混凝土桥梁裂缝开展的机敏网监测方法与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
混凝土桥梁的性能退化及失效通常始于裂缝的发生和发展,因此对混凝土结构关键区域的裂缝监测是桥梁健康监测的重要内容,该文依托国家自然科学基金项目“混凝土桥梁结构的机敏网仿生裂缝监测方法研究”(项目编号:50808188)和西部交通建设科技项目“混凝土桥梁裂缝仿生监测系统研发”(项目编号:2009318814065),对混凝土桥梁限宽裂缝机敏网监测方法与应用开展了系统的试验和理论研究,主要研究内容和成果如下:
     1.裂缝宽度是评定混凝土结构状况的一个重要指标,综合分析国内外公路混凝土桥梁所处环境状况及其裂缝宽度限值,提出特征裂缝宽度指标可分别确定为开裂及裂缝宽度为0.10mm、0.15mm、0.20mm、0.25mm、0.3mm.基于动物肌肤对创伤的感知机理,根据特征裂缝宽度监测需求,研发了在混凝土结构表面黏贴由不同直径的机敏丝构成机敏丝组的裂缝监测机敏网,达到既能监测混凝土表面裂缝的发生发展,又能感知裂缝宽度所在范围值。
     2.针对表面粘贴有机敏丝的混凝土结构,提出一种由混凝土、粘结胶、机敏丝构成的层合复合材料理论模型,借助McCartney模型分析方法,研究了混凝土开裂后机敏丝断裂瞬间层合结构的应力、应变等物理量,建立了能间接反映机敏丝直径与其断裂时裂缝宽度关系的各层位移、应力、应变等的统一场量微分方程。
     3.完成了239个表面粘贴有不同直径机敏丝的钢筋混凝土小型试件的加载试验,获得了直径分别为0.05mm、0.06mm、0.07mm、0.08mm、0.13mm和0.20mm机敏丝被崩断时的1600余组裂缝宽度数据;完成了3片表面粘贴有四种直径机敏丝组成的机敏丝组的钢筋混凝土梁加载试验,获得了直径分别为0.05mm、0.08mm、0.13mm和0.20mm机敏丝被崩断时的200余组裂缝宽度数据;应用多项分布的卡方(χ2一)检验方法和最大熵方法(Maximum Entropy Method)对试验数据进行分析处理,结果表明各直径的机敏丝被崩断时的裂缝宽度均满足正态分布规律;机敏丝直径越大,被崩断时对应的裂缝宽度越大。
     4.针对钢筋混凝土小型试件和钢筋混凝土试验梁,分析比较了不同直径的机敏丝被崩断时对应裂缝宽度的试验数据,结果表明同直径的机敏丝断裂时对应的裂缝宽度的均值、标准差基本相同,说明断裂时机敏丝直径主要与所跨越的裂缝宽度有关,而与被监测试件大小无关;两批次试验中各直径的机敏丝断裂时对应裂缝宽度的实测统计值与依据本文建立的层合复合材料理论模型得到的数值计算结果基本相同,验证了本文层合复合材料理论模型的正确性;根据两批次试验数据统计分析和理论计算结果,得到直径分别为0.05mm、0.06mm、0.07mm、0.08mm、0.13mm和0.20mm机敏丝断裂时对应的裂缝宽度分别为0.07mm、0.08mm、0.09mm、0.10mm、0.18mm和0.25mm,据此建立了不同直径机敏丝被崩断时对应的裂缝宽度计算公式w=1.2456d+0.0058。
     5.构造了限宽裂缝机敏网监测方法的总体系统,该系统由传感器模块、数据采集模块、数据处理模块、控制模块和数据通信模块五个模块组成。在系统硬件方面针对限宽裂缝监测重点研究并开发出了机敏网传感器和中间处理器;在软件方面研究编制了相应上位机主控程序、下位机采集程序、裂缝仿真程序和系统数据库管理程序。
     6.针对大跨径斜拉桥混凝土索塔内外表面的裂缝监测要求和实际监测环境,为监测混凝土索塔开裂与否、裂缝宽度是否超过0.20mmm或0.25mm,设计了由0.05mm、0.13mm和0.20mm三种直径构成的机敏丝组监测网,研制了相应硬件和软件系统;在该桥混凝土索塔上安装了限宽裂缝监测系统,实现了及时感知混凝土索塔结构表面新裂缝的出现和原有裂缝的发展情况;多次派专人到现场核查的结果表明本系统监测到的裂缝发展及宽度情况与现场核查基本吻合。
The appearance and development of cracks are the most common source of structure degradation and failure in concrete bridges. Crack monitoring in the pivotal area of concrete bridge structure is an important subject of concrete bridge health monitoring. Sponsored by the National Natural Science Foundation of China funded project:"Research on Smart Film Monitoring Method for Cracks of Concrete Bridge Structure"(No.50808188) and the West Transportation Construction Technology Project:"Development of Bionic Monitoring System for Cracks of Concrete Bridge Structure"(No.2009318814065), a comprehensive theoretical research on the method of bionic monitoring for width-limited cracks in concrete bridge structure is conducted, and the project application was constructed subsequently. The main research contents and results are as follows:
     1. Crak width is the most important parameter in evaluating the safe-state of concrete structure. In the present paper, the charateristic crack width were specified as cracking and a series of sequential crack width(0.10mm,0.15mm,0.20mm,0.25mm,0.3mm) based on analysis of various criterion in limit of crack width and envirment of concrete bridges in freeway system. By simulating the functions of biological sensory neurons to perceive wounds, and meeting the demands of monitoring charateristic crack width, a method both monitoring the appearance and width of crack was proposed by means of pasting smart sensing wire on the surface of concrete bridge structure.
     2. In this paper, theoretical model of a laminated-composite material is developed upon that the composite material consists of three subsequent layers:concrete, cohesive and smart sensing wire. The McCartney method is employed to analyze the stress and strain of laminated structure at the moment of fracture of smart sensing wire after cracking of concrete. Unified parameter differential equation in terms of displacement, stress and strain of three layers is fomulated, which can indirectly reflect the relationship between diameter of smart sensing wire and crack width when the wire is fastened to fracture.
     3. Over1600sets of data were obtained from239concrete specimen trial tests, those specimens were pasted with different specifications smart sensing wire in diameter of0.05mm,0.06mm,0.07mm,0.08mm,0.13mm and0.20mm respectively. Over200sets of data aquired from three concrete beams trial tests, those beams pasted with smart sensing wire in diameter of0.05mm,0.08mm,0.13mm and0.20mm. The X2-Checking Mothed and Maximum Entropy Theory are employed to process those data from trial tests. The results show that he crack width is snapped to the Normal Distribution Law when the smat sensing wires were tightened to failure.
     4. The comparison between the result of small specimens and the result of beams shows that cracks have similar average width and standard deviations when smart sensing wires with the same diameter were tightened to failure. The result also illustrated that the diameter of smart sensing wire is related to crack width, apart from the size of specimen, when them were tightened to failure. Furthermore, the statistic experimental data of crack width from specimens and beams validated the theoretical model of the laminated-composite material. According to the statistic data from two series of experimental and the theoretical calculation results, smart sensing wire with a diameter of0.05mm,0.06mm,0.07mm,0.08mm,0.13mm and0.20mm is corresponding to crack width0.07mm,0.08mm,0.09mm,0.10mm,0.18mm and0.25mm, respectively, and the relationship between failure width and diameter can be fomulated as w=1.2456d+0.0058.
     5. The width-limited crack bionic monitoring system for concrete bridge structure was built, which comprises five modules:the sensor module, data acquisition module, data processing module, control module and data communication module. In hardware aspects, this paper focused on design and manufacture of alert network sensor and the intermediate processor. In system software aspect, various applications designed for achieving the function of each module were built.
     6. In order to monitor the crack development and width (its limitation is0.20mm or0.25mm) on the surface of cable tower of long-span cable-stayed bridge, a monitoring network system was developed upon smart film method with smart sensing wires in diameters of0.05mm,0.13mm and0.20mm. The corresponding hardware and software are constructed to complete the monitoring network system. The developed monitoring system is validated by engineering application, which verified the capability and reliability of this system in monitoring appearance and development of craks on the surface of cable tower.
引文
[1]GASSER T C, HOLZAPFEL G A. Modeling 3D crack propagation in unreinforced concrete using PUFEM. Computer Methods in Applied Mechanics and Engineering, 2005,194:2859-2896.
    [2]WANG C Y, SHIH C C, HONG S C, HWANG W C. Rehabilitation of cracked and corroded reinforced concrete beams with fiber-reinforced plastic patches. Journal of Composites for construction,2004,8(3):219-228.
    [3]ZHANG Qiwei, ZHOU Yan Investigation of the applicability of current bridge health monitoring technology, Structure and Infrastructure Engineering,2007,3(2):159-168
    [4]欧进萍.重大工程结构智能传感网络与健康监测系统的研究与应用.中国科学基金.2005(1):8-12.
    [5]ZHANG Benniu, ZHANG Junqian. Electromechanical interaction behaviors of piezoelectric sensor and actuator on elastic substrate. Journal of Intelligent Material Systems and Structures,2006,16(7-8):589-595.
    [6]BARR P J, WOODWARD C B, NAJERA B, et al. Long-term structural health monitoring of the San Ysidro Bridge, Journal of Performance of Constructed Facilities, ASCE,2006,20(1):14-20.
    [7]刘永前.大型桥梁结构健康监测技术研究与应用.北京交通大学博士论文.2007.
    [8]WONG K Y. Design of a structural health monitoring system for long-span bridges. Structure and Infrastructure Engineering,2007,3(2):169-185.
    [9]WONG K Y, LAU C K, FLINT A R. Planning and implementation of the structural health monitoring system for cable-supported bridges in Hong Kong. Proceedings of SPIE,2000,3995:266-275.
    [10]WONG KY. Instrumentation and health monitoring of cable-supported bridges. Structural Control and Health Monitoring,2004,11(2):91-124.
    [11]强士中.特大跨度桥梁施工及运营阶段智能健康监测与控制技术研究.学术动态(基础科学研究).2004(4):10-16.
    [12]KOH B H, DYKE S. Structural health monitoring for flexible bridge structures using correlation and sensitivity of modal data, Computers and Structures,2007,85(3-4), 117-130.
    [13]CHEUNG M S, NAUMOKSI N. The first smart long span bridge in Canada-Health monitoring of the Confederation Bridge. Proceedings of the First International Workshop on Structural Health Monitoring of Innovative Civil Engineering structures. Manitoba, Canada:2002:
    [14]刘浩吾,谢玲玲,桥梁裂缝监测的光纤传感网络.桥梁建设.2003,2:78-81.
    [15]何旭辉.南京长江大桥结构健康监测及其关键技术研究.中南大学博士学位论文.2004.
    [16]黄方林,王学敏,陈政清,曾储惠,何旭辉.大型桥梁健康监测研究进展.中国铁道科学.2005,26(2):2-7.
    [17]PINES D, AKTAN A E. Status of Structural Health Monitoring of Long-span Bridges in United States. Progress in Structural Engineering and Materials.2002(4):372-380.
    [18]孙鸿敏,李宏男.土木工程结构健康监测研究进展.防灾减灾工程学.2003,23(3):92-98.
    [19]ZHANG Q W, ZHOU Y. Investigation of the applicability of current bridge health monitoring technology. Structure and Infrastructure Engineering.2007,3(2):159-168.
    [20]KO J M, NI Y Q. Technology developments in structural health monitoring of large-scale bridges. Engineering Structures.2005,27(12):1715-1725.
    [21]秦权.桥梁结构的健康监测.中国公路学报.2000,13(2):37-42.
    [22]李亚东.既有桥梁评估初探.桥梁建设.1997,3:18-21.
    [23]谢晓尧.红枫湖大桥健康监测系统关键技术研究,武汉理工大学博士论文,2007.5
    [24]袁万城,崔飞,张启伟.桥梁健康监测与状态评估的研究现状与发展.同济大学学报.1999(2):184-188.
    [25]CAMPOS J, MATOS E, CASAS J R, et al. A new methodology for damage assessment of bridges through instrumentation:application to the Sorraia River Bridge. Structure and Infrastructure Engineering:Maintenance, Management, Life-Cycle Design and Performance.2005,1(4):239-252.
    [26]邹晓光,徐祖恩.大型桥梁健康监测动态及发展趋势.长安大学学报.2003(1):39-42.
    [27]YUN C B, LEE J J, KOO K Y. Smart structure technologies for civil infrastructures in Korea:recent research and applications, Structure and Infrastructure Engineering.2009, 1-16.
    [28]SUNARYO S, YOSHIMASA M. Long span bridge health monitoring system in Japan. Proceedings of SPIE.2001,4337:517-524.
    [29]SHI W Z, KO J M. GIS for Bridge Health Monitoring in Hong Kong. Proceedings of SPIE.2001,4337:314-322.
    [30]苏木标,杜彦良,孙宝臣,陈保平,王新敏.芜湖长江大桥长期健康监测与报警系统研究.铁道学报.2007,29(2):71-76.
    [31]过静珊,戴连君,卢云川.虎门大桥GPS (RTK)实时位移监测方法研究.测绘通报.2000,12:4-12.
    [32]宗周红,孙建林,徐立群,等.下白石大桥健康监测系统的设计与研究.铁道学报.2009,30(5):65-71.
    [33]黄方林,王学敏等.大型桥梁健康检测研究进展.中国铁道科学.2005,2:1-7.
    [34]杨玉东,王浩.大跨桥梁结构健康检测和状态评估研究进度.江苏建筑.2005,2: 18-26.
    [35]董学武,张宇峰,徐宏,等.苏通大桥结构健康监测及安全评价系统简介.桥梁建设.2006,4:71-73.
    [36]张宇峰,徐宏,倪一清.苏通大桥结构健康监测及安全评价系统的研究与设计.市政技术.2005,23(1):62-65.
    [37]赵翔,李爱群,韩晓林,李兆霞.润扬大桥结构健康监测系统传感器测点布置.工业建筑.2005,35(1):82-85.
    [38]武汉阳逻长江公路大桥项目部.光纤光栅桥梁施工控制及健康监测系统在武汉阳逻长江公路大桥上的应用报告.2004.
    [39]胡顺仁,陈伟民,章鹏,黄晓微.重庆菜园坝长江大桥桥梁健康监测系统差错控制技术研究.世界桥梁.2007,4:74-77.
    [40]WAN K T, LEUNG C K Y. Applications of a distributed fiber optic crack sensor for concrete structures, Sensors and Actuators.2007(A135):458-464.
    [41]MEHTA P K, MONTEIRO P J M. Concrete:Microstructure, Properties, and Materials (Third Edition), New York:McGraw-Hill,2005.
    [42]MASO J C (Editor). Interfacial Transition Zone in Concrete (RILEM Report 11), Boca Raton, Florida:CRC Press,1996.
    [43]KAREN L. SCRIVENER, Alison K. Crumbie and Peter Laugesen. The Interfacial Transition Zone (ITZ) Between Cement Paste and Aggregate in Concrete, Interface Science.2004,12:411-421.
    [44]OLLIVIER J P, MASO, J C, BOURDETTE B. Interfacial Transition Zone in Concrete, Journal of Advanced Cement-Based Materials.1995,2(1):30-38,1995.
    [45]水利水电科学研究院.混凝土的强度和破坏译文集.北京:水利出版社,1982.
    [46]于骁中,居襄.混凝土的强度和破坏.水利学报.1983,2:22-35.
    [47]刘刚.高强混凝土的断裂脆性及其增韧减脆措施试验研究.武汉大学硕士论文.2004.
    [48]张华英.C80矿渣高强混凝土的试验研究.西北工业大学硕士论文.2004.
    [49]范广来.锚固荷载的声弹测试技术影响因素分析.重庆交通大学硕士论文.2009.
    [50]过镇海.钢筋混凝土原理.北京:清华大学出版社,1999.
    [51]DAKIN J P. Distributed optical fiber Sensors. Proceeding SPIE,1992,1797:76-108.
    [52]Li H N, Li D S, Song G B. Recent applications of fiber optic sensors to health monitoring in civil engineering. Engineering Structures.2004,26:1647-1657.
    [53]江毅,Leung C K Y.分布式光纤裂缝传感器.压电与声光.2004,26(1):10-12.
    [54]江毅,Leung C K Y.光纤裂缝传感器中裂缝宽度与光纤损耗关系分析.北京理工大学学报.2003,23(5):492-495.
    [55]吴永红.光纤光栅水工渗压传感器封装的结构分析与实验.四川大学博士学位论文. 2003
    [56]刘浩吾,文利,杨朝晖.混凝土裂缝的分布光纤传感试验.全国第七次光纤通信学术会议论文集.1995.
    [57]吴永红,高培伟,蔡海文.大坝裂缝方位对光纤裂缝传感器灵敏性的影响.压电与声光.2007,29(3):258-260.
    [58]丁睿,工程健康监测的分布式光纤传感技术及应用研究.四川大学博士论文.2005.
    [59]丁睿,刘浩吾.分布式光纤传感技术在裂缝检测中的应用.西南交通大学学报.2003,38(6):651-654.
    [60]丁睿,刘浩吾,罗凤林等,分布式光纤传感器裂缝传感模型试验.四川大学学报(工程科学版).2004,36(3):24-27.
    [61]MENDEZ A, MORSE T F, MENDEZ F. Applications of embedded fiber optic sensors in reinforced concrete buildings and structures. SP IE,1992(1170):60-69.
    [62]ROGERS A J. Distributed optical fiber sensors, Journal of Physics D:Applied Physics, 1986,19(3):2237-2255.
    [63]SLOWIK V, SCHLATTNER E, KLINK T. Fiber Bragg grating sensors in concrete technology. LACER,1998(3):109-120.
    [64]IDRISSY R L, KODINDOUMRY M B, KERSEYZ A D. Multiplexed Bragg grating optical fiber sensors for damage evaluation in highway bridges. Smart Material and Structures,1998 (7):209-216.
    [65]HALE K F, HOCKENBULL B S et al. The application of optical fibers for witness devices for the detection of elastic strain and cracking. Rep. Nmi R-2, OT-R-8 006, Natl. Maritime Inst. Feltham, England.
    [66]ROSSI P, LEMAOU F. New method for detecting cracks in concrete using fiber optics, Materials and Structures, Research and Testing (RILEM),22,132(1989):437-442.
    [67]ANSARI F. Real-time monitoring of concrete structures by embedded optical fibers-Proceedings of the ASCE,1992(4):49-59.
    [68]HABEL W R. HILLEMEIER B. Result in monitoring and assessment of damages in large steel and concrete structures by means of fiber optic sensors. SPIE Proc, 1995(2446):25-35.
    [69]VOSS K, WANSER K H. Fiber sensors for monitoring structural strain and cracks, Proc.2nd Euro. Conf. on Smart Structures & Materials, Glasgow,1994.
    [70]ANSARI F. Theory and applications of integrated fiber optic sensors in structures, in intelligent civil engineering materials and structures, edited by Ansari, Maji and Leung, 1997.
    [71]ANSARI F. State-of-the-art in the applications sensors to cementitious composites cement and concrete composites,1997,19:3-19.
    [72]CAROLYN D, WILLIAN M. Crack and damage assessment in concrete and polymer materials using Liquids released internally from hollow optical fibers. SPIE,1996,2718: 448-451.
    [73]LEUNG C K Y, ELVIN N, OLSON N, et al. A novel distributed optical crack sensor for concrete structures, Engineering Fracture Mechanics,2000,133-148.
    [74]WAN K T, LEUNG C K Y. Applications of a distributed fiber optic crack sensor for concrete structures, Sensors and Actuators A,2007,135,458-464.
    [75]陈团结.大跨径钢桥面环氧沥青混凝土铺装裂缝行为研究.东南大学博士论文.2006.
    [76]HUANG S. An approach of state monitoring for smart civil structure. SPIE Proc, 1995(2509):6-12.
    [77]赵廷超,黄尚廉.光纤传感器用于混凝土结构状态检测的研究.传感技术学报.1997,10(3):32-37.
    [78]HUANG S L, HUANG M S, CHEN W M, et al. Distributed fiber optic tensile sensing using backscattering brillouin heterodyne. SPIE,1995(2507):158-161.
    [79]赵廷超,黄尚廉等.光纤传感器用于混凝土结构状态监测的研究,传感技术学报.1997,3:33-37.
    [80]信思金,梁磊,左军.混凝土裂缝监测光纤传感器研究.中国水泥.2005,5:61-62.
    [81]孙曼.光纤Bragg光栅传感技术用于工程结构安全监测的研究.四川大学博士学位论文.2005
    [82]孙曼,植涌,刘浩吾.光纤Bragg光栅传感检测组合结构的断裂损伤.2007,24(1):162-166.
    [83]刘浩吾.混凝土重力坝裂缝观测的光纤传感网络田.水利学报.1999,10:61-64.
    [84]康增云,张林,陈建叶,李桂林.光纤传感技术在沙牌碾压混凝土高拱坝结构模型随机裂缝检测中的应用四川水力发电.2005,24(1):66-80.
    [85]蔡德所,张林.光纤传感技术应用于裂缝监测的研究.中国水利.2001,1:4-5.
    [86]王丹生,吴宁,朱宏平.光纤光栅传感器在桥梁工程中的应用与研究现状.公路交通科技.2004,2:37-39.
    [87]吴智深,施斌,原田隆郎等.可用于结构健康监测的BOTDR光纤变形检出特性试验研究.土木工程学报.2005,38(8):25-30.
    [88]张丹,施斌,吴智深等.BOTDR分布式光纤传感器及其在结构健康监测中的应用.土木工程学报.2003,36(11):95-97.
    [89]张丹,施斌,徐洪钟等.BOTDR用于钢筋混凝土T型梁变形监测的试验研究.东南大学学报(自然科学版).2004,34(4):41-47.
    [90]张丹,施斌,徐洪钟.基于BOTDR的隧道应变监测研究.工程地质学报.2004(4):422-426.
    [91]高俊启,施斌,张巍等.分布式光纤传感器用于桥梁和路面的健康监测.防灾减灾 工程学报.2005,25(1):324-330.
    [92]索文斌,王宝军,施斌等.基于GIS的大型工程分布式光纤传感监测系统研究.水文地质工程地质.2005(4):12-19.
    [93]刘德华,宋牟平,金伟良等.基于布里渊散射的长距离分布式监测网络技术.科学通报.2004,20(5):415-419.
    [94]欧进萍,侯爽,周智等.多段分布式光纤裂缝监测系统及其应用.压电与声光.2007,29(2):144-147.
    [95]刘国海,蒋志佳.基于GA-RBF和不变矩的高压瓷瓶裂缝识别.控制工程.2009,16(5):561-565.
    [96]孙先达.Canny算法在岩心图像边缘检测中应用.长江大学学报(自然科学版).2009,6(2):268-270.
    [97]张宏,英红.沥青路面裂缝图像识别技术研究进展.华东公路.2009,4:81-84.
    [98]张娟,沙爱民,孙朝云等.路面裂缝自动识别的图像增强技术.中外公路.2009,29(4):301-305.
    [99]曹梅丽,徐伟民,邱杏军.像素法及其在裂缝参数测量中的应用.武汉工业学院学报.2009,28(1):72-74.
    [100]耿飞,钱春香.图像分析技术在混凝土塑性收缩裂缝定量测试与评价中的应用研究.东南大学学报(自然科学版).2003.33(6):773-776.
    [101]王静,李鸿琦,刑冬梅等.数字图像相关方法在桥梁裂缝变形观测中的应用.力学季刊.2003.24(4):512-516.
    [102]狄生奎,李慧,杜永峰等.SMA混凝土梁的裂缝监测及自修复.建筑材料学报.2009,12(1):27-31.
    [103]SONG G, MO Y L, OTERO K, et al. Health monitoring and rehabilitation of a concrete structure using intelligent materials, Smart Material Structure.2006,15: 309-314.
    [104]狄生奎,花尉攀,汲生伟等.约束态SMA混凝土梁的裂缝监测及自修复.建筑材料学报.2010,13(2):237-242.
    [105]狄生奎,韩全治,李慧,杨栋.SMA在结构健康监测中的应用研究.低温建筑技术.2008,4:57-60.
    [106]邓安仲,赵启林,李胜波,沈小东,石宏伟.基于导电膜电阻拉—敏效应的混凝土裂缝分布式监测技术.解放军理工大学学报(自然科学版).2010,11(2):162-168.
    [107]陈雪韵,万瑾琳,万新华,邓安仲.基于导电涂料的裂缝自动检测技术.交通工程建设.2005,2:56-60.
    [108]陆剑俊,张雄,江欢.导电涂膜裂缝监测技术的试验研究.建筑材料学报.2006, 9(6):742-745.
    [109]李忠献,刘永光.时域内梁式结构的两阶段裂缝诊断方法.天津大学学报.2007,40(4):381:386.
    [110]刘永光.混凝土等效断裂韧度的计算模式与钢筋混凝土梁裂缝的诊断方法.天津大学博士论文.2007.
    [111]DIMAROGONAS A D. Vibration of cracked structures:a state of the art review. Engineering Fracture Mechanics.1996,55(5):831-857.
    [112]LIU S C, YAO J P. Structural identification concept. Journal of Structural Division, 1978,104(12):1845-1858.
    [113]战家旺,夏禾,姚锦宝.基于模态参数的桥墩结构损伤识别数值研究.中国安全科学学报.2007,17(3):171-175.
    [114]Wang D, Haldar A. System identification with limited observations and without input. Journal of Engineering Mechanics, ASCE,1997,123(5):504-511.
    [115]陈隽.高层建筑损伤检测中的复合反演理论与试验研究.同济大学博士论文.1999.
    [116]刘海滨.钢筋混凝土梁裂缝诊断的智能方法.天津大学硕士论文.2007.
    [117]CHANG C C, CHEN L W. Detection of the location and size of cracks in the multiple cracked beam by spatial wavelet based approach. Mechanical Systems and Signal Processing.2005,19(1):139-155.
    [118]KHIEM N T, LIEN T V. Multi-crack detection for beam by the natural frequencies. Journal of Sound and Vibration.2004,273(1/2):175-184.
    [119]NANDWANA B P, MAITI S K. Modelling of vibration of beam in presence of inclined edge or internal crack for its possible detection based on frequency measurements. Engineering Fracture Mechanics.1997,58(3):193-205.
    [120]PATIL D P, MAITI S K. Experimental verification of a method of detection of multiple cracks in beams based on frequency measurements. Journal of Sound and Vibration, 2005.281(1/2):439-451.
    [121]TIAN J Y, LI Z, SU X Y. Crack detection in beams by wavelet analysis of transient flexural waves. Journal of Sound and Vibration.2003,261(4):715-727.
    [122]KIM J T, STUBBS N. Crack detection in beam-type structures using frequency data. Journal of Sound and Vibration,2003,259(1),145-160.
    [123]LAW S S, LU Z R. Crack identification in beam from dynamic responses. Journal of Sound and Vibration,2005,285(4/5):967-987.
    [124]任宜春,易伟建.基于小波分析的梁裂缝识别研究.计算力学学报.2005,22(4):399-404.
    [125]ISHAK S I, LIU G R, SHANG H M, LIM S P. Non-destructive evaluation of horizontal crack detection in beams using transverse impact. Journal of Sound and Vibration.2002,252(2):343-360.
    [126]LOUTRIDIS S, DOUKA E, TROCHIDIS A. Crack identification in double-cracked beams using wavelet analysis. Journal of Sound and Vibration.2004,277(4/5): 1025-1039.
    [127]王术新,姜哲.裂缝悬臂梁的振动特性及其裂缝参数识别.振动与冲击.2003,22(3):83-85.
    [128]LI B, CHEN X F, MA J X, HE Z J. Detection of crack location and size in structures using wavelet finite element methods. Journal of Sound and Vibration,2005,285(4/5): 767-782.
    [129]李忠献,刘永光.基于遗传神经网络与模态应变能的斜裂缝两阶段诊断方法.工程力学.2008,25(2):9-17.
    [130]ZHOU Z X, ZHANG B N, XIA K W, et al. Smart film for crack monitoring of concrete bridges. Structural Health Monitoring.2011,10(3):275-289.
    [131]ZHANG B N, ZHOU Z X, ZHANG K H, et al. Sensitive skin and the relative sensing system for real-time surface monitoring of crack in civil infrastructure. Journal of Intelligent Material Systems and Structures.2006,17(10):907-917.
    [132]张奔牛,周志祥,李星星,张开洪.机敏膜技术及其在桥梁健康监测工程中的应用.第十八届全国桥梁学术会议论文集(下册).人民交通出版社,2008.
    [133]张奔牛,周志祥,许洲舟.一种用于结构损伤监测的网络传感系统.中国专利:授权专利号(Z1200410063073.1),2009.
    [134]Benniu Zhang, Zhixiang Zhou, Xingxing Li,2010, Crack Monitoring Method and System for Concrete Structure. AutoSoft-Intelligent Automation and Soft Computing, Special Issue:Bridge Health Monitoring and Environmental Protection of Roads Intelligent Automation and Soft Computing,5(16),2010:763-771.
    [135]张奔牛,周志祥,毛成林等.神经网络仿生裂缝传感器.中国专利:ZL200620111072.4,2007.
    [136]张奔牛,周志祥.压电阵列融合机敏网结构裂缝监测系统及监测和安装方法.中国专利:200910103936.6.
    [137]曹建秋.桥梁损伤的神经脉络仿生健康监测系统.西南交通大学硕士学位论文.2006.
    [138]张开洪.基于鱼网传感器的桥梁结构损伤实时监测系统研究.西南师范大学硕士学位论文.2005.
    [139]重庆交通大学.桥梁结构损伤机理与神经网络探索研究报告.2006.
    [140]徐勇,周志祥,张奔牛.混凝土桥梁裂缝仿生监测及工程应用研究.公路交通科技.2011,28(4):73-78.
    [141]XU Yong, ZHOU Zhixiang, ZHANG Benniu. Electrical and mechanical character of smart film for crack monitoring of concrete bridges, IPTC 2010,2010.
    [142]XU Yong, ZHOU Zhixiang, ZHANG Benniu. Application of Bionic Grack Monitoring in Concrete Bridges, Journal of Highway and Transportation Research and development,2012,6(3):44-49.
    [143]张开洪,张奔牛.砼结构裂纹实时监测系统及算法研究.重庆交通大学学报(自然科学版).2007,26(4):36-41.
    [144]闫果,张开洪.桥梁裂缝监测研究与工程应用.重庆交通大学学报.2009,28(5):48-51.
    [145]李星星.斜拉桥混凝土索塔的远程在线裂缝监测系统.重庆交通大学硕士论文.2009.
    [146]毛成林.太平庄大桥结构健康监测系统研究及应用.重庆交通大学硕士论文.2010.
    [147]张旭.基于机敏网的桥梁裂缝监测机理研究.重庆交通大学硕士论文.2012.
    [148]中华人民共和国铁道部.铁路桥涵钢筋混凝土和预应力混凝土结构设计规范TB10002.3-2005.北京:中国铁道出版社,2005.
    [149]中华人民共和国交通部.公路钢筋混凝土及预应力混凝土桥涵设计规范JTGD62-2004.北京:人民交通出版社,2004.
    [150]赵国藩,李树瑶,廖婉卿等.钢筋混凝土结构的裂缝控制.北京:海洋出版社,1991.
    [151]中华人民共和国建设部.混凝土结构设计规范GB50010-2001.北京:中国建筑工业出版社,2002.
    [152]孙汝蛟.光纤光栅传感技术在桥梁健康监测中的应用研究.同济大学博士论文.2007.
    [153]MAJUMDER M, GANGOPADHYAY T K, CHAKRABORTY A K, et al. Fibre Bragg gratings in structural health monitoring-Present status and applications. Sensors and Actuators 2008. A147:150-164
    [154]叶仲韬.分布式光纤裂缝传感系统在混凝土桥梁损伤识别中的应用.西南交通大学硕士论文.2009.
    [155]吴宁祥,谢里阳,由美雁,吴克勤.裂纹检测的结构动力学方法研究进展.机械制造.2006,12:56-60.
    [156]韩大建,王文东.基于振动的结构损伤识别方法的近期研究.华南理工大学学报(自然科学版).2003,31(1):91-96.
    [157][德]F.莱昂哈特著,胡贤章,程积高译.钢筋混凝土结构裂缝与变形的验算.北京:水利电力出版社,1983.
    [158]周志祥.高等钢筋混凝土.北京:人民交通出版社,2002.
    [159]王传志,滕智明.钢筋混凝土结构理论.北京:中国建筑工业出版社,1985.
    [160]过镇海.钢筋混凝土原理.北京:清华大学出版社,1998.
    [161]中华人民共和国建设部.混凝土结构设计规范GBJ10-89,北京:中国建筑工业出版社,1989.
    [162]中华人民共和国建设部.混凝土结构设计规范GB50010-2010,北京:中国建筑工业出版社,2010.
    [163]贡金鑫,魏巍巍,胡家顺.中美欧混凝土结构设计.北京:中国建筑工业出版社,2007.
    [164]Eurocode Committee for Standardization. Eurocode 2:Design of Concrete Structures, EN 1992-1-1:2004.
    [165]中华人民共和国交通部.公路钢筋混凝土及预应力混凝土桥涵设计规范JTG JTJ023-85.北京:人民交通出版社,2004.
    [166]杨志强.混凝土箱梁裂缝成因分析.西南交通大学硕士论文.2005.
    [167]朱华超.预制空心板桥底板纵向开裂原因分析.重庆交通大学硕士论文.2009.
    [168]黄俊斌.混凝土结构的裂缝成因及在整体式斜交板桥中的分析研究.长安大学硕士论文.2004.
    [169]谭晟.高等级公路桥梁空心板开裂原因分析研究.重庆交通大学硕士论文.2008.
    [170]周志祥,张奔牛.结构裂缝仿生监测系统及其监测方法.中国专利:200810069808.X.
    [171]GREENSTEIN B, GREENSTEIN A著,师蔚,王芳茹译.神经科学彩色图谱.北京:世界图书出版公司,2003.
    [172]郭巧.现代机器人学.北京:北京理工大学出版社,1999.
    [173]OCHIAI S, HOJO M, SCHULTE K, et al. A shear-lag approach to the early stage of interfacial failure in the fiber direction in notched two-dimensional unidirectional composites, Composites science and technology,1997,57(7):775-785.
    [174]HASHIN Z. Analysis of orthogonally cracked laminates under tension, Journal of Apply Mechanics, ASME,1987,54:872-879.
    [175]KYOUNG W M, KIM C G, HONG C S, et al. modeling of composite laminates with multiple delaminations under compressive loading, Journal of Composite Materials, 1998,32(10):951-968.
    [176]TAKEDA N, OGIHARA S, SUZUKI S, KOBAYASHI A. Evaluation of microscopic deformation in CFRP laminates with delamination by micro-grid methods, Journal of Composite Materials,1998,32(1):83-100.
    [177]WANG B T, ROGERS C A. Laminate plate theory for spatially distributed induced strain actuators, Journal of Composite materials,1991,25(4):433-452.
    [178]GARRETT K W, BAILEY J E. Multiple transverse fracture in 90°cross-ply laminates of a glass fibre-reinforced polyester, Journal of Materials Science,1977,12(1): 157-168.
    [179]LIM S G, HONG C S, Prediction of transverse cracking and stiffness reduction in cross-ply laminated composites, Journal of Composite Materials,1989,23(7): 695-713.
    [180]LEE J W, DANIEL I M. Progressive Transverse Cracking of Cross ply Composite Laminates, Journal of Composite Materials,1990,24(11):1225-1243.
    [181]SHOJIRO O, MASAKI H, KARL S, BODO F. A shear-lag approach to the early stage of interfacial failure in the fiber direction in notched two-dimensional unidirectional composites, Composites Science and Technology,1997,57(7):775-785.
    [182]ZHANG J, HERRMANN K P. Application of the laminate plate theory to the analysis of symmetric laminates containing a cracked mid-layer, Computational Materials Science,1998,13(1-3):195-210.
    [183]ZHANG J, FAN J, SOUTIS C. Analysis of multiple matrix cracking in [±θm/90n]s composite laminates, Part 1:In-plane stiffness properties, Composites,1992,23(5): 291-298.
    [184]ZhANG J, HERRMANN K P, Stiffness degradation induced by multilayer intralaminar cracking in composite laminates, Composites:Part A,1999,30(5):683-706
    [185]PAGANO N J, Stress fields in composite laminates, International Journal of Solids and Structures,1978,14(5):385-400.
    [186]张奔牛.压电传感器及执行器在智能结构中的变形传递及能量转换.重庆大学硕士论文.2000.
    [187]张奔牛,张俊乾,黄尚廉.层合机敏结构的变形传递和层间应力分析.重庆大学学报(自然科学版).2002,25(2):134-138.
    [188]NACIRI T, EHRLACHER A, CHABOT A. Inter laminar stress analysis with a new Multiparticle modelization of Multilayered Materials (M4), Composites Science and Technology,1998(58):337-343.
    [189]MCCARTNEY L N, Pierse C. Stress transfer mechanics for multiple ply laminates subject to bending(CMMT(A)55), National Physical Laboratory Reports (UK),1997.
    [190]MCCARTNEY L N. Stress transfer mechanics for ply cracks in general symmetric laminates. NPL Report CMMT (A) 50, National Physical Laboratory, Teddington, December 1996.
    [191]MCCARTNEY L N, SAUNDERSON S E T. A recursive method of calculating stress transfer in multiple-ply cross-ply laminates subject to biaxial loading I:Development of model. NPL Report DMM (A) 150, National Physical Laboratory, Teddington, 1995.
    [192]MCCARTNEY L N. Generalised framework for the prediction of ply cracking in any general symmetric laminate subject to general in-plane loading', NPL Report CMMT(A)51, December 1996.
    [193]MCCARTNEY L N, PIERCE C. Stress transfer mechanics for multiple ply laminates for axial loading and bending. in Proc. ICCM-10, Gold Coast, Australia, July 1997.
    [194]YE J Q, SHENG H Y, QIN Q H. A state space finite element for laminated composites with free edges and subjected to transverse and in-plane loads, Computers and Structures,2004,82 (15-16) 1131-1141
    [195]MCCARTNEY L N, SCHOEPPNER G A, BECKER W. Comparison of models for transverse ply cracks in composite laminates, Composites Science and Technology, 2000,60:2347-2359.
    [196]KIM S R, NAIRN J A. Fracture mechanics analysis of coating/substrate systems Part I: Analysis of tensile and bending experiments. Engineering Fracture Mechanics,2000, 65:573-593.
    [197]SMITH P A, OGIN S L. On transverse matrix cracking in cross-ply laminates loaded in simple bending, Composites:Part A,1999,30(8):1003-1008.
    [198]ZHANG D, YE J, LAM D. Ply cracking and stiffness degradation in cross-ply laminates under biaxial extension, bending and thermal loading. Composite Structures, 2006,75(1-4):121-131.
    [199]MCCARTNEY L N. Prediction of ply crack formation and failure in laminates, Composites Science and Technology,2002,62(12):1619-1631.
    [200]ARJYAL B P, GALIOTIS C, OGIN S L, et al. Residual strain and Young's modulus determination in cross-ply composites using an embedded aramid fibre strain sensor, Composites Part A,1998,29A(11):1363-1369.
    [201]KURIAKOSE S, TALREJA R. Variational solutions to stresses in cracked cross-ply laminates under bending, International Journal of Solids and Structures,2004, 41(9-10):2331-2347.
    [202](美)TIMOSHENKO S P, GOODER J N.弹性理论(第3版).清华大学出版社,2004.
    [203]徐芝纶.弹性力学(第4版).北京:高等教育出版社,2006.
    [204]同济大学数学系.高等数学(上册)(第6版).北京:高等教育出版社,2007.
    [205]丁同仁.常微分方程.北京:高等教育出版社,2010.
    [206]刘景麟.常微分算子谱论.北京:科学出版社,2008.
    [207]焦宝聪等.常微分方程.清华大学出版社,2008.
    [208]Hannaby S A. The solution of ordinary differential equations arising from stress transfer mechanics. NPL Report DITC 223/93, National Physical Laboratory, Teddington,1993.
    [209]曹志浩.矩阵特征值问题.上海:上海科学技术出版社,1980.
    [210]方保镕,周继东李医民.矩阵论.北京:清华大学出版社,2004.
    [211]胡康.EISPACK程序包的移植和使用.控制工程.1985,2:12-17.
    [212]SMITH B T, BOYLE J M, DONGARRA J, et al. Matrix eigensystem routines EISPACK guide. Springer-Verlag,1976. Lecture Notes in Computer Science, volume 6, second edition.
    [213]MOLER C B, STEWART G W. An algorithm for generalized matrix eigenvalue problems. SIAM Journal on Numerical Analysis,1973,10(2):241-256.
    [214]郭富印,冯国环,石中岳.FORTRAN算法汇编.北京:国防工业出版社,1982.
    [215]GARBOW B.S. Matrix eigensystem routines-eispack guide extension, Springer-Verlag, 1977 Supplements the 2nd ed. of Matrix Eigensystem Routines, EISPACK Guide.
    [216]VAN LOAN C F. A general matrix eigenvalue algorithm, SIAM Journal on Numerical Analysis,1975,12(6):819-834.
    [217]复旦大学.概率论(第二册数理统计).北京:人民教育出版社,1979.
    [218]潘兴仪.卡方检验在医学科研中的应用.广西医学.2001,23(6):1396-1401.
    [219]卫超.卡方检验在华北地震前的应用.山西地震.2004,4:23-34.
    [220]李明,李广杰,张文,刘慧明,王吉亮,杨静.基于卡方检验法对长白山龙门峰裂隙岩体统计均质区划分.吉林大学学报(地球科学版).2012,42(2):449-453.
    [221]郭跃华.概率论与数理统计.北京:科学出版社,2007.
    [222]陈剑平,王清,肖树芳,刘莹,黄亦群.检验假设分布有效性的岩体工程应用.长春地质学院学报.1996,27(3):332-335.
    [223]张文,陈剑平,刘存合,马建全,张晨.卡方检验在裂隙岩体统计均质区划分中的应用研究.岩土工程学报.2011,31(9):1440-1446.
    [224]JAYNES E T. Information theory and statistical mechanics. Physical Review.1957, 106(4):620-630.
    [225]吴乃龙,袁素云.最大熵方法.长沙:湖南科学技术出版社,1991.
    [226]程亮, 童玲.最大熵原理在测量数据处理中的应用.电子测量与仪器学报.2009,23(1):47-50.
    [227]童玲,陈光卒禹.测量数据处理中的Bayes理论与最大熵方法,电子科技大学学报.2007,36(1):77-79.
    [228]LIEU R, HICKS R B, BLAND C J. Maximum entropy in data analysis with error-carrying constraints. Journal of Physics A:Mathematical and General.1987, 20(9):2379-2388.
    [229]曲英杰,孙光亮,李志敏.最大熵原理及应用.青岛建筑工程学院学报.1996,17(2):94-100.
    [230]朱坚民,郭冰菁,王中宇,夏新涛.基于最大熵方法的测量结果估计及测量不确定度评定.电测与仪表.2005,42(8):5-8.
    [231]俞礼军,严海,严宝杰.最大熵原理在交通流统计分布模型中的应用.交通运输工程学报.2001,1(3):91-94.
    [232]四川省交通厅公路规划勘察设计研究院.国道主干线重庆~湛江公路(重庆境)上桥至界石段马桑溪大桥施工图设计文件.1998.