].北京:中国建筑工业出版社,1988
    [74] 中央气象局编制.中华人民共和国气候图集[S].1979