镁合金化学镀镍溶液及其界面反应机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁合金具有密度小、散热性好、强度质量比高、电磁屏蔽能力强等诸多优点而广泛应用于航空、电子、计算机及汽车等领域。但是镁合金的耐蚀性和耐磨性差,为了充分发挥镁合金的优势,克服这两种缺点对其使用范围的阻碍限制,在工业应用中,尤其是一些特殊行业,化学镀镍已经成为镁合金使用前必经的工艺步骤。然而,镁合金化学镀镍还存在诸多问题,多数研究者都致力于一次性化学镀液条件下镀层耐蚀能力的提高。本论文一方面研究了镁合金化学镀镍的界面反应机理和镀层性能,另一方面重点对镀液的性质变化进行了系统的研究,得到了一种稳定性高、缓冲能力强的化学镀镍溶液配方。
     论文通过扫描电子显微镜(SEM)、能量色散X射线光谱(EDX)、X-射线衍射仪(XRD)、原子力显微镜(AFM)及电化学测试等现代检测技术对镁合金化学镀镍层的表面形貌、微观结构、沉积速率、沉积电势(Edep)、沉积电流(idep)等参数的表征和测试,研究了镁合金化学镀镍的初始沉积过程、前处理工艺、动力学方程和镀液的性能。主要的研究成果如下:
     1.开发了一种无铬低氟绿色环保的的镁合金化学镀镍酸洗活化前处理新工艺。鉴于镁合金传统化学镀镍前处理工艺中六价铬对环境造成的严重污染,通过对比研究几种不同酸洗活化工艺对基底的刻蚀效果及对镀层性能的影响发现,使用(H_3PO_4+HNO_3)酸洗,K_4P_2O_7和NH_4HF_2分别活化的二次活化工艺可以使基底形成特殊的腐蚀形貌及合适的氟氧元素比(F/O),从而在保证镀层耐蚀性的同时大大提高镀层的结合力。同时,研究还发现,化学镀镍沉积初期包括两类重要反应:(1)置换反应触发的镍初始沉积;(2)镍的自催化还原沉积。
     2.研究了化学镀镍液中硫酸根离子的积累对化学镀镍的影响。通过添加硫酸铵的方法模拟了硫酸根离子累积对镀液沉积速率、次磷酸钠效率、镀液稳定性及镀层质量的影响。结果发现,一定浓度的硫酸铵可以提高沉积速率(<12g·dm~(-3)),但会使镀液的稳定性和次磷酸钠效率下降。浓度的进一步增大对镀液稳定性影响较小,同时有利于次磷酸钠效率的提高。低浓度硫酸铵的引入不会对镀层造成不利影响,相反,在一定的浓度范围内,还可以细化晶粒,改进镀层的耐蚀性能。但是,硫酸铵浓度过高(>16g dm~(-3))则导致镀层应力增加,降低镀层结合力。
     3.研究了镀液pH值对镀层质量的影响及稳定镀液pH值的方法。研究结果表明,pH值不但会影响镀层的致密性,同时还会改变镀层中的P含量,使得镀层的微观结构发生变化,表现出不同的耐蚀性能。添加适量浓度的醋酸铵可以大大提高镀液缓冲能力,得到的镀层耐蚀能力更强,镀液的pH值和稳定系数在周期(MTO)循环中不会明显下降,镀液的使用寿命可以由原来的4个MTO延长至9个MTO。
     4.讨论了镁合金化学镀镍液的电化学行为。针对镁合金化学镀镍电化学行为还存在诸多争议的现状,研究了镀液组成、pH值及温度变化对Edep和idep的影响;同时,还考察了老化时间对镀液电化学阻抗谱(EIS)及镀层形貌的影响。极化曲线试验说明,在组成完整的化学镀镍液中获得的idep才能代表真实的化学镀镍沉积速率。试验结果与根据巴特勒-伏尔默公式(Butler-Volmer Equation)推导得到的理论值具有较好的一致性,分析结果还说明镁合金化学镀镍过程受阴、阳极反应共同控制。EIS实验结果表明,镀液老化一定时间后,其表面界面电荷传递电阻(Rd)明显增加,镀层沉积速率降低,镀层变得粗糙。以上结果说明通过电化学方法对镁合金化学镀镍沉积速率和镀液性能进行在线监测是可能的,这为得到合格质量的镀层提供了有力的保证。
     5.确定了镁合金化学镀镍的反应速率方程及表观活化能。讨论了pH值、温度和镀液中不同组分浓度变化对沉积速率的影响,建立了主盐在不同浓度范围条件下,镁合金酸性化学镀镍的速率动力学方程。由速率方程可知,主盐浓度增加,沉积速率不会持续增大,当镍离子浓度高于一定值(4.69g·dm~(-3))后,沉积速率反而会有所下降;而还原剂、pH值(4~6)和温度增加,沉积速率则相应增大;配合剂浓度增大,沉积速率降低。根据阿仑尼乌斯(Arrhenius)公式计算可得到本体系中化学镀镍的表观活化能为38.03kJ·mol~(-1),这说明镁合金化学镀镍是一种比较容易实现的化学反应。
     本论文在如下方面有创新性研究工作:(1)得到了一种环保型的无铬酸洗和二次活化前处理工艺,克服了铬酸酸洗带来的环境污染问题,避免了氢氟酸的易挥发特性给车间操作人员构成的潜在威胁;(2)剖析了施镀过程中硫酸根离子积累对化学镀液和镀层质量的影响,分析了硫酸根可能对化学镀镍造成的各种有利或不利作用;(3)揭示了施镀过程中镀液pH值的变化对镀层质量的影响,找到了稳定镀液pH值的缓冲剂,确定了化学镀镍液的最佳pH值,获得了高稳定性、长寿命的镁合金化学镀镍溶液。(4)对不同条件下镀液的极化和EIS行为进行了研究,为工业上能够快速在线监测镀液的变化,成功控制镀层质量提供了一种有效的测定方法。(5)建立了新开发的镁合金化学镀液的沉积速率方程,为有效控制镀液温度、pH值及各组分浓度变化对镀层质量的影响提供了理论依据。
Magnesium alloys have many desirable features, including low density, highthermal conductivity, high strength to weight, good electromagnetic shieldingcharacteristics, etc., which make it valuable in a number of structural applicationsincluding aerospace, electronics, computer parts and automobile fields. However, therelatively poor abrasion and corrosion resistance of magnesium alloy limit itsextensive utilization. Electroless nickel (EN) deposition is a viable option to improvethe wear and corrosion characteristics of Mg alloy, but challenges exist in thedeposition process due to the corrosion of Mg in the EN bath. Moreover, mostresearchers are committed to improve the corrosion resistance of the coatings whichdeposited in a once-plating bath only, rather than in cycles. On one hand, this paperstudied the characteristics of coatings, interfacial reactions between the magnesiumalloys and the EN bath; on the other hand, a more systematic work about the changesof plating bath in the plating processes was also studied, and thus an EN bath formulawith high stability and good buffering capacity was obtained.
     By using scanning electron microscopy (SEM), energy dispersive X-rayspectroscopy (EDX), X-ray diffraction (XRD), atomic force microscopy (AFM), et al,the surface morphologies and microstructure of the coatings obtained by variouspretreatments and in different plating baths were characterized. The deposition rate,deposition potential (Edep) and deposition current (idep) in different pH value,temperature, and concentration ranges of compositions of EN bath were determinedby electrochemical techniques. The main research results are as follows:
     1. Influences of three different pickling and activation processes on direct ENplating on Mg alloys have been studied in order to obtain an environment-friendlyprocess of pretreatment. A chromium-free pretreatment has been finally establishedby the procedure of pickling with (HNO_3+H_3PO_4), twice activations with K_4P_2O_7andNH_4HF_2. It is found that a coarse surface and proper F/O ratio were produced on theMg substrate via the new pickling-activation process. The coatings coated by this newprocess exhibit excellent adhesion and corrosion resistance. The results also foundthat two important types of chemical reactions in the initial deposition on Mgsubstrate were occurred. They are:(1) replacement reaction between the magnesiumsubstrate and nickel ions;(2) autocatalytic deposition reaction of nickel itself.
     2. The effects of ammonium sulfate (AS) in bath on the deposition rate,efficiency of hypophosphite, bath stability, and characteristics of EN deposits werealso studied. The results show that the rate of EN can be improved by adding AS whenits concentration is lower than12g·dm~(-3). The bath stability test indicates thatstability of the EN bath can be significantly reduced by a low concentration of AS,whereas little impact on bath stability was observed with an increased ASconcentration. The results also indicate that a low accumulation of AS in the platingbath did not adversely affect the adhesion and corrosion resistance of the coatings. Anoptimum concentration of AS can decrease grain size, refine microstructure, andimprove corrosion resistance. However, a very concentrated AS (>16g dm~(-3)) platingbath may increase stress, hence creating cracked cross-section morphologies.
     3. The effects of complexing agents on the bath life, plating rate and coatingquality were studied in detail. The results show that the changes of pH value not onlychanged the nature of the bath solution, but also had a strong impact on the P content,microstructure and electrochemical properties of the EN coatings. The bufferingcapacity of the EN bath can be improved obviously with the addition of optimumconcentration of acetate ammonium, and thus the pH value and bath stability wouldnot be changing quickly in MTO cycles, the operational life can be extended from4MTO to9MTO.
     4. In order for obtaining more kinetics information of the EN plating processes,the polarization behavior of EN plating in different baths was investigated withpolarization curves. Influence rules of every process parameters on the polarizationcurves and EN deposition in a complete bath were also described. From thesevariations in the deposition potential (Edep) and current density (idep), a kineticexpression employing the Butler-Volmer equation and mixed potential theory was setup and was in good agreement with the experimental findings. It was confirmed thatthe EN deposition process in the present researches was under a mixed control.Electrochemical impedance spectroscopy (EIS) was proposed to measuring the agingability of the EN bath. With prolonged aging time, the charge transfer resistance (Rd)of samples increased obviously, the deposition rate decreased, and the surfacemorphology of the coatings observed became coarser. These results show that theelectrochemical measurement may be effectively in monitoring EN deposition rateand characteristics of EN bath in the future.
     5. Lastly, the dynamical equation of EN plating on Mg alloy in an acidic bath wasderived by studying the effects of concentrations of metal salt, reducing agent, pH value, and temperature on the deposition rate. The equation shows that the depositionrate increased with increasing temperature, concentration of H-2PO2, pH value (4~6),and decreased with increasing concentration of complexing agents. For nickel ions,the rate increased gradually with increasing concentration (x, g·dm~(-3)) when x<4.69.However, it decreased when the concentration exceeded4.69. The apparent activationenergy (Ea) calculated from the Arrhenius equation is approximately38.03kJ·mol~(-1),this could explain the reason why the deposition reaction did take place readily.
     The innovations in the dissertation as bellow:(1) An environmentally friendlypickling and activation process with chromimu-free and only low hydrogen fluoridewas exploited;(2) The effects of accumulation of sulfate ion on the plating bath anddeposits were studied by simulate method;(3) The influences of pH value changes inthe deposition process on the characteristics of the coatings were analyzed, and aplating bath with an optimum concentration of pH value buffering agent wasascertained;(4)Electrochemical behavior of EN plating in different baths was studiedby polarization curves and EIS methods. A monitoring technique may be developedand applied to industrial production lines based on this new measurement;(5) Anempirical deposition rate equation for EN on Mg alloys in an acidic bath was obtained.This is favorable for better control over the quality of EN coatings by varying thetemperature, pH value and composition concentrations of the plating bath in thedeposition process.
引文
[1]刘正,张奎,曾小勤等.镁基轻质合金理论基础及其应用.北京:机械工业出版社,2002
    [2] Watarai H. Trend of research and development for magnesium alloys. Scienceand Technology Trends,2005,18(1):84-97
    [3]曾荣昌,柯伟,徐永波等. Mg合金的最新发展及应用前景.金属学报,2001,37(7):673-685
    [4] Kainer K U, Kaiser F. Magnesium alloys and technology. Weinheim: Wiley-VCH GmbH,2003
    [5] Friedrich H E, Mordike B L. Magnesium technology. Germany: Springer-VerlagBerlin Heidelberg,2006
    [6]李玉兰,刘江,彭晓东.镁合金压铸件在汽车上的应用.特种铸造及有色合金,1999, s1:120-122
    [7] Mathieu S, Rapin C, Hazan J, et al. Corrosion behaviour of high pressuredie-cast and semi-solid cast AZ91D alloys. Corrosion Science,2002,44(12):2737-2756
    [8] Ambat R, Zhou W. Electoless nickel-plating on AZ91D magnesium alloy: effectof substrate microstructrure and plating parameters. Surface and CoatingTechnology,2004,179(2-3):124-134
    [9] Maker G L, Kruger J. Corrosion of magnesium. International Material Review,1993,38(3):138-153
    [10] Zeng R C, Zhang J, Huang W J, et al. Review of studies on corrosion ofmagnesium alloys. Transactions of Nonferrous Metals Society of China,2006,16(z1): s763-s771
    [11]刘秀晨,安成强.金属腐蚀学.北京:国防工业出版社,2002
    [12] Guo K W. A Review of magnesium/magnesium alloys corrosion and itsprotection. Recent Patents on Corrosion Science,2010,2(1):13-21
    [13] Yang Z, Li J P, Zhang J X, et al. Review on research and development ofmagnesium alloys. Acta Metallurgica Sinica (English Letters),2008,21(5):313-328
    [14]刘道新.材料的腐蚀与防护.西安:西北工业大学出版社,2005
    [15]孙跃.金属腐蚀与控制.哈尔滨:哈尔滨工业大学出版社,2003
    [16] Shikata N, Kondou Y, Nishikawa Y, et al. Surface-treated article of magnesiumor magnesium alloys, method of surface preparation and method of coating.United States Patent.6409844,2002-6-25
    [17] Tomlinson C E. Conversion coatings for metals using group IV-Z metals in thepresence of little or no fluoride and little or no chromium, United States Patent.5952049,1999-9-14
    [18]高丽丽,张春红,张密林等.镁-锂合金无铬植酸化学转化膜研究.功能材料,2008,39(7):1134-1137
    [19] Lian J S, Li G Y, Niu L Y, et al. Electroless Ni-P deposition plus zinc phosphatecoating on AZ91D magnesium alloy. Surface and Coatings Technology,2006,200(20-21):5956-5962
    [20] Ardelean H I, Frateur P M. Corrosion protection of magnesium alloys bycerium, zirconium and niobium-based conversion coatings. Corrosion Science,2008,50(7):1907-1918
    [21] Avedesian M M, Barker H. Magnesium and magnesium alloy. United States:ASM International,1999
    [22] Ardelean H, Frateur I, Zanna S, et al. Corrosion protection of AZ91magnesiumalloy by anodizing in niobium and zirconium-containing electrolytes. CorrosionScience,2009,51(12):3030-3038
    [23] Zhang J, Wu C Y. Corrosion and protection of magnesium alloys-A review ofthe patent literature. Recent Patents on Corrosion Science,2010,2(1):55-68
    [24] Gray J E, Luan B. Protective coatings on magnesium and its alloys-a criticalreview. Journal of Alloys and Compounds,2002,336(1-2):88-113
    [25]张永君,严川伟,王福会等.镁及镁合金环保型阳极氧化电解液及其工艺.材料保护,2002,35(3):39-40
    [26]周玲伶,易丹青,邓妹皓等.镁合金环保型阳极氧化工艺研究.中国腐蚀与防护学报,2006,26(3):176-179
    [27] Bestetti M, Cavallotti P L, Da Forno A, et al. Anodic oxidation and powdercoating for corrosion protection of AM60B magnesium alloys. Transactions ofthe Institute of Metal Finishing,2007,85(6):316-319
    [28] Yerokhin A L, Voerodin A A, Lyubimov V V, et al. Plasma electrolyticfabrication of oxide ceramic surace layers for tribo technical purpose on Alalloys. Surface and Coatings Technology,1998,110(3):140-146
    [29] Hoche H, Scheerer H, Probst D, et al. Plasma anodisation as an environmentalharmless method for the corrosion protection of magnesium alloys. Surface andCoatings Technology,2003,174-175(1):1002-1007
    [30]张伟.基于PEO的生物功能性和防护性涂层的制备与性能研究.[中国科学院金属研究所博士学位论文].沈阳:中国科学院金属研究所,2008
    [31]周林,杨素媛.镁合金表面防腐蚀技术的研究进展.兵器材料科学与工程,2009,32(5):98-102
    [32] Zhu X M, Yang H G,Lei M K. Corrosion resistance of Al ion implanted AZ31magnesium alloy at elevated temperature. Sufaces and Coatings Technology,2007,201(15):6663-6666
    [33] Yue T M, Wang A H, Man H C. Corrosion resistance enhancement ofmagnesium ZK60/SiC composite by Nd: YAG laser cladding. Scripta Materialia,1999,40(3):303-311
    [34] Li P, Han X G, Xin J P, et al. Wear and corrosion resistance of AZ31magnesiumalloy irradiated by high-intensity pulsed ion beam. Nuclear Instruments andMethods in Physics Research,2008,266(18):3945-3952
    [35] Grundmeier Schmidt G W, Stratmann M. Corrosion protection by organiccoatings: electrochemical mechanism and novel methods of investigation.Electrochimica Acta,2000,45(15-16):2515-2533
    [36] Gordon P B. Reflections on corrosion control by organic coatings. Progress inOrganic Coatings,1996,28(1):43-48
    [37] Truong V T, Lai P K, Moore B T. Corrosion protection of magnesium byelectroactive polypyrrole/paint coatings. Synthetic Metals,2000,110(1):7-15
    [38] Toru T, Shizuo M, Akira O, et al. Method for coating magnesium wheel. JapanPatent Office. JP5169018A,1993-07-09
    [39] Umehara H, Takaya M, Tsukuba T I. Corrosion resistance of the die castingAZ91D magnesium alloys with paint finishing. Aluminium,1999,75(718):634-641
    [40] Yukio Y, Makoto F, Naoharu M, et al. Formation of highly corrosion resistantcoating film on magnesium alloy material. Japan Patent Office. JP7204577A,1995-8-8
    [41] Hua R G, Zhang S, Bu J F. Recent progress in corrosion protection ofmagnesium alloys by organic coatings. Progress in Organic Coatings,2012,73(2-3):129-141
    [42] Besra L, Liu M L. A review on fundamentals and applications ofelectrophoretic deposition (EPD). Progress in Materials Science,2007,52(1):1-61
    [43] Zhang J, Wu C. Corrosion protection behavior of AZ31magnesium alloywithcathodic electrophoretic coating pretreated by silane. Progress in OrganicCoatings,2009,66(4):387-392
    [44] Wen J Y, Wilkes G L. Organic/inorganic hybrid network materials by thesol-gel approach. Chemistry of Materials,1996,8(8):1667-1681
    [45] Mori K, Hirahara H, Oishi Y. Polymer plating of2-dioctylamino-1,3,5-triazine-4,6-dithiol to magnesium alloys. Electrochemical and Solid-StateLetters,2000,3(12):546-549
    [46] Brar A S, Narayan P B. Fluorocarbon coated magnesium alloy carriage andmethod of coating a magnesium alloy shaped part. United States Patent.5156919,1992-10-20
    [47] Bauer C, Buchgeister J, Hischier R, et al. Towards a framework for life cyclethinking in the assessment of nanotechnology. Journal of Cleaner Production,2008,16(8-9):910-926
    [48] Reiners G, Griepentrog M. Hard coatings on magnesium alloys by sputterdeposition using a pulsed d.c. bias voltage. Surface and Coatings Technology,1995,76-75(2):809-814
    [49] Senf J, Broszeit E. Wear and corrosion protection of aluminum and magnesiumAlloys using chromium and chromium nitride PVD coatings. AdvancedEngineering Materials,1999,1(2):133-137
    [50] Pierson H O. ASM Handbook: Corrosion (Vol.13). New York: ASMInternational,1987
    [51] Rie K T, W hle J. Plasma-CVD of TiCN and ZrCN films on light metals.Surface and Coatings Technology,1999,112(1-3):226-229
    [52] Dabosi F J P, Morancho R, Pouteau D. Process for producing a protective filmon magnesium containing substrates by chemical vapor deposition of two ormore layers. United States Patent.4980203,1990-12-25
    [53] Nakatsugawa I. Surface modification technology for magnesium products.International Magnesium Association,1996
    [54] Hynek S J, Guller W D. Stationary hydrogen storage using a phase changematerial. In: Proceedings of the11thWorld Hydrogen Energy Conference.Stuttgart, Germany,1996,1197-1202
    [55]吕楠.镁合金表面冷喷涂快凝Zn-Al合金粉末及涂层性能的研究:[沈阳工业大学硕士学位论文].沈阳:沈阳工业大学,2005
    [56]张津,孙智富,汪菘扬等.镁合金表面热喷涂工艺及防腐蚀性研究.表面技术,2003,32(3):829-837
    [57]叶宏,孙智富.镁合金表面热喷涂Al-Al2O3/TiO2梯度涂层研究.武汉理工大学学报,2006,28(7):9-11
    [58] Lugscheider E, Parco M, Kainer K U, et al. Thermal spraying of magnesiumalloys for corrosion and wear protection. In: Proceedings of the6thInternational Conference Magnesium Alloys and Their Applications. WolfsburgGermany,2003:860-868
    [59] Davis J R. Surface Engineering for Corrosion and Wear Resistance. ManeyPublishing,2001
    [60] Zhong C, Liu F, Wu Y T. Protective diffusion coatings on magnesium alloys: Areview of recent developments. Journal of Alloys and Compounds,2012,520(1):11-21
    [61] Cheong W J. Development of a protective coating on the magnesium AZ91Dalloy:[dissertation]. Canada: University of Western Ontario,2005
    [62] Zao H, Huang Z, Cui J. A new method for electroless Ni-P plating on AZ31magnesium alloy. Surface and Coatings Technology,2007,202(1):133-139
    [63] Xiang Y H, Hu W B, Liu X K, et al. A study on surface state during thepretreatment of electroless nickel plating on magnesium alloys. Transactions ofthe Institution of Metal Finishing,2001,79(1):27-29
    [64] De Long H K. Method of producing a metallic coating on magnesium and itsalloys. United States Patent.2526544,1950-10-17
    [65] Olsen A L. Method for electrolytical metal coating of magnesium articles.European Patent Application.0030305,1982-9-14
    [66] Dennis J K, Wan M K Y Y, Wake S J. Plating on magnesium alloy die casting.Transactions of the Institute of Metal Finishing,1985,63:74-80
    [67] Wu L P, Zhao J J, Xie Y P, et al. Progress of electroplating and electrolessplating on magnesium alloy. Transactions of Nonferrous Metals Society ofChina,2010,20(s2): s630-s637
    [68]钱苗根.材料表面技术及其应用手册.北京:机械工业出版社,1998
    [69]向阳辉,胡文彬,沈彬等.镁合金直接化学镀镍活化表面状态对镀速的影响.电镀与环保,2000,20(2):21-23
    [70]李瑛,陈珏玲,余刚等.镁合金化学镀镍工艺的研究.电镀与环保,2004,24(6):22-26
    [71]胡文彬,向阳辉,刘新宽等.镁合金化学镀镍预处理过程表面状况的研究.中国腐蚀与防护学报,2001,21(6):340-344
    [72]毕虎才,卫英慧,侯利锋等.压铸镁合金化学镀Ni-P的沉积过程.稀有金属材料与工程,2006,35(10):1661-1664
    [73] Elsentriecy H H, Azumi K. Electroless Ni-P deposition on AZ91D magnesiumalloy prepared by molybdate chemical conversion coatings. Journal of TheElectrochemical Society,2009,156(2): D70-D77
    [74]张道军,邵红红,蒋小燕.前处理工艺对AZ91D镁合金直接化学镀的影响.腐蚀与防护,2008,29(7):391-393
    [75]霍宏伟,李明升,尹红生等. AZ91D镁合金化学镀镍前处理工艺及腐蚀行为研究.表面技术,2006,35(5):40-42
    [76]刘玉芬,钱建刚,黄巍. AZ91D镁合金前处理工艺对化学镀镍的影响.材料保护,2008,41(6):33-26
    [77]丁培培,凌国平.镁合金化学镀镍无铬前处理工艺及其缓蚀处理溶液.中国专利.200810061036,2009-12-16
    [78] Sharma A K, Suresh M R, Bhojraj H, et al. Electroless nickel plating onmagnesium alloy. Transactions of the Institution of Metal Finishing,1998,96(3):10-16
    [79]戴长松,吴宜勇,王殿龙等.镁及镁合金的化学镀镍.兵器材料科学与工程,1997,20(4):35-38
    [80]叶宏,孙智富,张鹏等.镁合金化学镀镍研究.材料保护,2003,36(3):27-29
    [81]蒋永锋,翟春泉,郭兴伍.镁合金浸锌及膜层彩化工艺.材料保护,2003,36(3):30-31
    [82] Xiang Y H, Hu W B, Liu X K, et al. Initial deposition mechanism of electrolessnickel plating on magnesium alloys. Transactions of the Institute of MetalFinishing,2001,79(1):30-32
    [83] Sakata Y. Electroless nickel plating directly on magnesium alloy die castings.In: Proceedings of the74thAESF Annual Technical Conference. Chicago: TheAmerican Electroplaters and Surface Society,1987,6-15
    [84] Toshinobu O, Chiyoko E, Yuji S. Plating method of magnesium and magnesiumalloy. Japan Patent Office. JP61067770A,1986
    [85]郑臻,余新泉,孙扬善等.前处理对镁合金化学镀镍结合力的影响.中国腐蚀与防护学报,2006,26(4):221-225
    [86] Zhang W X, He J G, Jiang Z H, et al. Electroless Ni-P layer with achromium-free pretreatment on AZ91D magnesium alloy. Surface and CoatingsTechnology,2007,201(8):4594-4600
    [87]孙硕,刘建国,张伟等.镁合金无铬无氟前处理直接化学镀镍研究.腐蚀科学与防护技术,2009,21(3):277-280
    [88] Yang L H, Li J Q, Zheng Y Z, et al. Electroless Ni-P plating with molybdatepretreatment on Mg-8Li alloy. Journal of alloys and Compounds,2009,467(1-2):562-566
    [89] Zhao H, Huang Z H, Cui J Z. A new method for electroless Ni-P plating onAZ31magnesium alloy. Surface and Coatings Technology2007,202(1):133-139
    [90] Liu Z M, Gao W, Zhang W. A novel electroless nickel plating technique forprotection of Mg alloys. Surface and Coatings Technology,2006,253(5):2988-2991
    [91] Sun S, Liu J G, Yan C W, et al. A novel process for electroless nickel plating onanodized magnesium alloy. Applied Surface Science,2008,254(16):5016-5022
    [92] Li J Z, Shao Z C, Zhang X, et al. The electroless nickel-plating on magnesiumalloy using NiSO4·6H2O as the main salt. Surface and Coatings Technology,2006,200(9):3010-3015
    [93] Gu C D, Lian J S, Li G Y. Electroless Ni-P plating on AZ91D magnesium alloyfrom a sulfate solution. Journal of Alloys and Compounds,2005,391(1-2):104-109
    [94]李瑛,余刚,刘跃龙等.镁合金上硫酸镍体系化学镀镍工艺研究.材料保护,2003,36(10):32-34
    [95]刘新宽,向阳辉,胡文彬等.镁合金化学镀工艺研究.电镀与涂饰,2004,23(5):16-18
    [96]胡波年,陈珏伶,余刚等.镁合金在镀液中的腐蚀行为.中国有色金属学报,2005,15(3):463-470
    [97]石西昌,杨慧兰,肖湘等. AZ31镁合金表面化学镀镍工艺研究.腐蚀科学与防护技术,2009,21(4):370-373
    [98]姜晓霞,沈伟.化学镀理论及实践.北京:国防工业出版社,2001
    [99]李宁,袁国伟,黎德育.化学镀镍基合金理论与技术.哈尔滨:哈尔滨工业大学出版社,2000
    [100] Agarwala R C, Agarwala V. Electroless alloy/composite coatings: A review.Sadhana-academy Proceedings in Engineering Sciences,2003,28(3):475-493
    [101]程沪生.酸性化学镀镍.电镀与涂饰,2009,28(1):24-26
    [102] Alkire R C, Kolb D M. Advances in Electrochemical Science and Engineering(vol.7). Weinheim (Germany): Wiley-VCH Verlag GmbH,2001
    [103] Paunovic M, Vitkavage D. Determination of electroless copper deposition ratefrom polarization data in the vicinity of the mixed potential. Journal of theElectrochemical Society,1979,126(12):2282-2284
    [104] Ohno I. Electroless copper plating from an iminodiacetate bath. SurfaceTechnology,1976,4(6):515-520
    [105] Hung A, Ohno I. Electrochemical study of hypophosphite-reduced electrolesscopper deposition. Journal of the Electrochemical Society,1990,137(3):918-921
    [106] Inberg A, Bogush V, Croitoru N, et al. Electrochemical study of the mechanismof Ag(W) electroless deposition.2007,154(1): D1-D4
    [107] Petrov N, Sverdlov Y, Shacham-Diamand Y. Electrochemical study of theelectroless deposition of Co(P) and Co(W, P) alloys. Journal of theElectrochemical Society,2002,149(4): C187-C194
    [108] Ohno I. Electrochemical behavior of electroless nickel plating inpyrophosphate-borohydride bath. Journal of the Metal Finishing Society ofJapan,1979,30(7):350-354
    [109] Kato M, Niikura K, Hoshino S, et al. Electrochemical behavior of electrolessgold plating with ascorbic acid as a reducing agent. The Surface FinishingSociety of Japan,1991,42(7):729-735
    [110] Mishra K G, Paramguru R K. Kinetics and mechanism of electroless copperdeposition at moderate-to-high copper ion and low-to-moderate formaldehydeconcentrations. Metallurgical and Materials Transactions B,1999,30(2):223-229
    [111] Mishra K G, Paramguru R K. Kinetics and mechanism of electroless depositionof copper. Journal of the Electrochemical Society,1996,143(2):510-516
    [112] Li J, Kohl P A. The acceleration of non formaldehyde electroless copper plating.Journal of the Electrochemical Society,2002,149(12): C631-C636
    [113] Bindra P, Roldan J. Mechanisms of electroless metal plating. III. Mixedpotential theory and the interdependence of partial reactions. Journal ofApplied Electrochemistry,1987,17(6):1254-1266
    [114] Abrantes L M, Correia J P. On the mechanism of electroless Ni-P plating.Journal of the Electrochemical Society,1994,141(9):2356-2360
    [115] Haruyama S, Yoshizawa A, Ohno I. Estimation of the rate of electroless cobaltplating by electrochemical method. Journal of the Metal Finishing Society ofJapan,1979,30(6):289-293
    [116] Barker B D, Taberner D. Electrochemical aspects of the electroless depositionof cobalt. Surface Technology,1981,12(1):103-104
    [117] Ohno I, Haruyama S. Measurement of the instantaneous rate of electrolessplating by an electrochemical method. Surface Technology,1981,13(1):1-15
    [118] Gao X L, Yu G, Ouyang Y J, et al. Effects of multiple ligand coordinations onelectroless nickel plating on magnesium alloys. Surface Engineering,2008,24(4):295-300
    [119]班春燕,张禄廷等.含复合络合剂的化学镀Ni-P合金.工艺表面技术,1999,28(3):9-11
    [120] Cui G F, Li L, Li D Y, et al. Study of optimized complexing agent forlow-phosphorus electroless nickel plating bath. Journal of The ElectrochemicalSociety,2005,152(10): C669-C674
    [121] Huang Y S, Cui F Z. Effect of complexing agent on the morphology andmicrostructure of electroless deposited Ni-P alloy. Surface and CoatingsTechnology,2007,202(3):5416-5418
    [122] Anik M, K rpe E, en E. Effect of coating bath composition on the propertiesof electroLess nickel-boron films. Surface and Coatings Technology,2008,202(9):1718-1727
    [123]邹建平,贺子凯,黄鑫等.中温化学镀镍-磷合金镀液的周期循环实验研究.电镀与精饰,2005,27(4):8-11
    [124]陈志勇,刘沙沙,李忠厚.化学镀液成分对镁合金镀镍层的影响.材料保护,2008,41(6):44-46
    [125] Yin X, Hong L, Chen B H, et al. Modeling the stability of electroless platingbath-diffusion of nickel colloidal particles from the plating frontier. Journal ofColloid and Interface Science,2003,262(1):89-96
    [126]戴长松,吴宜勇,王殿龙.化学镀镍液稳定性的综合评价.电镀与环保,1997,17(4):9-11
    [127] Lin K L, Hwang J W. Effect of thiourea and lead acetate on the deposition ofelectroless nickel. Materials Chemistry and Physics,2002,76(2):204-211
    [128] Mallory G O, Hajdu J B. Electroless Plating: Fundamentals and Applications.Orlando: American Electroplaters and Surface Finishers Society,1990
    [129] Schlesinger M, Paunovic M (Eds.). Fundamentals of electrochemical deposition,4thed. New York: John Wiley&Sons, Inc,1998
    [130] Gad M R, EI-Magd A. Additives for electroless nickel alloy coating processes.Metal Finishing,2001,99(2):77-83
    [131] Feldstein N, Lindsay D J. Non-ionic stabilizers in composite electroless plating.United States Patent.5863616,1999-1-26
    [132] Kondo K, Ishikawa J, Takenaka O, et al. Acceleration of electroless copperdeposition in the presence of excess triethanolamine. Journal of theElectrochemical Society,1991,138(12):3629-3633
    [133] Hung A. Effects of thiourea and guanidine hydrochloride on electroless copperplating. Journal of the Electrochemical Society,1985,132(5):1047-1049
    [134] Paunovic M, Arndt R. The effect of some additives on electroless copperdeposition. Journal of the Electrochemical Society,1983,130(4):794-799
    [135] Cheong W J, Ben L L, Shoesmith D W, et al. Protective coating of Mg AZ91Dalloy-The effect of electroless nickel (EN) bath stabilizers on corrosionbehaviour of Ni-P deposit. Corrosion Science,2007,49(4):1777-1798
    [136] Xu H W, Brito J, A.Sadik O. Mechanism of stabilizer acceleration in electrolessnickel at wirebond substrates. Journal of The Electrochemical Society,2003,150(11): C816-C822
    [137] Baskaran I, Sankara Narayanan T S N, Stephen A. Effect of accelerators andstabilizers on the formation and characteristics of electroless Ni-P deposits.Materials Chemistry and Physics,2006,99(1):117-126
    [138] Liu H P, Li Ning Bi S F, et al. Effect of organic additives on the corrosionresistance properties of electroless nickel deposits. Thin Solid Films,2008,516(8):1883-1889
    [139]胡波年,李亭憬,余刚等.镁合金化学镀镍溶液稳定性.化工学报,2009,60(3):696-701
    [140]伍学高,李铭华,黄渭澄.化学镀技术.成都:四川科学技术出版社,1985
    [141] Mallory G O, Parker K. The effect of monovalent cations on electroless nickelplating. Plating and Surface Finishing,1994,81(12):55-57
    [142]刘新宽,向阳辉,胡文彬等.镁合金化学镀镍溶液的老化.中国有色金属学报,2003,13(4):1046-1050
    [143] Ashassi-Sorkhabi H, Moradi-Haghighi M, Hosseini M G. Effect of rare earth(Ce, La) compounds in the electroless bath on the plating rate bath stability andmicrostructure of the nickel-phosphorus deposits. Surface and CoatingsTechnology,2008,202(9):1615-1620
    [144]余祖孝,郝世雄,刘东亮等.添加剂对化学镀镍-钨-钼-磷镀层性能的影响.机械工程材料,2008,32(8):71-73
    [145] Balaraju J N, Sankara Narayanan T S N, Seshadri S K. Evaluation of thecorrosion resistance of electroless Ni-P and Ni-P composite coatings byelectrochemical impedance spectroscopy. Journal of Solid StateElectrochemistry,2001,5(5):334-338
    [146] Balaraju J N, Ezhil Selvi V, William Grips V K, et al. Electrochemical studieson electroless ternary and quaternary Ni-P based alloys. Electrochimica Acta,2006,52(3):1064-1074
    [147] Hamdy A S, Shoeib M A, Hady H, et al. Corrosion behavior of electroless Ni–Palloy coatings containing tungsten or nano-scattered alumina composite in3.5%NaCl solution. Surface and Coatings Technology,2007,20(1):162-171
    [148] Abdel Hameed R M, Fekry A M. Electrochemical impedance studies ofmodified Ni-P and Ni-Cu-P deposits in alkaline medium. Electrochimica Acta,2010,55(20):5922-5929
    [149] Bakers B C, West A C. Electrochemical impedance spectroscopy study ofnickel-iron deposition I. Experimental results. Journal of the ElectrochemicalSociety,1997,144(1):164-169
    [150] Bakers B C, West A C. Electrochemical impedance spectroscopy study ofnickel-iron deposition II. Theoretical interpretation. Journal of theElectrochemical Society,1997,144(1):169-175
    [151] Farmer J C. Underpotential deposition of copper on gold and the effects ofthiourea studied by AC impedance. Journal of the Electrochemical Society,1985,132(1):2640-2648
    [152] Gabrielli C, Mo otéguy P, Perrot H, et al. A model for copper deposition in thedamascene process. Electrochimica Acta,2006,51(8-9):1462-1472
    [153] Burke L D, Sharna R. AC impedance investigation of copper in acid solution II.Effect of bath additives on copper electrodeposition. Journal of theElectrochemical Society,2008,155(4): D285-D297
    [154] Madore C, Agarwal P, Landolt D. Blocking inhibitors in cathodic leveling III.Electrochemical impedance spectroscopy study. Journal of the ElectrochemicalSociety,1998,145(5):1561-1565
    [155] Cheng C C, West A C. Nickel deposition in the presence of coumarin: Anelectrochemical impedance spectroscopy study. Journal of the ElectrochemicalSociety,1997,144(9):3050-3056
    [156] Sato N, Suzuki M. AC impedance and coulostatic studies on electrochemicaldetection of2-mercaptobenzothiazole in a copper electroless plating bath.Journal of the Electrochemical Society,1988,135(7):1645-1650
    [157] Touhami M E, Chassaing E, Cherkaoui M. Kinetics of the autocatalyticdeposition of Ni-P alloys in ammoniacal solutions. Electrochimica Acta,1998,43(12-13):1721-1728
    [158] Gabrielli C, Mocoteguy P, Perrot H, et al. Electrochemical impedancespectroscopy investigation of bath aging in damascene process chemistries.Electrochemical and Solid-State Letters,2004,7(3): C31-C34
    [159] Gabrielli C, Mo otéguy P, Perrot H, et al. Influence of the anode on thedegradation of the additives in the damascene process for copper deposition.Journal of the Electrochemical Society,2007,154(3): D163-D169
    [160] Gabrielli C, Mo otéguy, Perrot H, et al. An investigation of copper interconnectdeposition bath ageing by electrochemical impedance spectroscopy. Journal ofApplied Electrochemistry,2008,38(4):457-468
    [161] Gabrielli C, Mo otéguy P, Perrot H, et al. A model for copper deposition in thedamascene process application to the aging of the deposition bath. Journal ofthe Electrochemical Society,2007,154(1): D13-D20
    [162] Mo otéguy P, Gabrielli C, Perrot H, et al. Influence of the anode and theaccelerator on copper bath aging in the damascene process. Journal of theElectrochemical Society,2006,153(12): G1086-G1098
    [163]胡文彬,刘磊,仵亚婷.难镀基材的化学镀镍技术.北京:化学工业出版社,2003
    [164] Lunder O, Lein J E, Kr Aune T, et al. The role of Mg17Al12phase in thecorrosion of Mg alloy AZ91. Corrosion,1989,45(9):741-748
    [165]闫洪.现代化学镀镍和复合镀新技术.北京:国防工业出版社,2001
    [166] Lima-Neto P, Silva G P, Correia A N. A comparative study of thephysicochemical and electrochemical properties of Cr and Ni-W-P amorphouselectrocoatings. Electrochimica Acta,2006,51(23):4928-4933
    [167] Cui X F, Jin G, Li Q F, et al. Electroless Ni-P plating with a phytic acidpretreatment on AZ91D magnesium alloy. Materials Chemistry and Physics,2010,121(1-2):308-313
    [168] Balaraju J N, Jahan S M, Anandan C, et al. Studies on electroless Ni-W-P andNi-W-Cu-P alloy coatings using chloride-based bath. Surface and CoatingsTechnology,2006,200(16-17):4885-4890
    [169] Zhao M, Wu S S, Luo J R, et al. A chromium-free conversion coating ofmagnesium alloy by a phosphate-permanganate solution. Surface and CoatingsTechnology,2006,200(18-19):5407-5412
    [170] Huo H W, Li Y, Wang F H. Corrosion of AZ91D magnesium alloy with achemical conversion coating and nickel layer. Corrosion Science,2004,46(6):1467-1477
    [171] Takács D, Sziráki L, T r k T I, et al. Effects of pre-treatments on the corrosionproperties of electroless Ni-P layers deposited on AlMg2alloy. Surface andCoatings Technology,2007,201(8):4526-4535
    [172] Chen J L, Yu G, Hu B N, et al. A zinc transition layer in electroless nickelplating. Surface and Coatings Technology,2006,201(3-4),686-690
    [173] Chen X M, Li G Y, Lian J S, et al. An organic chromium-free conversioncoating on AZ91D magnesium alloy. Applied Surface Science2008,255(5):2322-2328
    [174]黄继武,李周.多晶材料X射线衍射:实验原理、方法与应用.北京:冶金工业出版社,2012
    [175] Polmear I J. Light alloys: Metallurgy of the light metals. London: Wiely,1995
    [176] Liu Z M, Gao W. Electroless nickel plating on AZ91Mg alloy substrate.Surface and Coatings Technology,2006,200(16-17):5087-5093
    [177]刘新宽,向阳辉,胡文彬等.镁合金化学镀镍层的结合机理.中国腐蚀与防护学报,2002,22(4):233-236
    [178]刘新宽,向阳辉,胡文彬等.氟化物膜的性质研究及其对镁合金化学镀过程的影响.见:第五届全国表面工程学术会议论文集.北京:中国机械工程学会,2004,241-244
    [179]李宁.化学镀实用技术.北京:化学工业出版社,2003
    [180] Harbulak E P, Stants nee Halliday C A. Aqueous electroless nickel plating bathand process. United States Patent.4483711,1984-11-20
    [181] Arcilesi D A. Ammonia ions used as electroless copper plating rate controller.United States Patent.4450191,1984-5-22
    [182]安茂忠,杨哲龙,徐雪峰等.化学镀Ni-P合金中无机盐加速剂的影响.中国有色金属学报,1999,9(1):155-158
    [183]严易舒,黄树坤.中温酸性化学镀镍.材料保护,1996,29(5):24-25
    [184]马亮,马洁,郑鹉等.化学镀Co-Ni-P合金薄膜的结构与磁性研究.首都师范大学学报,2007,28(1):31-34
    [185] Huang Y, Shi K, Liao Z J, et al. Studies of electroless Ni-Co-P ternary alloy onglass fibers. Materials Letters,2007,61(8-9):1742-1746
    [186] Palaniappa M, Veera Babu G, Balasubramanian K. Electroless nickel-phosphorus plating on graphite powder. Materials Science and Engineering A,2007,471(1-2):165-168
    [187] Zhang X, Ren F, Goorsky M S, et al. Study of the initial stage of electroless Nideposition on Si(100) substrates in aqueous alkaline solution. Surface andCoatings Technology2006,201(6):2724-2732
    [188] Balaraju J N, Millath Jahan S, Rajam K S. Studies on autocatalytic depositionof ternary Ni-W-P alloys using nickel sulphamate bath. Surface and CoatingsTechnology,2006,201(3-4):507-512
    [189]黄鑫.化学镀镍液分析方法比较.材料保护,2001,34(8):38-39
    [190]刘汝涛,杨景和,高灿柱等.化学镀镍液中次亚磷酸钠的测定.电镀与环保,2000,20(1):29-31
    [191] Oladeji I O, Chow L. A study of the effects of ammonium salts on chemicalbath deposited zinc sulfide thin films. Thin Solid Films,1999,339(1-2):148-153
    [192] Oahue F M, Yu C. U. A study of the mechanism of the electroless deposition ofnickel. Electrochimica Acta,1970,15(1):237-239
    [193] Abrates L M, Oliveira M C, Vieil E. A probe beam deflection study of thehypophosphite oxidation on a nickel electrode. Electrochimica Acta,1996,41(9):1515-1524
    [194] Itakura K, Homma T, Osaka T. Effect of deposition site condition on the initialgrowth process of electroless CoNiP films. Electrochimica Acta,1999,44(21-22):3707-3711
    [195] Wen T C, Wei M G. Electrocrystallization of PbO2deposits in the presence ofadditives. Journal of the Electrochemical Society,1990,137(9):2700-2702
    [196] Hardesty D W. Anion effects in copper deposition. Journal of theElectrochemical Society,1970,117(2):168-172
    [197]李宁,屠振密.化学镀实用技术.北京:化学工业出版社,2003
    [198]霍宏伟,李瑛,王福会. AZ91D镁合金化学镀镍.中国腐蚀与防护学报,2002,22(1):14-17
    [199]余刚,刘跃龙,李瑛等. Mg合金的腐蚀与防护.中国有色金属学报,2002,12(6):1087-1098
    [200] Lei X P, Yu G, Gao X L, et al. A study of chromium-free pickling process beforeelectroless Ni-P plating on magnesium alloys. Surface and Coatings Technology,2011,205(16):4058-4063
    [201] Song Y W, Shan D Y, Chen R S, et al. A novel dual Ni coating on AZ91Dmagnesium alloy. Transactions of Nonferrous Metals Society of China,2008,18(z1): s339-s343
    [202] Moniruzzaman M, Subrata R. Effect of pH on electroless Ni-P coating ofconductive and nonconductive materials. International Journal of Automotiveand Mechanical Engineering,2011,4:481-489
    [203] Li X S, Zhang W X, Jiang Z H. Preparation and property evaluation ofelectroless Ni-P coatings on AZ91D magnesium alloy. Transactions ofNonferrous Metals Society of China,2007,17(4): s835-s840
    [204] Sadiku-Agboola O, Sadiku E R, Biotidara O F. The properties and the effect ofoperating parameters on nickel plating. International Journal of the PhysicalSciences,2012,7(3):349-360
    [205] Ying H G, Yan M, Ma T Y, et al. Effects of NH4F on the deposition rate andbuffering capability of electroless Ni-P plating solution. Surface and CoatingsTechnology,2007,202(2):217-221
    [206] Inoue H, Sugahara K, Yamamoto A, et al. Corrosion rate of magnesium and itsalloys in buffered chloride solutions. Corrosion Science,200244(3):603-610
    [207]崔国峰,李宁,黎德育等.化学镀镍液的缓冲容量与沉积速度的关系.电镀与环保,2003,23(6):19-22
    [208]朱艳萍,余刚,雷细平等. AM60镁合金活化及对电镀效果的影响.腐蚀科学与防护技术,2009,21(2):203-205
    [209] Liu H P, Bi S F, Cao L X, et al. The deposition process and the properties ofdirect electroless nickel-phosphorous coating with chromium-free phosphatepickling pretreatment on AZ31magnesium alloy. International Journal ofElectrochemical Science,2012,7(9):8337-8355
    [210] Zangeneh-Madar K, Monir Vaghefi S M. The effect of thermochemicaltreatment on the structure and hardness of electroless Ni-P coated low alloysteel. Surface and Coatings Technology,2004,182(1):65-71
    [211] El Mahallawy N, Bakkar A, Shoeib M, et al. Electroless Ni-P coating ofdifferent magnesium alloys. Surface and Coatings Technology,2008,202(21):5151-5157
    [212] Nuzzi F J. Accelerating the rate of electroless copper plating. Plating andSurface Finishing,1983,70(1):51-54
    [213]罗溪梅,孙传尧,印万忠.原子力显微镜在矿物加工领域中的应用现状.矿山机构,2011,39(12):80-85
    [214] Conway B E, White R E. Modern Aspects of Electrochemistry (vol.35). NewYork: Kluwer Academic Publishers,2002
    [215] Yang F, Yang B, Lu B, et al. Electrochemical study on electroless copperplating using sodium hypophosphite as reductant. Acta Physico-Chimica Sinica,2006,22(11):1317-1321
    [216] Abyaneh M Y, Sterritt A, Mason T J. Effects of ultrasonic irradiation on thekinetics of formation, structure, and hardness of electroless nickel eposits.Journal of the Electrochemical Society,2007,154(9): D467-D472
    [217] Malecki A, Micek-Ilnicka A. Electroless nickel plating from acid bath. Surfaceand Coatings Technology,2000,123(1):72-77
    [218] Xie Z H, Yu G, Li T J, et al. Dynamic behavior of electroless nickel platingreaction on magnesium alloys. Journal of Coatings Technology and Research,2012,9(1):107-114
    [219] Huang G F, Huang W Q, Wang L L, et al. Electrochemical study of electrolessdeposition of Fe-P alloys. Electrochimica Acta,2006,51(21):4471-4476
    [220]桂立丰,吴民达,赵源.机械工程材料测试手册:腐蚀与摩擦卷.沈阳:辽宁科学技术出版,2002
    [221] El-Raghy S M, Abo-Salama A A. The electrochemistry of electroless depositionof copper. Journal of the Electrochemical Society,1979,126(2):171-176
    [222] Gorker L, Dimitrov V. Modified tafel equation for electroless metal deposition.Progress in Reaction Kinetics and Mechanism,2009,34(2):127-140
    [223] Gamburg Y D, Zangari G. Theory and practice of metal electrodeposition. NewYork: Springer,2011
    [224] Kanani N. Electroplating: Basic Principles, Processes and Practice,1sted.Oxford UK: Elsevier,2004
    [225] Larramona G, Gutiérrez C. The nickel electrode: A potential modulatedreflectance study. Journal of the Electrochemical Society,1990,137(2):428-435
    [226] MacDougall B, Cohen M. Anodic oxidation of nickel in neutral sulfate solution.Journal of the Electrochemical Society,1974,121(9):1152-1159
    [227] Marijan D, Gojic M. Electrochemical study of the chromium electrodebehaviour in borate buffer solution. Journal of Applied Electrochemistry,2002,32(12):1341-1346
    [228] Fekry A M, Fatayerji M Z. Electrochemical corrosion behavior of AZ91D alloyin ethylene glycol. Electrochimica Acta,2009,54(26):6522-6528
    [229] Ohno I. Electrochemistry of electroless plating. Materials Science andEngineering: A,1991,146(1-2):33-49
    [230] Chen B H, Hong L, Ma Y, et al. Effects of surfactants in an electrolessnickel-plating bath on the properties of Ni-P alloy deposits. Industrial andEngineering Chemistry Research Fundamentals,2002,41(11):2668-2678
    [231]刘志坚,贺子凯,刘鸿康等.长寿命高稳定性化学镀镍工艺.材料保护,2003,36(9):30-33
    [232]刘新宽,向阳辉,胡文彬等.镁合金化学镀镍磷研究.宇航材料工艺,2001,31(4):21-25
    [233] Han K P, Fang J L. Effect of cysteine on the kinetics of electroless nickeldeposition. Journal of Applied Electrochemistry,1996,26(12):1273-1277
    [234] Molla H R, Modarress H, Abdouss M. Electroless nickel-phosphorus depositionon carbon steel CK-75and study of the effects of some parameters onproperties of the deposits. Journal of Coatings Technology and Research,2012,9(2):183-188
    [235] Cheong W J, Luan B L, Shoesmith D W. The effects of stabilizers on the bathstability of electroless Ni deposition and the deposit. Applied Surface Science,2004,229(1-4):282-300
    [236] Martyak N M, Lou J. Limitations of nickel hypophosphite electroless nickelprocesses. Process Safety and Environment Protection,2001,79(5):278-282
    [237] Jiang B Q, Xiao L, Hua S F, et al. Optimization and kinetics of electrolessNi-P-B plating of quartz optical fiber. Optical Materials,2009,31(11):1532-1539
    [238] Ashassi-Sorkhabi H, Mirmohseni A, Harrafi H. Evaluation of initial depositionrate of electroless Ni-P layers by QCM method. Electrochimica Acta,2005,50(28):5526-5532
    [239] Stremsdoerfer G, Omidvar H, Roux P, et al. Deposition of thin films of Ni-P andNi-B-P by dynamic chemical plating. Journal of Alloys and Compounds,2008,466(1-2):391-397
    [240] Van den Meerakker J E A M. On the mechanism of electroless plating II. Onemechanism for different reductants. Journal of Applied Electrochemistry,1981,11(3):395-400