复合结构光子晶体的制备与性质
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
具有掺杂等复合结构,是三维光子晶体从简单材料走向复杂器件的重要一步。通过具有掺杂态的光子带隙来改变荧光发射,得到特定波长的荧光光谱窄化,对在微/纳米尺度体系内获得激光发射或类激光发射具有重要理论意义。空心微球组成的光子晶体,通过液体渗入来调节光子晶体的带隙波长和强度,可通过光子带隙波长和强度的改变来表征液体折光率变化。
     本文利用多层光子晶体的复合光子带隙,得到荧光光谱的窄化效应,并可以有效地对荧光发射光谱进行修饰。在有效改进光子带隙对荧光发射的整体抑制作用后,期望能够在此体系内获得类激光发射。
     通过将相同尺寸、不同折光率的微球组装在一起,单一地获得介电常数掺杂的三维光子晶体,从而清晰肯定地确认掺杂状态为给体掺杂还是受体掺杂,并通过对应光子带隙中缺陷态的位置,为进一步理论分析缺陷态和掺杂状态的关系奠定基础。
     利用二氧化硅致密空心球来有效降低光子晶体的有效折光率,在通过液体渗入调节光子带隙的过程中,有效实现光学结构从蛋白石向反蛋白石结构的反转,从而在调节光子带隙波长位置的同时,大幅提高了光子带隙的强度,更加有利于光子晶体带隙的调控。
Photonic crystals,namely photonic bandgap materials,are artificially arranged periodic electromagnetic structure in optical wavelength scale. Due to the periodic modulation of the refraction index, they possess photonic band gaps that inhibit the existence of light in certain frequency ranges, which is analogous to what the semiconductor do to the electrons. In the last decade, photonic crystals have been a rapidly developing field because of their novel optical properties and important potential applications. It also does not present the complete photonic bandgap(PBG) owing to the low rwfractive index(RI) and low RI contrast of the components. To realize the complete PBD and to rich the propertiea of PCs, an effective route is to mix of different materials into the three-dimensional (3D) ordered structures. There are two main ways to make the composites: by synethesizing composite spheres prior to buliding the PCs(so-called as bottom-up route) or by synthesing new materials in or around the pores of an assemble opal (so-called as top-down route).This dissertation focouses on multilayer photonic crystal for spectral narrowing of emission, inverse opal-like crystal of liquids and refractive index doping of photonic crystals.
     A quaternary system, consisting of air, an air-core/dense-silica-shell core-shell particle, and liquids has been used to fabricate an inverted opal structure with low fill factor, high refractive index contrast and reversible tuning capabilities of the bandgap spectral position. The original close-packed opal structure is a ternary self-assembled photonic crystal from monodisperse and spherical polystyrene-core/silica-shell colloidal particles with air as the void material. Calcination removed the polystyrene and converted the core-shell particles to hollow spheres with a dense shell. In a final step, liquid is infiltrated only in the voids between the hollow spheres, but does not penetrate in the shell. This allows facile and reversible tuning of the bandgap properties in an inverted opal structure.
     Multilayer colloidal crystal has been prepared by the layer-by-layer deposition of silica microspheres on a glass slide. Each layer is a slab consisting of a fcc close-packed colloidal arrays. By properly choosing the sizes of spheres, the whole spectral feature of multilayer colloidal crystal can be tuned. Here, we engineered a multilayer superlattice structure with an effective passband between two stop bands.This gives a strong narrowing effect on emission spectrum. With the stop bands at the shortwave and longwave edges of emission spectrum, the passband in the central wavelength region can be regarded as a strong decrease of suppression effect and enhancement of a narrow wavelength region of emission. The spectral narrowing modification effect of suitably engineered colloidal crystals shows up their importance in potential application as optical filters and lasing devices.
     One of the structures that can be fabricated using heterostructure is obtained by inserting a low-band-gap semiconductor between two higher-gap materials.In face, it has destroied face-centered cubic(FCC) structure of photonic crystals,and can not prove the theory about the defect.We choose silica hollow spheres as defect inserting colloid crystals, which have different dielectric constant with silica spheres. By successively depositing a multilayer crystal using convective self- assembly and then deposition a single layer using Langmuir-Blodgett(LB) technique and, finally, again depositing a multilayer ,we succeeded in introducing a microcavity into a self-assembled crystal. There are obviously stopband in spectrum.
引文
[1]Yablonovitch E. Inhibited spontaneous emission in solid state physics and electronics [J]. Phys.Rev.Lett. 1987,58(20),2059
    [2]John S. Strong localization of photons in certain disordered dielectric superlattices [J]. Phys.Rev.Lett. 1987,58(23),2486-2489
    [3]http://nano.nchc.org.tw/photonic/ch1.php
    [4] Yablonovitch E. Photonic band-gap structures[J]. J. Opt. Soc. Am. B. 1993,10, 283-295
    [5] Ho K. M., Chan C. T., Soukoulis C. M. Existance of a Photonic Gap in Periodic Dielectric Structure[J]. Phys.Rev.Lett.1990,65(25):3152-3155
    [6] Joannopoulos D., Villeneuve P. R ., Fan S. An Introduction to Photonic Crystals[J]. Nature1997,386:143-149
    [7] Tarasishin A.V., Magnitskii S. A. Constructing a light-field distribution for the laser guiding of atoms in photonic crystals[J]. Optics Commun. 2000,184,391
    [8]贾正根,光学新技术[J].半导体情报,2001,38,24
    [9]许吉英,王佳,田芊.光子晶体的光学特性与近场光学测量表征,光学技术2003,29,8
    [10] Yablonovitch E. Photonic bandgap structures[J]. J. Opt. Soc. Am. B, 1993,10:283-302.
    [11] Fink Y., Winn J. N., Fan S., et al. A dielectric omnidirectional reflector[J]. Science,1998,282(5394):1679-1682
    [12]Yablonovith E. Photonic Band Gap and Localization[J]. Phys.Rev.Lett.1989,63,1950
    [13] Deubel M.,Von Freymann G., et al, Direct laser writing of three-dimensional photonic-crystal templates for telecommunications[J]. Nature Mater. 2004, 3(7):444-447
    [14] Miklyaev Yu. V., Meisel D. C., et al. Three-dimensional face-centered cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations[J]. Appl. Phys. Lett, 2003,82(8):1284-1286
    [15] Ozbay E.. Layer-by-layer photonic crystals from microwave to far-infrared frequencies[J]. J. Opt. Soc. Am. B, 1996, 13(9):1945-1955
    [16]刘素兰,章俞之,胡行方.光子晶体的能带结构、潜在应用和制备方法[J].无机材料学报,2001,16(2):193-199
    [17] Tarhan I. I., Watson G. H. Photonic B and Structure of fcc Colloidal Crystals[J]. Phys Rev Lett , 1996, 76:315-318
    [18] Pradhan R. D., Bloodgood J. A. Photonic band structure of fcc colloidal crystals[J]. Phys Rev B, 1997, 55:9503-9507
    [19] Bartlet P., Ottewill R. H., Pusey P. N. Superlattice formation in binary mixtures of hard-sphere colloids[J]. Phys Rev Lett, 1992, 68:3 801-3804
    [20] Schilling J., Mueller F., Matthias S., et al. Three-dimensional photonic crystals based on macroporous silicon with modulated pore diameter[J]. Appl. Phys. Lett., 2001, 78:1180-1182
    [21] Leonard S. W. Complete three-dimensional band gap in macroporous silicon photonic crystals[J]. Appl. Phys. Lett., 2002, 81:2917-2919
    [22] Chelnokov A., Wang K., Rowson S., et al. Organic electroluminescent devices by high-temperature processing and crystalline hole transporting layer[J]. Appl. Phys. Lett., 2000, 77:2943-2945
    [23] Dong W., Bongard H. J., Marlow F. New type of inverse opals: titania with skeleton structure[J]. Chem. Mater., 2003, 15:568-574
    [24] St?ber W., Fink A., Bohn E. Controlled growth of monodisperse silica spheres in the micron size range[J]. Colloid. Interface Sci., 1968, 26:62-69
    [25] Goodwin J. W., Ottewill R. H., Pelton R. Studies on the preparation and characterization of monodisperse polystyrene latices V.: The preparation of cationic latices[J]. Colloid Polym. Sci., 1979, 257:61-69
    [26] Jeong U., Wang Y., Ibisate M., et al. Some New Developments in the Synthesis, Functionalization, and Utilization of Monodisperse Colloidal Spheres[J]. Adv. Funct. Mater., 2005, 15:1907-1921
    [27] Xia Y., Gates B., Yin Y., et al. Monodispersed colloidal spheres: old materials with new applications[J]. Adv. Mater., 2000, 12:693-713
    [28] Robbins M. O., Kremer K., Grest G. S. Phase diagram and dynamics of Yukawa systems[J]. Chem. Phys., 1988, 88:3286-3312
    [29] Versmold H., Lindner P. Reinterpretation of Small-Angle Neutron-Scattering Studies on Ordered Colloid Dispersions[J]. Langmuir, 1994, 10:3043-3045
    [30] Denkov N., Velev O., Kralchevski P., et al. Mechanism of formation of two-dimensional crystals from latex particles on substrates[J]. Langmuir, 1992, 8:3183-3190
    [31] Denkov N. D., Velev O. D., Kralchevsky P. A., et al. Two-dimensional crystallization[J]. Nature, 1993, 361:26-26
    [32] Yang S. M., Míguez H., Ozin G. A. Opal Circuits of Light - Planarized Microphotonic Crystal Chips[J]. Adv. Funct. Mater., 2002, 12:425-431
    [33] Vlasov Y. A., Bo X -Z, Sturm J. C. On-chip natural assembly of silicon photonic bandgap crystals[J]. Nature, 2001, 414:289-293
    [34] Kitaev V., Ozin G. A. Self-Assembled Surface Patterns of Binary Colloidal Crystals[J]. Adv. Mater. 2003, 15:75-78.
    [35] Wong S., Kitaev V., Ozin G. A. Colloidal Crystal Films: Advances in Universality and Perfection[J]. J. Am. Chem. Soc. 2003, 125:15589-15598
    [36] Gu Z -Z, Fujishima A., Sato O. Fabrication of High-Quality Opal Films with Controllable Thickness[J]. Chem. Mater.,2002, 14:760-765
    [37] Egen M., Voss R., Griesebock B. Heterostructures of Polymer Photonic Crystal Films[J]. Chem. Mater., 2003, 15:3786-3792
    [38] Dimitrov A. S., Nagayama K. Continuous Convective Assembling of Fine Particles into Two-Dimensional Arrays on Solid Surfaces[J]. Langmuir, 1996, 12:1303-1311
    [39] Kim M. H., Im S. H., Park O. O. Rapid Fabrication of Two- and Three-Dimensional Colloidal Crystal Films via Confined Convective Assembly[J]. Adv. Funct. Mater., 2005, 15:1329-1335
    [40] Reculusa S., Ravaine S. Synthesis of Colloidal Crystals of Controllable Thickness through the Langmuir-Blodgett Technique[J]. Chem. Mater., 2003, 15:598-605
    [41] Holgado M., Santamaría F. G., Blanco A. Electrophoretic Deposition To Control Artificial Opal Growth[J]. Langmuir, 1999, 15:4701-4704
    [42] Vickreva O., Kalinina O., Kumacheva E. Colloid Crystal Growth under Oscillatory Shear[J]. Adv. Mater., 2000, 12:110-112
    [43] Holland B. T., Blanford C. F., Do T., et al. Synthesis of Highly Ordered, Three-Dimensional, Macroporous Structures of Amorphous or Crystalline Inorganic Oxides, Phosphates, and Hybrid Composites[J]. Chem. Mater., 1999, 11:795-805
    [44] Zahn K., Lenke R., Maret G. Two-Stage Melting of Paramagnetic Colloidal Crystals in Two Dimensions[J]. Phys. Rev. Lett., 1999, 82:2721-2724
    [45] Xu X., Friedman G., Humfeld K. D., et al. Superparamagnetic Photonic Crystals[J]. Adv. Mater., 2001, 13:1681-1684
    [46] Sacanna S., Philipse A. P. Preparation and Properties of Monodisperse Latex Spheres with Controlled Magnetic Moment for Field-Induced Colloidal Crystallization and (Dipolar) Chain Formation[J]. Langmuir, 2006, 22:10209-10216
    [47] Russel W. B. Condensed-matter physicsTunable colloidal crystals[J]. Nature, 2003, 421:490-491
    [48] Park S. H., Xia Y. Assembly of Mesoscale Particles over Large Areas and Its Application in Fabricating Tunable Optical Filters[J]. Langmuir, 1999, 15:266-273
    [49] Fulda K.U.,Tieke B. Langmuir films of monodisperse 0.5μm spherical polymer particles with a hydrophobic core and a hydrophilic shell. Adv Mater., 1994, 6, 288.
    [50] Bardosova M., Hodge P., Pach J ., Pemble M.E., Smatko V., Tredgold R.H., Whitehead D. Synthetic opals made by the Langmuir–Blodgett method. Thin SolidFilms, 2003, 437, 276
    [51] Im S.H., Lim Y.T., Suh D.J., Park O.O. Three-Dimensional Self-Assembly of Colloids at a Water-Air Interface: A Novel Technique for the Fabrication of Photonic Bandgap Crystals[J]. Adv.Mater, 2002, 14, 1367.
    [52] Denkov N.D., Velev P.D., Kralchevsky P.A., Ivanov I.B., Yoshimura H., Nagayama K., Mechanism of formation of two-dimensional crystals from latex particles on substrates[J]. Langmuir, 1992, 8, 3183.
    [53] Jiang P., Bertone J.F., Hwang K.S., Colvin V .L. Single-Crystal Colloidal Multilayers of Controlled Thickness[J]. Chem. Mater., 1999, 11, 2132.
    [54] Jiang P., Ostojic G.N., Narat R., Mittleman D.M., Colvin V.L. The Fabrication and Bandgap Engineering of Photonic Multilayers[J]. Adv. Mater., 2001, 13, 389.
    [55] Vlasov Y.A., Bo X.Z., Sturm J.C., Norris D.J. On-chip natural assembly of silicon photonic bandgap crystals[J]. Nature, 2001, 414, 289.
    [56] Wostyn K., Zhao Y., Schaetzen G., Hellemans, Matsuda N., Clays K., Persoons A .. Insertion of a Two-Dimensional Cavity into a Self-Assembled Colloidal Crystal[J]. Langmuir, 2003, 19, 4465.
    [57] Velikov K.P., Christova C.G., Dullens R.P.A. Layer-by-Layer Growth of Binary Colloidal Crystals[J]. Science, 2002, 296, 106.
    [58] Reynold A.,Lopez-Tejeira F.,Cassagne D.,Garcia-Vidal F. J., Jouanin C. and Sanchez-Dehesa J. Spectral properties of opalbased photonic crystals having a SiO2 matrix[J]. Phys.Rev.B,1990,60:11422
    [59] Ha Y.H., Vaia R.A. Three-Dimensional Network Photonic Crystals via Cyclic Size Reduction/Infiltration of Sea Urchin[J]. Adv. Mater.,2004,16:1091
    [60] Blanco A, Chomski E, Grabtchak S, et al. Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres[J]. Nature, 2000, 405:437-440
    [61] Miguez H, Meseguer F, López C, et al. Germanium FCC Structure from a Colloidal Crystal Template[J]. Langmuir, 2000, 16:4405-4408
    [62] Míguez H, Chomski E, Santamaría F G, et al. Photonic Bandgap Engineering in Germanium Inverse Opals by Chemical Vapor Deposition[J]. Adv. Mater., 2001, 13:1634-1637
    [63] Zakhidov A A, Baughman R H, Iqbal Z, et al. Carbon Structures with Three-Dimensional Periodicity at Optical Wavelengths[J]. Science, 1998, 282:897-901
    [64] Müller M, Zentel R, Maka T, et al. Photonic Crystal Films with High Refractive Index[J]. Adv. Mater., 2000, 12:1499-1503
    [65] Rugge A, Becker J S, Gordon R G, et al. Tungsten Nitride Inverse Opals by Atomic Layer Deposition[J]. Nano Lett., 2003, 3:1293-1297
    [95] King J S, Neff C W, Summers C J, et al. High-filling-fraction inverted ZnS opals fabricated by atomic layer deposition[J]. Appl. Phys. Lett., 2003, 83:2566-2568
    [67] King J S, Graugnard E, Roche O M, et al. Infiltration and Inversion of Holographically Defined Polymer Photonic Crystal Templates by Atomic Layer Deposition[J]. Adv. Mater., 2006, 18:1561-1565
    [68] Sechrist Z A, Schwartz B T, Lee J H, et al. Modification of Opal Photonic Crystals Using Al2O3 Atomic Layer Deposition[J]. Chem. Mater., 2006, 18:3562-3570
    [69] Graugnard E, Chawla V, Lorang D, et al. High filling fraction gallium phosphide inverse opals by atomic layer deposition[J]. Appl. Phys. Lett., 2006, 89:211102
    [70] Braun P V, Zehner R W, White C A, et al. Europhys. Lett., 2001, 56:207-213
    [71] Bogomolov V N, Sorokin L M, Kurdyukov D A, et al. A comparative TEM study of the 3D lattice of tellurium nanoclusters fabricated by different techniques in an opal host[J]. Phys. Solid State , 1997, 9:1869-1874
    [72] Holland B T, Blanford C F, Stein A. Synthesis of Macroporous Minerals with Highly Ordered Three-Dimensional Arrays of Spheroidal Voids[J]. Science, 1998,281:538-540
    [73] Blanford C F, Yan H, Schroden R C, et al. Gems of Chemistry and Physics: Macroporous Metal Oxides with 3D Order[J]. Adv. Mater., 2001, 13:401-407
    [74] Yan H, Blanford C F, Holland B T, et al. A Chemical Synthesis of Periodic Macroporous NiO and Metallic Ni[J]. Adv. Mater., 1999, 11:1003-1006
    [75] Jiang P, Hwang K S, Mittleman D M, et al. Template-Directed Preparation of Macroporous Polymers with Oriented and Crystalline Arrays of Voids[J]. J. Am. Chem. Soc., 1999, 121:11630-11637
    [76] Park S H, Xia Y. Macroporous Membranes with Highly Ordered and Three-Dimensionally Interconnected Spherical Pores[J]. Adv. Mater., 1998, 10:1045-1048
    [77] Han S, Briseno A L, Shi X, et al. Polyelectrolyte-Coated Nanosphere Lithographic Patterning of Surfaces: Fabrication and Characterization of Electropolymerized Thin Polyaniline Honeycomb Films[J]. J. Phys. Chem. B, 2002, 106:6465-6472
    [78] Braun P V, Wiltzius P. Microporous materialsElectrochemically grown photonic crystals[J]. Nature, 1999, 402:603-604
    [79] Braun P V, Wiltzius P. Electrochemical Fabrication of 3D Microperiodic Porous Materials[J]. Adv. Mater., 2001, 13:482-485
    [80]J.S.King,C.W.Neff,C.J.Summers,W.Park,S.Blomquist,E.Forsythe and D.Morton. High-filling-fraction inverted ZnS opals fabricated byatomic layer deposition[J]. Appl.Phys.Lett.,2003,83:2566
    [81] Mizeikis, V., Juodkazis, S., Marcinkevicius, A., Matsuo, S., Misawa, H. J. Tailoring and characterization of photonic crystals[J]. Photochem. & Photobio. C 2001, 2, 35
    [82] Vos, W. L., Megens, M., van Kats, C. M., B?secke, P. J. Transmission and diffraction by photonic colloidal crystals. Phys: Condens. Matter 1996,8,9503
    [83]陈凯,盛秋琴,韩军等.光子晶体及其应用研究[J].光电子技术,2003, 23(1):16-23
    [84]王文军,董鹏,郎丰法.光子晶体的制备及其应用[J].聊城大学学报(自然科学版) ,2003, 16(1):14-18
    [85]Brown E. R., Parker C. D., Yablonovitch R. Radiation properties of a planar antenna on a photonic crystal substrate[J]. J Opt Soc, 1993, 10(2):404-407
    [86]Gupta S., Tutle G., Sigalas M., et al. Infrared filters using metallic photonic band gap structures on flexible substrates[J]. Appl Phys Lett, 1997, 71, (17):24 12-2414
    [87]Lei X. Y., Li H., Ding F., et a l. Novel application of a perturbed photonic crystal: High- quality filter[J]. Appl Phys Lett, 1997, 71 (20):2889-2891
    [88]欧阳征标,李景镇光子晶体的研究进展[J].激光杂志,2000,21(2):4-6
    [89]Trull J.,Martorell J., Vilaseca R. Angular dependence of phase matched second harmonic generation in a photonic crystal[J]. J Opt Soc Am, 1998, 15(10):2581-258
    [90] Yan Q., Zhao X. S., Zhou Z. Fabrication of colloidal crystal heterost ructues using a horizontal deposition method[J]. J Crystal Growth , 2006 , 288 :205
    [91] Romanov S. G., Sotomayor T. C. M., Ye J., et al. Light propagation in triple-film hetero-opals[J]. Progress in Solid State Chem , 2005 , 33 : 279
    [92] Deubel M., Wegener M., Linden S., et al. 3D-2D-3D photonic crystal heterost ructures fabricated by direct laser writing[J]. Optic Lett , 2006 , 31 : 805
    [93] Jonsson F., Clivia M., Sotomayor T., et al. Artificially inscribed defects in opal photonic crystals[J]. Microelectronic Eng, 2005 , 78279 : 429
    [94] Yan Q. , Zhou Z. , Zhao X. S. Introduction of three-dimensional extrinsic defect s into colloidal photonic crystals[J]. Chem Mater , 2005 , 17 : 3069
    [95] Imada M. , Lee L. H., Okano M., et al. Development of three-dimensional photonic-crystal waveguides at optical-communication wavelengths[J]. Appl Phys Lett , 2006 , 88 : 171107
    [96] Zhong Y. C., Zhu S. A., Su H. M., et al. Photonic crystal with diamond likestructure fabricated by holographic lithography[J]. Appl Phys Lett , 2005 , 87 : 061103
    [97] Hiromi M., Soshu K., Yoshinari M. Fabrication of three-dimensional ceramic photonic crystals and their electromagnetic properties[J]. J Eur Ceram Soc , 2006 ,26 : 2195
    [98] Markus D. , Georgvon F. , Martin W. , et al. Direct laser writing of three-dimensional photonic-crystal templates for telecommunications[J]. Nature Mater , 2004 , 3 :444
    [99] Sean W., Markus D., Sajeev J. , et al. Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses[J]. Adv Mater , 2006 , 18 :265
    [100] Nicolas T. , Georg von F. , Markus D., et al. New route to three-dimensional phtotnic bandgap materials : silicon double inversion of polymer templates[J]. Adv Mater , 2006 , 18 :457
    [101] Chan Y., Zimmer J. P., Stroh M., et al. Incorporation of luminescent nanocrystals into monodisperse core-shell silica microspheres[J]. Adv Mater, 2004, 16:2092
    [102] Ian D. H., Chekesha M. L. Homogeneous, core-shell, and hollow-shell ZnS colloid-based photonic crystals[J]. Langmuir, 2007, 23:2892
    [103] Unyong J., et al. Monodispersed spherical colloids of Se@CdSe: synthesis and use as building blocks in fabricating photonic crystals[J]. Nano Lett, 2005, 5(5):937
    [104] Rogach A., Susha A., Caruso F., et al. Nano and microengineering: There dimensional colloidal photonic crystals prepared from submicrometer-sized polystyrene latex sphere pre-coated with luminescent polyelectrolyte/nanocrystal shells[J]. Adv Mater, 2000, 12:333
    [105] Kyungkon K., Scott W., Nicole L., et al.Luminescent core-shell photonic crystals from poly(phenyleneethynylene) coated silica spheres[J]. Langmuir, 2005,2:5207
    [106] Pankova S. V., Poborchii V. V., Solovev V. G. The giant dielectric-constant of opal containing sodium-nitrate nanoparticles[J]. J Phys Condens Mater, 1996, 8:203
    [107] Miguez H., Meseguer F., Lopez C., et al. Synthesis and photonic bandgap characterization of polymer inverse opal[J]. Adv Mater, 2001, 13(6):393
    [108] Jiang P., Jane F. B., Vicki L. Colvin. A lost-wax approach to monodisperse colloids and their crystals[J]. Science, 2001, 291:453
    [109] Rick C S., et al. Optical properties of inverse opal photonic crystals[J]. Chem Mater, 2002, 14:3305
    [110] Wang J., Li Q., Wolfgang K., et al. Preparation of multilayered trimodal colloid crystals and binary inverse opals[J]. J Am Chem Soc, 2006, 128:15606
    [111] Velev O. D., Tessier P. M., Lenhoff A. M. A class of porous metallic nano structures[J]. Nature, 1999, 401:548
    [112] Lin Y., Zhang J., et al. Photonic pseudo-gap-based modification of photoluminescence from CdS nanocrystal satellites around polymer microspheres in a photonic crystal[J]. App Phys Lett, 2002, 81(17):3134
    [113] Solovyev V. G., Romanov S. G., et al. Modification of the spontaneous emission of CdTe nanocrystals in TiO2 inverted opals[J]. J Appl Phys, 2003, 94(2):1205
    [114]Hohz J. H., Asher, S. A. Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials[J]. Nature 1997,389,829.
    [115] Kamenjicki M., Lednev I. K., Asher S. A. Photoresponsive Azobenzene Photonic Crystals[J]. J. Phys. Chem. B 2004, 108, 12637-12639
    [116] Kamenjicki M., Asher S. A. Photochemically Controlled Cross-Linking in Polymerized Crystalline Colloidal Array Photonic Crystals[J]. Macromolecules 2004, 37, 8293-8296
    [117] Gu Z. Z., Hayam S., Meng Q. B., Iyoda T., Fujishima A., Sato O., Control ofPhotonic Band Structure by MolecularAggregates[J]. J. Am. Chem. Soc. 2000, 122, 10730-10731
    [118] Gu Z. Z., Iyoda T., Fujishima A., Sato O., Photo-Reversible Regulation of Optical Stop Bands[J]. Adv. Mater. 2001, 13, 1295
    [119] Kubo S., Gu, Z. Z., Takahashi K., Ohko Y., Sato O.,Fujishima A., Control of the Optical Band Structure of Liquid Crystal Infiltrated Inverse Opal by a Photoinduced Nematic-Isotropic Phase Transition[J]. J. Am. Chem. Soc. 2002, 124, 10950-10951
    [120]Xu X., Friedman G., Humfeld K. D., Majetich S. A., Asher S.A.,Superparamagnetic Photonic Crystals[J]. Adv. Mater. 2001, 13, 1681
    [121] Xu X., Friedman G., Humfeld K. D., Majetich S. A., Asher S. A., Synthesis and Utilization of Monodisperse Superparamagnetic Colloidal Particles for Magnetically Controllable Photonic Crystals[J]. Chem. Mater. 2002, 14, 1249-1256
    [122] Xu X., Majetich S. A., Asher S. A.,Mesoscopic Monodisperse Ferromagnetic Colloids Enable Magnetically Controlled Photonic Crystals[J]. J. Am. Chem. Soc. 2002, 124, 13864-13868
    [123] Gates B., Xia Y., Photonic Crystals That Can Be Addressed with an External Magnetic Field[J]. Adv. Mater. 2001, 13, 1605
    [124] Golosovsky M., Neve-Oz Y., Davidov D. Magnetic-field-tunable photonic stop band in a three-dimensional array of conducting spheres[J]. Phys. Rev. B 71, 195105
    [125] Hohz J. H., Asher S. A. Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials[J]. Nature 1997,389,829
    [126] Asher S. A., Sharma A. C., Goponenko A.V., Ward M. M. Photonic crystal aqueous metal cation sensing materials[J]. Anal. Chem. 2003,75,1676
    [127] Reese C. E., Mikhonin A. V., Kamenjicki M., Tikhonov A., Asher S. A. Nanogel Nanosecond Photonic Crystal Optical Switching[J]. J. Am. Chem. Soc. 2004, 126, 1493-1496
    [128] Jeong ,U., Xia, Y., Photonic Crystals with Thermally Switchable Stop Bands Fabricated from Se@Ag2Se Spherical Colloids[J]. Angew. Chem. Int. Ed. 2005, 44, 3099–3103
    [129] Osuji, C., Chao, C., Bita, I., Ober, C. K., Thomas, E. L. Temperature-Dependent Photonic Bandgap in a Self-Assembled Hydrogen-Bonded Liquid-Crystalline Diblock Copolymer[J]. Adv. Funct. Mater. 2002,12,753
    [130] Weiss, S. M., Haurylau, M., Fauchet, P. M. Tunable photonic bandgap structures for optical interconnects[J]. Optical Materials 27 (2005) 740–744
    [131] Gu, Z. Z., Fujishima, A., Sato, O. Photochemically Tunable Colloidal Crystals[J]. J. Am. Chem. Soc. 2000, 122, 12387-12388
    [132] Kubo, S., Gu, Z. Z., Takahashi, K., Fujishima, A.,Segawa, H., Sato, O. Tunable Photonic Band Gap Crystals Based on a Liquid Crystal-Infiltrated Inverse Opal Structure[J]. J. Am. Chem. Soc. 2004, 126, 8314-8319
    [133] Kubo, S., Gu, Z. Z., Takahashi, K., Fujishima, A., Segawa, H., Sato, O. Control of the Optical Properties of Liquid Crystal-Infiltrated Inverse Opal Structures Using Photo Irradiation and/or an Electric Field[J]. Chem. Mater. 2005, 17, 2298-2309
    [134] Furumi, S., Yokoyama, S., Otomo, A., Mashiko, S. Control of photonic bandgaps in chiral liquid crystals for distributed feedback effect[J]. Thin Solid Films 499 (2006) 322– 328
    [135] Lee, K., Asher, S. A. Photonic Crystal Chemical Sensors: pH and Ionic Strength[J]. J. Am. Chem. Soc. 2000, 122, 9534-9537
    [136] Lee, Y., Braun, P. V. Tunable Inverse Opal Hydrogel pH Sensors[J]. Adv. Mater.2003,15,563.
    [137] Dong, J., Qian, W. Dye/Gelled Colloidal Photonic Crystal Composites and Their Reversible pH-Responsive Optical Behaviors[J]. J. Phys. Chem. B 2006,110,16823
    [138] Blanford, C. F. Schroden, R. C. Al-Daous, M., Stein A. TuningSolvent-Dependent Color Changes of Three-Dimensionally Ordered Macroporous (3DOM) Materials Through Compositional and Geometric Modifications[J]. Adv. Mater. 2001, 13, 26
    [139] Nishimura, S., Fabrication technique for filling-factor tunable titanium dioxide colloidal crystal replicas[J]. Appl. Phys. Lett., 81, 4532
    [140] Fudouzi, H., Xia, Y. Colloidal Crystals with Tunable Colors and Their Use as Photonic Papers[J]. Langmuir 2003, 19, 9653-9660
    [141] Li, J., Huang, W., Wang, Z., Han, Y. A reversibly tunable colloidal photonic crystal via the infiltrated solvent liquid–solid phase transition[J]. Colloids and Surfaces A:(2007) 130–134
    [142] Holtz, J. H., Asher, S. A. Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials[J]. Nature 1997,389,829
    [143] Asher, S. A., Sharma, A. C., Goponenko, A. V., Ward, M. M. Photonic Crystal Aqueous Metal Cation Sensing Materials[J]. Anal. Chem. 2003, 75, 1676-1683
    [144] Reese, C. E., Asher, S. A. Photonic Crystal Optrode Sensor for Detection of Pb2+ in High Ionic Strength Environments[J]. Anal. Chem. 2003, 75, 3915-3918
    [145] Su-Lan, K., Bader, G., Ashrita, P. V., Tunable electrochromic photonic crystals[J]. Appl. Phys. Lett. 2005, 86, 221110
    [146] Arsenault, A.C., Miguez, H., Kitaev, V., Ozin, G. A., Manners, I. A Polychromic, Fast Response Metallopolymer Gel Photonic Crystal with Solvent and Redox Tunability: A Step Towards Photonic Ink (P-Ink) [J]. Adv. Mater. 2003,15,503
    [147] Asher, S. A., Alexeev, V. L., Goponenko, A. V., Sharma, A. C., Lednev, I. K., Wilcox, C. S., Finegold, D. N. Photonic Crystal Carbohydrate Sensors: Low Ionic Strength Sugar Sensing[J]. J. Am. Chem. Soc. 2003, 125, 3322-3329
    [148] Nakayama, D., Takeoka, Y., Watanabe, M., Kataoka, K., Simple and PrecisePreparation of a Porous Gel for a Colorimetric Glucose Sensor by a Templating Technique[J]. Angew. Chem. Int. Ed. 2003, 42, 4197–4200
    [149] Lee, Y., Pruzinsky, S. A., Braun, P. V., Glucose-Sensitive Inverse Opal Hydrogels: Analysis of Optical Diffraction Response[J]. Langmuir 2004, 20, 3096-3106
    [150] Iwayama, Y., Yamanaka, J., Takiguchi, Y.,Takasaka,,M., Ito, K., Shinohara, T., Sawada, T.,Yonese, M., Optically Tunable Gelled Photonic Crystal Covering Almost the Entire Visible Light Wavelength Region[J]. Langmuir 2003, 19, 977
    [151] Li, J., Wu, Y., Fu, J., Cong, Y., Peng, J., Han, Y. Reversibly strain-tunable elastomeric photonic crystals[J]. Chem. Phys. Lett. 390 (2004) 285–289
    [152]Lawrence, J. R. Shim, G. H., Jiang, P., Han, M. G., Ying, Y., Foulger, S. H. Dynamic Tuning of Photoluminescent Dyes in Crystalline Colloidal Arrays[J]. Adv. Mater. 2005,17,2344
    [153]Murray, C. B., Kagan, C. R., Bawendi, M. G. Self-Organization of CdSe Nanocrystallites into Three-Dimensional Quantum Dot Superlattices[J]. Science 1995,270,1335
    [154] Springholz, G., Holy, V., Pinczolits, M., Bauer, G. Self-Organized Growth of Three-Dimensional Quantum-Dot Crystals with fcc-Like Stacking and a Tunable Lattice Constant[J]. Science 1998,282,734
    [155] Lodahl1, P., van Drie, A. F., Nikolaev, I. S., Irman, A.,et al. Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals[J]. Nature 2004,430,654
    [156]Koenderink, A. F., Vos, W. L. Light Exiting from Real Photonic Band Gap Crystals is Diffuse and Strongly Directional[J]. Phys. Rev. Lett. 2003,91,213902
    [157] Fleischhaker, F., Zentel, R. Photonic Crystals from Core-Shell Colloids with Incorporated Highly Fluorescent Quantum Dots[J]. Chem. Mater. 2005, 17, 1346-1351
    [1] St?ber W., Fink A., Bohn E. Controlled growth of monodisperse silica spheres in the micron size range[J]. J Colloid Interface Sci.,1968,26 ,62
    [2]董鹏.单分散二氧化硅颗粒的研究进展[J].自然科学进展,2000, 10, 201
    [3] Overbeek T. G. Monodisperse colloidal systems, fascinating and useful[J]. Advance in Colloid Interface Sci 1982, 15, 251
    [4] Sacks M. D. et al. Preparation of SiO2 Glass from Model Powder Compacts: I, Formation and Characterization of Powders, Suspensions, and Green Compacts[J]. J. Am.Ceram.Soc,1984, 67, 526
    [5] Bogush G. H., Zukoski C .F. Studies of the kinetics of the precipitation of uniform silica particles through the hydrolysis and condensation of silicon alkoxides[J]. J Colloid Interface Sci.,1991,142,1
    [6]雷质斌.三维有序大孔材料的自组装合成与表征[D].中国科学技术大学,2001
    [7] Ugelstad J., Mork P. C., Mfutakamka J. R. et al. Science and technology of polymer colloids, Boston:Pochlein GW. Ottewill R .H. and Goodwin JW Eds, 1983, 51
    [8] Ugelstad J., Monodisperse polymer particles and dispersion there of, US:4459378,1982– 3– 30
    [9] Ugelstad J., Mfutakamka J. R., Mork P. C., et al. Preparation and application of monodisperse polymer particles[J]. J.Polym.Sci.: Polymer Symposium, 1985, 72, 225
    [10]夏明哲.自组装胶体(光子)晶体及其改性[D].浙江大学, 2005
    [11]曹同玉,刘庆普,胡金生.聚合物乳液合成原理性能及应用,北京:化学工业出版社1997,408
    [12]周其凤,胡汉杰.高分子化学[M].北京:化学工业出版社,2001,392-439
    [13]王玉霞,张芳,王艳军.无皂乳液聚合进展[J].化学工业与工程,2003,20,15
    [14]张文敏,吴奇,魏涛.高浓度窄分部无皂高分子纳米粒子胶乳的制备[J].物理化学学报,2000,16,116
    [15]康凯等无皂乳液聚合理论及动力学模型[J].合成橡胶工业,2003,26,333
    [16] Cao T., Dai B., Dai J., Wang Y., Yuan C. Dispersion Polymerization of Styrene[J]. Acta Polymerica Sinica 1997, 2, 158
    [17] Zhao Z., Yang S. Preparation of Uniform Poly(glycidyl methacrylate) Beads by Dispersion Polymerization[J]. Acta Polymerica Sinica 1999, 1, 31
    [18] Shen S., Sudol E. D. Control of Particle Size in Dispersion Polymerization of Methyl Methacrylate[J]. J. Polym. Sci. A. 1993,31,1393
    [19]Sun H., Song J.,Xu Y.,Matsuo, S.,Misawa H.,Du G.,Liu S. Growth and Property Characterizations of Photonic Crystal Structures Consisting of Colloidal Miroparticles[J]. J. Opt. Soc. Am. B. 2000, 17, 476
    [20]Masahiko Ishii,Hiroshi Nakamura,Hideyuki Nakano,et al. Large domain colloidal crystal films fabricated using a fluidic cell[J]. Langmuir, 2005,21,5367
    [21] Woodcock L V. Entropy difference between the face centred cubic packed and hexagonal closed packed crystal structure[J]. Nature, 1997,385,141 [22 ] Gu Z. Z., Hayami S., Hubo S., Meng Q. B., Einaga Y., Tryk D. A., Fujishima A., Sato Q. Fabrication of Structured Porous Film by Electrophoresis[J]. J Am.Chem.Soc. 2001,123,175.
    [23] Rogach A., Susha A ., et al. Nano- and Microengineering: 3-D Colloidal Photonic Crystals Prepared from Sub- m-sized Polystyrene Latex Spheres Pre-Coated with Luminescent Polyelectrolyte/Nanocrystal Shells[J]. Adv.Mater. 2000, 12 , 333.
    [24] Dentsch M., Vlaso Y. A., Norris D. J. Conjugated-Polymer Photonic Crystals[J]. Adv.Mater.,2000,12 ,1176.
    [25] Yamasaka T., Tsutsui T. Spontaneous emission from fluorescent moleculesembedded in photonic crystals consisting of polystyrene microspheres[J]. Appl. Phys. Lett. 1998, 72, 1957.
    [26] Rundquist P. A., Photinos P., Jagannathan S., Asher S. A. A. Dynamical Bragg diffraction from crystalline colloidal arrays[J]. J. Chem.Phys.1989, 91,4932.
    [27] Bertone J. F., Jiang P., Hwang K. S., Mitleman D .M., Colvin V. L. Thickness Dependence of the Optical Properties of Ordered Silica-Air and Air-Polymer Photonic Crystals[J]. Phys.Rev. Lett., 1999,83,300.
    [28] Xia Y., Gate B., Yin Y., Lu Y. Monodispersed Colloidal Spheres: Old Materials with New Applications[J]. Adv.Mater.2000,12 ,693.
    [29] Miguez H., Meseguer F., Lopez C., Ianco A. B., Moya J. S., Requena J., Mifsud A., Fomes V. Control of the Photonic Crystal Properties of fcc-Packed Submicrometer SiO2 Spheres by Sintering[J]. Adv.Mater.,1998, 10, 480
    [30] Gate B., Park S. H., Xia Y. Tuning the Photonic Bandgap Properties of Crystalline Arrays of Polystyrene Beads by Annealing at Elevated Temperatures[J]. Adv.Mater.2000, 12, 653.
    [31] Tarasishin A. V., Magnitskii S. A. Constructing a light-field distribution for the laser guiding of atoms in photonic crystals[J]. Optica Commun. 2000,184,391
    [1] Hsu W. P., Yu R., M atijevic E., Paper Whiteners I. Titania Coated Silica[J]. J. Colloid Interface Sci. 1993,156,56
    [2] (a) Bamnolker H.,et al , New solid and hollow, magnetic and non-magnetic, organic-inorganic monodispersed hybrid microspheres: synthesis and characterization[J]. J Mater.Sci.Lett.1997,16,1412. (b) Olderburg S. J.,et al, Nanoengineering of optical resonances[J]. Chem.Phys.Lett. 1998, 288, 243.
    [3] (a) W alsh D., M ann S., Fabrication of hollow porous shells of calcium carbonate from self-organizing media[J]. Nature 1995,377,320.(b) Averit R.D.,et al, Plasmon Resonance Shifts of Au-Coated Au2S Nanoshells: Insight into Multicomponent Nanoparticle Growth[J]. Phys. Rev. Lett. 1997, 78, 4217.
    [4] Huang H., Remsen E. E., Kowalewski T., Wooley K. L. Nanocages Derived from Shell Cross-Linked Micelle Templates [J]. J. Am.Chem.Soc.1999,121,3805
    [5] (a) Garg A. et al, Preparation and properties of uniform coated inorganic colloidal particles III. Zirconium hydrous oxide on hematite[J]. J. Colloid Interface Sci. 1988, 126, 243. (b)Kawahashi N.,et al, Preparation and properties of uniform coated colloidal particles V. Yttrium basic carbonate on polystyrene latex[J]. J. Colloid Interface Sci. 1990, 138, 534. (c)X .C .Guo et al , Multistep Coating of Thick Titania Layers on Monodisperse Silica Nanospheres[J]. Langmuir 1999, 15, 5535. (d) Ediki S .M. et al, Gold Particles as Templates for the Synthesis of Hollow Polymer Capsules. Control of Capsule Dimensions and Guest Encapsulation[J]. J. Am.Chem.Soc. 1999, 121, 8518.
    [6] (a) Correa-Duarte M.A. et al , Stabilization of CdS semiconductor nanoparticles against photodegradation by a silica coating procedure[J]. Chem.Phys.Lett.1998, 286, 497. (b) Ung T. et al, Controlled Method for Silica Coating of Silver Colloids. Influence of Coating on the Rate of Chemical Reactions[J]. Langmuir 1998, 14, 3740.
    [7] (a) Caruso F. et al, Electrostatic Self-Assembly of Silica Nanoparticle-Polyelectrolyte Multilayers on Polystyrene Latex Particles[J]. J. Am.Chem.Soc. 1998, 120, 8523. (b) Caruso F. et al , Nanoengineering of Inorganic and Hybrid Hollow Spheres by Colloidal Templating[J]. Science 1998,282,1111
    [8] Xia Y. et al, Preparation of Mesoscale Hollow Spheres of TiO2 and SnO2 byTemplating Against Crystalline Arrays of Polystyrene Beads [J]. Adv.Mater.2000, 12, 206
    [9] Graf C.,Vossen D. L. J., Imhof A., A. Blaaderen v., A General Method To Coat Colloidal Particles with Silica[J]. Langmuir,2003, 19, 6693.
    [10] Pattanaik M., Bhaumik S. K., Adsorption behaviour of polyvinyl pyrrolidone on oxide surfaces[J]. Mater.Lett.,2000, 44, 352.
    [11] Smith J. N., Meadows J., Williams P. A. Adsorption of Polyvinylpyrrolidone onto Polystyrene Latices and the Effect on Colloid Stability[J]. Langmuir,1996, 12 , 3773.
    [12] Esumi K., Matsui H. Adsorption of non-ionic and cationic polymers on silica from their mixed aqueous solutions[J]. Colloid Surf. A:Physicochem.Eng.Asp.,1993, 80, 273.
    [13] Otsuka H., Esumii K., Interaction between Poly(N-vinyl-2-pyrrolidone) and Anionic Hydrocarbon/Fluorocarbon Surfactant on Hydrophobic Graphite[J]. J. Colloid Interface Sci.,1995,170,113.
    [14] Kotelnikova N. E., Panerin E. F., Kudina N. P. Zhurnal Obshchei Khimii,1997,67,335
    [15] Zhu Y., Shi J., Shen W., et al. Preparation of novel hollow mesoporous silica spheres and their sustained-release property[J]. Nanotechnology 2005, 16, 2633
    [16] Zhu Y., Shi J., Shen W., Dong X., et al. Stimuli-Responsive Controlled Drug Release from a Hollow Mesoporous Silica Sphere/Polyelectrolyte Multilayer Core-Shell Structure. Angew. Chem. Int. Ed. 2005, 44, 5083
    [17] Wang Z. X. Infrared Smctrum Analysis andIdentification of Polymer. Chengdu:Sichuan University Press,1989.
    [18] Lu Y., McLellan J., Xia Y. Synthesis and Crystallization of Hybrid Spherical Colloids Composed of Polystyrene Cores and Silica Shells[J]. Langmuir 2004, 20, 3464.
    [19] Blaaderen A. V., Geest J. V., Vrij A. Monodisperse colloidal silica spheresfrom tetraalkoxysilanes: Particle formation and growth mechanism[J]. J. Colloid Interface Sci., 1992,154 ,481.
    [1] E. Kamenetzky , L. Magliocco , and H.Panzer , Science 263 (1994) 207
    [2] G. Pan, R. Kesavamoorthy, and S. A. Asher , Phys. Rev. lett. 78 (1997) 3860
    [3] J. Wijnhoven, W. L. Vos, Science 281 (1998) 802
    [4] B. Gates, D. Qin, Y. Xia, Adv. Mater. 11 (1999) 466
    [5] M. Holgado, F. Garcia-Satamaria, A. Blanco, M. Ibistate, A. Cintas, H. Miguea, C. J. Serna, C. Molpecers, J. Requena, A. Mifsud, F. Meseguer, C. Lopez, Langmuir 15 (1999) 401
    [6] P. Jiang, J. F. Bertone, K. S. Hwang, V. L. Colvin, Chem. Mater. 11 (1999) 2132
    [7] S. Reculusa, S. Ravaine, Chem. Mater. 15 (2003) 598
    [8] K. Wostyn, Y. Zhao, G. de Schaetzen, L. Hellemans, N. Matsuda, K. Clays, and A. Persoons, Langmuir 19 (2003) 4465
    [9] Y. Zhao, K. Wostyn, G. de Schaetzen, K. Clays, L.Hellemans, A. Persoons, M. Szekeres, and R. A. Schoonheydt, Appl. Phys. Lett. 82 (2003) 3764
    [10] P. Massé, S. Reculusa, K. Clays, and S. Ravaine, Chem. Phys. Lett. 422 (2006) 251
    [11] P. Jiang, G. N. Ostojic, R. M. Mittleman, and V .L. Colvin, Adv. Mater. (Weinheim,Ger.) 13 (2001) 389
    [12] M. Egen, R. Voss, B. Griesebock, and R. Zentel, Chem. Mater. 15 (2003) 3786
    [13] S. John, Phys. Rev. lett. 58 (1987) 2486
    [14] S. V. Gaponenko, V. N. Bogomolov, E. P. Petrov, A. M. Kapitonov, D. A. Yarotsky, I. I. Kalosha, A. A. Eychmueller, A. L. Rogach, J. McGilp, U. Woggon, and F. Gindele,Journal of lightwave technology, 17 (1999) 2128
    [15] E. P. Petrov,V. N. Bogomolov, I. I. Kalosha,and S. V. Gaponenko, Phys. Rev.lett. 81 (1998) 77
    [16] P. Lodahl, A. F. van Driel, I. S. Nikolaev, A. Irman,K. Overgaag, D.Vanmaekelbergh and W. L. Vos, Nature,430 (2004) 654
    [17] K. Baert, K. Song, R. Vallée, M. Van der Auweraer, and K. Clays, J. Appl. Phys., 100 (2006) 123112
    [18] K. Song, R. Vallée, M. Van der Auweraer, and K. Clays, Chem. Phys. Lett. 421 (2006) 1
    [19] J. X. Wang, Y. Q. Wen, H. L. Ge, Z. W. Sun, Y. M. Zheng, Y. L. Song and L. Jiang, Macromol. Chem. Phys. 207 (2006) 596
    [1] Yablonovith, E. Inhibited Spontaneous Emission in Solid-State Physics and Electronics. Phys. Rev. Lett. 1987, 58, 2059.
    [2] John, S. Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 1987, 58, 2486.
    [3] Zhao, Y.; Wostyn, K.; de Schaetzen, G.; Clays, K.; Hellemans, L.; Persoons, A.; Szekeres, M.; Schoonheydt, R. A. The fabrication of photonic band gap materials with a two-dimensional defect. Appl. Phys. Lett. 2003, 82, 3764.
    [4] Braun, P. V.; Rinne, S. A.; Garcia-Santamaria, F. Introducing Defects in 3D Photonic Crystals: State of the Art. Adv. Mater. 2006, 18, 2665.
    [5] Arsenault, A.; Fleischhaker, F.; von Freymann, G.; Kitaeu, V.; Miguez, H.; Mihi, A.; Tétreault, N.; Vekris, E.; Manners, I.; Aitchison, S.; Perovic, D.; Ozin, G. A. Perfecting Imperfection - Designer Defects in Colloidal Photonic Crystals. Adv. Mater. 2006, 18, 2779.
    [6] Ergang, N. S.; Lytle, J. C.; Lee, K. T.; Oh, S. M.; Smyrl, W. H.; Stein, A. Photonic Crystal Structures as a Basis for a Three-Dimensionally Interpenetrating Electrochemical-Cell System. Adv. Mater. 2006, 18, 1750.
    [7] Yan, A., Wang, L.; Zhao, X. S. Artificial Defect Engineering in Three-Dimensional Colloidal Photonic Crystals. Adv. Funt. Chem. 2007, 17, 3695.
    [8] Busch, K., John, S. Photonic band gap formation in certain self-organizing systems. Phys. Rev. E 1998, 58, 3896.
    [9] Velev O. D.; Jede T. A.; Lobo R. F.; Lenhoff, A. M. Porous silica via colloidal crystallization. Nature 1997, 389, 447.
    [10] Wijnhoven, J. E. G. J., Vos, W. L. Preparation of Photonic Crystals Made of Air Spheres in Titania. Science 1998, 281, 802.
    [11] Velev O. D., Tessier, P. M., Lenhoff, A. M., Kaler, E. M. MaterialsA class of porous metallic nanostructures. Nature 1999, 401, 548.
    [12] Johnson S. A., Ollivier P. J., Mallouk T. E. Ordered Mesoporous Polymers of Tunable Pore Size from Colloidal Silica Templates. Science 1999, 283, 963.
    [13] Jiang P., Cizeron J., Bertone J. F., Colvin V. L. Preparation of Macroporous Metal Films from Colloidal Crystals. J. Am. Chem. Soc. 1999, 121, 7957.
    [14] Blanco A., Chomski E., Grabtchak S., Ibisate M., John S., Leonard S. W., López C., Meseguer F., Miguez H., Mondia J. P., Ozin G. A., Toader O., Driel H. M. Functional link between ataxia-telangiectasia and Nijmegen breakage syndrome gene products. Nature 2000, 405, 437.
    [15] Xia Y. N., Gates B., Yin Y. D., Lu Y. Monodispersed Colloidal Spheres: Old Materials with New Applications. Adv. Mater. 2000, 12, 693.
    [16] Chai G. S., Shin I. S., Yu J. S. Synthesis of Ordered, Uniform, Macroporous Carbons with Mesoporous Walls Templated by Aggregates of Polystyrene Spheres and Silica Particles for Use as Catalyst Supports in Direct Methanol Fuel Cells. Adv. Mater. 2004, 16, 2057.
    [17] Iskandar F., Iwaki T., Toda T., Okuyama K. High Coercivity of Ordered Macroporous FePt Films Synthesized via Colloidal Templates. Nano Lett. 2005, 5, 1525.
    [18] Cho S. O., Jun H. Y., Ahn S. K. A Novel Route to Three-Dimensionally Ordered Macroporous Polymers by Electron Irradiation of Polymer Colloids. Adv. Mater. 2005, 17, 120.
    [19] Gu Z. Z., Fujishima A., Sato O. Photochemically Tunable Colloidal Crystals. J. Am. Chem. Soc. 2000, 122, 12387.
    [20] Maurer M. K., Lednev I. K., Asher S. A. Photoswitchable Spirobenzopyran- Based Photochemically Controlled Photonic Crystals. Adv. Funct. Mater. 2005, 15, 1401.
    [21] Xia J., Ying Y., Foulger S. H. Electric-Field-Induced Rejection-Wavelength Tuning of Photonic-Bandgap Composites. Adv. Mater. 2005, 17, 2463.
    [22] Fleischhaker F., Arsenault A. C., Kitaev V., Peiris F. C., von FReymann G., Manners I., Zentel R., Ozin G. A. Photochemically and Thermally Tunable Planar Defects in Colloidal Photonic Crystals. J. Am. Chem. Soc. 2005, 127, 9318.
    [23] Jeong U., Xia Y. Photonic Crystals with Thermally Switchable Stop Bands Fabricated from Se@Ag2Se Spherical Colloids. Angew. Chem. Int. Ed. 2005, 44, 3099.
    [24] Kim S. H., Lee S. Y., Yi G. R., Pine D. J., Yang S. M. Microwave-Assisted Self-Organization of Colloidal Particles in Confining Aqueous Droplets. J. Am. Chem. Soc. 2006, 128, 10897.
    [25] Ge J., Hu Y., Yin Y. Highly Tunable Superparamagnetic Colloidal Photonic Crystals. Angew. Chem. Int. Ed. 2007, 46, 7428.
    [26] Hung J. C., Park J. H., Chun C., Kim D. Y. Photoinduced Tuning of Optical Stop Bands in Azopolymer Based Inverse Opal Photonic Crystals. Adv. Funct. Mater. 2007, 17, 2462.
    [27] Fudouzi H., Xia Y. Colloidal Crystals with Tunable Colors and Their Use as Photonic Papers. Langmuir 2003, 19, 9653.
    [28] Wang J., Cao Y., Feng Y., Yin F., Gao J. Multiresponsive Inverse-Opal Hydrogels. Adv. Mater. 2007, 19, 3865.
    [29] Bogomolov V. N., Gaponenko S. V., Germanenko I. N., Kapitonov A. M., Petrov E. P., Gaponenko N. V., Prokofiev A. V., Ponyavina A. N., Silvanovich N.I., Samoilovich S. M. Photonic band gap phenomenon and optical properties of artificial opals[J]. Phys. Rev. E 1997, 55, 7619.
    [30] Blanford C. F., Schroden R. C., Al-Daous M., Stein A. Tuning Solvent-Dependent Color Changes of Three-Dimensionally Ordered Macroporous (3DOM) Materials Through Compositional and Geometric Modifications. Adv. Mater. 2001, 13, 26.
    [31] Schroden R. C., Al-Daous M., Blanford C. F., Stein A. Optical Properties of Inverse Opal Photonic Crystals. Chem. Mater. 2002, 14, 3305.
    [32] Ruhl T., Spahn P., Hermann C., Jamois C., Hess O. Double-Inverse-Opal Photonic Crystals: The Route to Photonic Bandgap Switching. Adv. Funct. Mater. 2006, 16, 885.
    [33] Rengarajan R., Jiang P., Colvin V., Mittleman D. Optical properties of a photonic crystal of hollow spherical shells[J]. Appl. Phys. Lett. 2000, 77, 3517.
    [34] Takeda H., Yoshino K. Photonic band schemes of opals composed of periodic arrays of cored spheres depending on thickness of outer shells[J]. Appl. Phys. Lett. 2002, 80, 4495.
    [35] Chen Z., Zhan P., Wang Z., Zhang J., Zhang W., Ming N., Chen C. T., Sheng P. Two- and Three-Dimensional Ordered Structures of Hollow Silver Spheres Prepared by Colloidal Crystal Templating. Adv. Mater. 2004, 16, 417.
    [36] Camargo P. H. C., Lee Y. H., Jeone U., Zou Z., Xia Y. Cation Exchange: A Simple and Versatile Route to Inorganic Colloidal Spheres with the Same Size but Different Compositions and Properties. Langmuir 2007, 23, 2985.
    [37] Zhu Y. F., Shi J. L., Shen W. H., Chen H. R., Dong X. P., Ruan M. L. Preparation of novel hollow mesoporous silica spheres and their sustained-release property[J]. Nanotechnology 2005, 16, 2633.
    [38] Zhu Y. F., Shi J. L., Shen W. H., Dong X. P., Feng J. W., Ruan M. L., Li Y. S. Stimuli-Responsive Controlled Drug Release from a Hollow Mesoporous SilicaSphere/Polyelectrolyte Multilayer Core-Shell Structure. Angew. Chem. Int. Ed. 2005, 44, 5083.
    [39] Trewyn B. G., Giri S., Slowing I. I., Lin V. S.Y. Mesoporous silica nanoparticle based controlled release, drug delivery, and biosensor systems[J]. Chem. Commun. 2007, 3236.
    [40] Torney F., Trewyn B. G., Lin V. S. Y., Wang K. Mesoporous silica nanoparticles deliver DNA and chemicals into plants[J]. Nature Nanotechnology 2007, 2, 295.
    [41] Trewyn B. G., Slowing I. I., Giri S., Chen H. T., Lin V. S.Y. Synthesis and Functionalization of a Mesoporous Silica Nanoparticle Based on the Sol–Gel Process and Applications in Controlled Release[J]. Acc. Chem. Res. 2007, 40, 846.
    [42] Goodwin J. W., Ottewill R. H., Pelton R. Studies on the preparation and characterization of monodisperse polystyrene latices V.: The preparation of cationic latices[J]. Colloid & Polymer Sci. 1979, 257, 61.
    [43] St?ber W., Fink A., Bohn E. Controlled growth of monodisperse silica spheres in the micron size range[J]. J Colloid Interface Sci.,1968,26 ,62
    [44] Graf C., Vossen D. L. J., Imhof A., Blaaderen A. A General Method To Coat Colloidal Particles with Silica. Langmuir 2003, 19, 6693.
    [45] Lu Y., Mclellan J., Xia Y. N. Synthesis and Crystallization of Hybrid Spherical Colloids Composed of Polystyrene Cores and Silica Shells. Langmuir 2004, 20, 3464.
    [46] Yan H. W., Blanford C. F., Holland B. T., Parent M., Smyrl W. H., Stein A. A Chemical Synthesis of Periodic Macroporous NiO and Metallic Ni. Adv. Mater. 1999, 11, 1003.
    [47] Denny N. R., Han S. E., Norris D. J., Stein A. Effects of Thermal Processes on the Structure of Monolithic Tungsten and Tungsten Alloy Photonic Crystals. Chem. Mater. 2007, 19, 4563.
    [48] Lytle J. C., Denny N. R., Turgeon R. T., Stein A. Pseudomorphic Transformation of Inverse Opal Tungsten Oxide to Tungsten Carbide. Adv. Mater. 2007, 19, 3682.
    [1] Shanhu I. F., Vlleneuve P., Ierre R., Joannopoulos J. D. High extraction efficiency of spontaneous em ission from colloidal systems [ J ]. Phys Rev Lett 1997,78329423297.
    [2] Sandhya G. P., Gary T. T. Infrared filters using metallic photonic band gap structures on flexible substrates[J ]. App Phys Lett 1997, 71, 241222414.
    [3] Knight J. C. Photonic crystal fibres[J ]. Nature 2003, 424, 847
    [4] Painter O., Lee R. K., Scherer A., Yariv A., et al. Two-dimensional photonic band-gap defect mode laser[J]. Science 1999, 284, 1819
    [5] Okano M., Kako S., Noda S. Coupling between apoint-defect cavity and aline-defect wave guide in three-dimensional photonic crystal[J]. Phys. Rev. B. 2003, 68, 235110
    [6] Chutinan A., John S., Toader O. Difraction less flow of light in all optical microchips[J]. Phys. Rev.Lett. 2003, 90, 123901
    [7] Noda S., Chutinan A., Imada M. Trapping and emission of photons by a single defect in a photonic bandgap structure[J]. Nature 2000, 407, 608
    [8] Happ T. D., Kamp M., Forchel A.,Gentner J. L., Goldstein L. Two-dimensional photonic crystal coupled-defect laser diode[J]. Appl. Phys. Lett. 2003, 82 ,4
    [9] Gates B., Xia Y. Photonic band-gap properties of opaline latices of spherical colloids doped with various concentrations of smaller colloids[J]. Appl. Phys. Lett. 2001, 78, 3178
    [10] Yan Q., Chen A., Chua S. J., Zhao X.S. Incorporation of point defects into self-assembled three- dimensional colloidal crystals[J]. Adv. Mater. 2005, 17, 2849
    [11] Ferrand F., Seekamp J., Zentel R., Romanov S. G., Sotomayor Torres C. M.Direct electron - beam lithography on opal films for determinnistric defect f abrication in three– dimensional photonic crystals[J]. Microelectronic Engineering 2004, 73,362
    [12] Wostyn K., Zhao Y., de Schaetzen G., Hellemans L., Matsuda N., Clays K., Persoons A. Insertion of a Two-Dimensional Cavity into a Self-Assembled Colloidal Crystal[J]. Langmuir 2003, 19, 4465.
    [13] Zhao Y., Wostyn K., de Schaetzen G., Clays K., Hellemans L., Persoons A., Szekeres M., Schoonheydt R.A. The fabrication of photonic band gap materials with a two-dimensional defect[J]. Appl. Phys. Lett. 2003, 82, 3764.
    [14] Jiang P., Bertone J. F., Hwang K. S., Colvin V. L. Single-Crystal Colloidal Multilayers of Controlled Thickness[J]. Chem. Mater. 1999, 11, 2132
    [15] Stéphane R., Ravaine S. Synthesis of Colloidal Crystals of Controllable Thickness through the Langmuir-Blodgett Technique[J]. Chem. Mater. 2003, 15, 598
    [16] Fleischhaker F., AndréC. A., Frank C. P., Kitaev V. Manners I.,Zentel R., Ozin G. A. DNA Designer Defects in Photonic Crystals: Optically Monitored Biochemistry[J]. Adv. Mater. 2006, 18, 2387
    [17] Masse′P., Ste′phane R., Clays K., Ravaine S. Tailoring planar defect in three-dimensional colloidal crystals[J]. Chemical Physics Letters 422 (2006) 251–255
    [18] Raúl P., Agustín M., Oca?a M., Míguez H. Building Nanocrystalline Planar Defects within Self-Assembled Photonic Crystals by Spin-Coating[J]. Adv. Mater. 2006, 18, 1183
    [19] AndréA., Fleischhaker F., Georg von F., Kitaev V.,Ozin A., et al. Perfecting Imperfection—Designer Defects in Colloidal Photonic Crystals[J]. Adv. Mater. 2006, 18, 2779
    [20] Yablonovitch E. Photonic band-gap crystals[J]. Journal of Physics-Condensed Matter,1993, 5, 2443
    [21] Yablonovitch E., Gmiter T. J. Donor and acceptor modes in photonic band structures[J]. Phys. Rev. Lett. 1991, 61, 3380
    [22] Pradhan R. D., Tarhan I. I., Watson G. H. Impurity modes in the optical stop bands of doped colloidal crystals[J]. Phys. Rev. B. 1996, 54, 13721
    [23] Palacios-Lidon E., Galisteo-Lopez J. F., Juarez B. H., Lopez C. Engineered Planar Defects Embedded in Opals[J]. Adv.Mater. 2004, 16, 341.
    [24] Tétreault N., Mihi A., Miguez H., Rodriguez I., Ozin G. A., Meseguer F., Kitaev V. Dielectric Planar Defects in Colloidal Photonic Crystal Films[J]. Adv. Mater. 2004, 16, 346.