基于遥感图像的重要目标特征提取与识别方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
遥感图像在军事侦察、精确打击和民用方面都有重要的应用,因此开展遥感图像的特征提取和目标识别工作具有实际意义和应用前景。本文以团块目标、阵列目标和港口目标作为研究对象,以空间关系作为切入点,系统研究了以上目标的特征提取和目标识别的方法。
     论文的第一章是绪论,介绍了课题的研究背景、遥感图像特征提取和目标识别的主要内容和发展现状以及本文的主要工作和创新点。
     第二章研究了纹理特征的提取和纹理鉴别性能的评价问题。本章的工作主要包括:(1)回顾了常用的八种纹理特征提取方法以及前人在纹理鉴别性能评价方面的主要工作;(2)提出一种新的基于局部沃尔什变换(LWT)的纹理特征提取方法,给出了LWT变换的定义并对其进行了空域推广,分析了LWT系数的统计特性及其各阶矩的纹理鉴别性能,进一步选取具有较好鉴别性能的二阶矩作为纹理特征;(3)从纹理鉴别性能、纹理分割效果和计算量三个方面,将本文提出的方法与其它八种方法进行综合比较,证实了本文方法优于其它方法;(4)结合全色遥感图像中海域的纹理和结构特性,提出了一种基于LWT变换的海域分割算法。
     第三章研究了团块目标的检测问题,提出了一种基于视觉注意模型的团块目标检测方法。该方法根据团块目标与背景在多种特征、多个尺度上存在的差异,利用视觉注意模型确定目标位置,并根据尺度显著性准则提取目标区域。改进了视觉注意模型中显著图的计算过程,提高了视觉显著图的计算速度和空间分辨率,使之更适合于团块目标检测的实际需要。实验结果表明,基于视觉注意模型的团块目标检测方法对图像畸变和目标变化具有较强的适应性,对较复杂背景中出现的各种团块目标取得了较好的检测效果。
     第四章研究了阵列目标的特征提取和目标识别问题,本章的工作主要包括:(1)根据阵列目标的结构特性,确定了进行特征提取和目标识别的具体思路;(2)提出一种结合线度和长度约束的局部化空间关系基元选取算法;(3)提出了基于模糊理论的空间关系基元之间的规则性测度;(4)建立了以局部化空间关系基元为顶点的场景结构图,证明了场景结构图的邻接矩阵的若干特性,根据这些特性设计出一种快速的谱图划分算法——“迭代谱图划分算法”;(5)研究了油库、导弹阵地、高炮阵地等阵列目标的识别问题,取得了满意的识别效果。
     第五章沿着海岸线形状分析的思路研究了港口的特征提取和识别问题,本章的工作主要包括:(1)引入新的张力和外力计算方法来改善活动轮廓模型的性能,在此基础上研究了基于活动轮廓模型的海岸线高精度提取技术;(2)提出一种基于特征聚类的内港岸线分割算法;(4)提出一种基于特征点松弛匹配的特定港口识别算法。
Remote sensing imagery has great importance for military reconnaissance, precision attack and civil activities, so it has good application prospect to study feature extraction and target recognition methods of remote sensing imagery. This dissertation investigate the feature extraction and target recognition methods for blob targets, array targets and ports, and focus our research work mainly on their characters in structure and spatial relationship.Chapter 1 is the preface of this dissertation, which introduces the background knowledge, reviews the main content and the state of arts development of the feature extraction and target recognition in remote sensing imagery, and summarizes the central research work and innovative points in the dissertation.Chapter 2 studies the extraction and selection of texture features and the evaluation of texture feature discrimination performance (TFDP). The central work of this chapter includes: (1)reviewing the eight kinds of texture feature extraction methods currently used and the previous work in the evaluation of TFDP; (2)presenting a new texture feature extraction method using Local Walsh Transform (LWT), giving the definition of LWT and generalizing it in spatial domain, analyzing the statistic property of LWT coefficients, examining the TFDP of the central moments of LWT coefficients, and selecting the 2nd,4th,6th order moments which have better TFDP as texture features; (3) comparing our texture feature extraction method with the other eight methods in TFDP, texture image segmentation effect and computational complexity, which indicates that our method has the best performance; (4)presenting a new method based on LWT to segment sea area in optical remote sensing imagery, which integrates the characters of sea area in texture and structure.Chapter 3 studies the detection of blob targets. This chapter presents a novel algorithm based on visual attention model to detect blob targets in optical and infrared images. The blob targets have multi-feature and multi-scale difference as compared with their backgrounds, which is used by the visual attention model to locate the blob targets in the scenes. Farther on, scale salience is used to extract the region of the blob targets. The salience map computation procedure is modified. As a result, the salience map has higher spatial resolution and lower computation complexity, which make it more suitable to detection blob targets. Experiments reveal that our algorithm is immune to the distortion of images and targets, it can detect several classes of blob targets from scenes with considerable clutters.Chapter 4 studies the feature extraction and target recognition methods of array targets. The central work of this chapter includes: (1)presenting a practical scheme for feature extraction and target recognition based on the characters of array targets; (2) giving the definition of spatial relationship primitive(SRP), and presenting an effective
    SRP selection algorithm to make the full graph sparse; (3) presenting a spatial relationship regularity measure for arbitrary two SRPs based on Fuzzy theory; (4) establishing a full graph, namely Scene Structure Graph (SSG), and testifying some important properties of the adjacency matrix of the SSG, designing a fast spectral graph partitioning algorithm, namely Iterative Spectral Graph Partitioning Algorithm; (5) studying the recognition of oil tanks, missile positions and flack positions in remote sensing imagery using the algorithms presented above, which acquires promising recognition results.Chapter 5 studies the feature extraction and target recognition methods of port. This chapter treats port as a segment of coastline with special structure, detects and recognizes it by the way of analyzing the shape of coastline. The central works of this chapter includes: (1)bringing forward a new elasticity force computing method and a new extent force computing method to improve the performance of the traditional active contour model, and designing a high accurate coastline detection method using the improved active contour model; (2)giving out an effective inner port coastline extraction algorithm based on eigencluster technology; (3)presenting a port recognition algorithm using feature points relaxation matching method.Chapter 6 summarizes the dissertation and brings forward some problems which need further investigating.
引文
[1] 郦苏丹.SAR图像特征提取与目标识别技术研究[D].长沙:国防科技大学研究生院,2001.
    [2] 王岩.机载SAR图像特征提取与目标识别方法研究[D].长沙:国防科技大学研究生院,2004.
    [3] Nagao M, et al. A structural analysis of complex aerial photographs[M]. New York, Plenum, 1980.
    [4] Y. Ohta, et al. Color information for region segmentation [C]. CGIP 13, 1980, 222-241.
    [5] Hanson A, et al. Computer Vision System. New York, Academic, 1978.
    [6] 王润生.图像理解[M].长沙:国防科技大学出版社,1995.
    [7] Brooks R. Model-based Computer Vision [M]. UMI Research Press, 1984.
    [8] Brooks R. Symbolic reasoning among 3-D models and 2-D images [J]. AI-17, 1981, 57-63.
    [9] Brooks R, et al. The ACRONYM model-based vision system [C]. Proc. of 6th Inter. J. Conf. on AI, 1979, 131-149.
    [10] Herman M. Monocular reconstruction of a complex urban scene in the 3-D MOSAIC system [C]. Proc. ARPA Image Understanding Workshop, 1983, 177-195.
    [11] Herman M, et al. Incremental reconstruction of 3-D scenes from multiple complex image [J]. AI-30, 1986, 55-72.
    [12] Herman M. The 3-D MOSAIC scene understanding system: incremental reconstruction of 3-D scenes from complex image [M] Robert Computer Vision, Signum, 1991, 45-64.
    [13] Itti L, Koch C, Niebur E. A model of saliency-based visual attention for rapid scene analysis [J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1998, 20(11): 1254~1259.
    [14] Jianbo Shi and Jitendra Malik. Normalized Cuts and Image Segmentation [J]. IEEE Transactions On Pattern Analysis And Machine Intelligence, Vol. 22, No. 8, AUGUST 2000, pp.888-905.
    [15] 鲁学军,王钦敏,明冬萍,王晶,徐志刚.空间特征在遥感影像分析中的应用[J].中国图象图形学报,2004,9(6):737-743.
    [1] 王润生.图像理解[M].长沙:国防科学技术大学出版社,1995.
    [2] 钟玉琢,乔秉新,李树青.机器人视觉技术[M].北京:国防工业出版社,1994.
    [3] 王晓丹.基于模糊聚类及神经网络的纹理分割方法研究[D].西安:西北工业大学,2000.
    [4] Haralick R M, Shanmugam K, DinStein I. Texture Features for Image Classification[J]. IEEE Trans. On Systems Man Cybernet, SMC-3 (1973):610-621.
    [5] Davis L S. Polarograms: a new tool for texture analysis[J]. Pattern Recognition, 13(1981):219-223.
    [6] Sarkar A, Sharma K M S, Sonak R V. A new approach for subset 2-D AR model identification for Describing textures [J], IEEE Trans. On Image Processing, 1997, 6(3):407-413.
    [7] Bovik A, Clark M, Geisler W. Multi-channel texture analysis using localized spatial filters [J]. IEEE Trans. On PAMI, Vol.12, pp.55-73, Jan., 1990.
    [8] Li Wang, He D C. Texture Classification Using Texture Spectrum[J]. Pattern Recognition, 1990(23):905-910.
    [9] Dong-Chen He and Li Wang. Texture Features Based on Texture Spectrum[J]. Pattern Recognition, 1991(24):391-399.
    [10] Zhou F, Feng J, Shi Q. Image Segmentation Based on Local Fourier Coefficients Histogram[C]. Proc. SPIE 2nd Int. Conf. on Multispectral Image Processing and Pattern Recognition, Wuhan, China, November, 2001.
    [11] Hui Yu, Mingjing Li, Hong-Jiang Zhang, Jufu Feng. Color Texture Moments For Content Based Image Retrieval [C]. www.cs.iupui.edu/-tuceryan/research/ComputerVision/moment-paper.pdf.
    [12] Cross G, Jain A. Markov random fields texture models[J]. IEEE Trans. on Systems Man Cybernet, SMC-17(1987):1087-1095.
    [13] Pentland A P. Fractal-based description of natural scenes[J]. IEEE Trans. On PAMI-6, 1984:661-674.
    [14] Abdulrahman Al-Janobi. Performance evaluation of Cross-diagonal texture matrix method of texture analysis[J]. Pattern Recognition, 2001 (34): 171-180.
    [15] Weszka J S, Dyer C R, Rosenfeld A. A comparative study of texture measures for terrain classification[J]. IEEE Trans, on Syst., Man, Cybern., vol. SMC-6, pp. 269-285, 1976.
    [16] Simona E. Grigeorescu, Nicolai Petkov, and Peter Kruizinga. Comparison of Texture Features Based on Gabor Filters[J]. IEEE Trans. on Image Processing, 2002,11(10):1160-1167.
    [17] Conners R W, Harlow C A. A theoretical comparison of texture algorithms[J]. IEEE Trans. on PAMI, Vol.PAMI-2, No.3, pp. 204-222, 1980.
    [18] Du Buf J M H, Kardan M, Spann M. Texture feature performance for image segmentation[J]. Pattern Recognition, Vol.23, pp. 291-309, 1990.
    [19] Ohanian P P, Dubes R C. Performance evaluation for four classes of textural features[J]. Pattern Recognition, Vol.25, No. 8, pp.819-833, 1992.
    [20] Ojala T, Pietikainen M, Harwood D. A comparative study of texture measures with classification based on feature distributions[J]. Pattern Recognition, Vol.29, No.1, pp. 51-59, 1996.
    [21] Pichler O, Teuner A, Hosticka B J. A comparison of texture feature extraction using adaptive Gabor filtering, pyramidal and tree structured wavelet transforms [J]. Pattern Recognition, Vol.29, No.5, pp. 733-742, 1996.
    [22] Ramana K V, Ramamoorthy B. Statistical methods to compare the texture features of machined surfaces[J]. Pattern Recognition, Vol.29, No.9, pp. 1447-1460, 1996.
    [23] Zhu Y M, Goutte R. A comparison of bilinear space spatial-frequency representations
     for texture discrimination[J]. Pattern Recognition Letters, Vol. 16, No. 10, pp. 1057-1068, 1995.
    [24] 孙即祥.数字图像处理[M].石家庄:河北教育出版社,1993:99-105。
    [25] Mandelbrot B B. The fractal geometry of nature[M]. San Francisco, CA: Freeman, 1982.
    [26] Pentland A P. Fractal based description of natural scenes[J]. IEEE Trans. on PAMI, Vol. PAMI-6, No. 6.
    [27] 赵锋,赵荣椿.纹理分割及特征提取方法综述[J].中国体视学与图像分析,1998年12月,第3卷,第4期:238-246.
    [28] Sarker N, Chaudhuri B B. An Efficient Approach to Estimate Fractal Dimension of Textural Image [J]. Pattern Recognition, 1992, 25(9): 1035-1041.
    [29] 周烽,封举富,石青云.一种新的基于局部傅立叶级数的纹理描述子[J].中国图形图像学报,第6卷,第10期,2001年10月,993-998.
    [30] Zhou Feng, Feng Jufu, Shi Qingyun. Texture Feature Based On Local Fourier Transform[C]. Proc. of International conference on Image Processing (ICIP), 2001, 10.
    [31] 孙即祥等.现代模式识别[M].长沙:国防科学技术大学出版社,2002,pp.31-36.
    [32] 刘建波,戴昌达.TM图像在大型水库库情监测管理中的应用[J].环境遥感,1996,11(1):53-58.
    [33] 陆家驹,李士鸿.TM资料水体识别技术的改进[J].环境遥感,1992,7(1):17-23.
    [34] 吴翊,李永乐,胡庆军.应用数理统计[M].长沙:国防科技大学出版社,1995,pp.29-33.
    [35] 盛骤,谢式千,潘承毅.概率论与数理统计[M].北京:高等教育出版社,1989,pp.222-225.
    [36] Fawwaz T U, et. al. Textural information in SAR Images[J]. IEEE Trans. On Geo-science and Remote Sensing, Vol. GE-24, No.2, March 1986.
    [37] Anne H, Schistad S, Anil K. J. Texture Fusion and Feature Selection Applied to SAR Imagery [J]. IEEE Trans. On Geo-science and Remote Sensing, Vol.35, No.2, March 1997.
    [38] 王庆,王秋让,赵荣椿.基于二维直方图的模糊门限化方法[J].小型微型计算机系统,第22卷第8期,2001年8月.
    [39] 章毓晋.基于内容的视觉信息检索[M].北京:科学出版社,2003年5月,第1版,84-100.
    [40] 郭英凯,杨杰,陆正刚.基于高斯马尔可夫随机场和神经网络的无监督纹理分割[J].红外与激光工程,第29卷,第2期,5-9.
    [41] 任仙怡,张桂林,陈朝阳.基于纹理谱的纹理分割方法[J].中国图象图形学报,第3卷,第12期,1998年12月,983-986.
    [42] 郭立,陆大虎,朱俊株.基于Gabor多通道滤波和Hopfield神经网络的纹理图像分割[J].计算机工程与应用,2000年6月,页码:39-41.
    [1] Koch C, Ullman S. Shifts in selective visual attention: Towards the underlying neural circuitry[J]. Human Neurobiology, vol. 4, pp. 219-227, 1985.
    [2] Treisman A, Gelade G. A feature integration theory of attention [J]. Cognitive Psychology, vol. 12, pp. 97-136, 1980.
    [3] Gerriet Backer and Barbel Mertsching. Two selection stages provide efficient object-based attention [C]. International Workshop on Attention and Perfomance in Computer Vision on April 3rd, 2003 in Graz, Austria.
    [4] Itti L, Koch C, Niebur E. A model of saliency-based visual attention for rapid scene analysis [J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1998, 20(11): 1254~1259.
    [5] Laurent Itti and Christof Koch. Computation Modeling of Visual Attention [J]. Nature Reviews: Neuroscience, Volume 2, March 2001:1-11.
    [6] Itti L, Koch C. Feature combination strategies for saliency-based visual attention systems [J]. Journal of Electronic Imaging, 2001, 10(1): 161~169.
    [7] Zhang P, Wang RS. Detecting salient regions based on location shift and extent trace[J]. Journal of Software, 2004, 15(6):891~898.(张鹏,王润生.基于视点转移和视区追踪的图像显著区域检测[J].《软件学报》,Vol.15,No.6,2004:891-898.)
    [8] Dirk Walther, Ueli Rutishauser, Christof Koch, and Pietro Perona. On the usefulness of attention for object recognition [C]. The 2nd Workshop on Attention and Perfomance in Computer Vision on May 15th, 2004 in Prague, Czech Republic.
    [9] Itti L, Koch C. Target detection using saliency-based attention [J]. In Proc. RTO/SCI-12 Workshop on Search and Target Acquisition (NATO Unclassified), pages 3.1-3.10, Utrecht, The Netherlands, 1999.
    [10] Kadir Timor, Michael Brady. Scale Saliency: a novel approach to salient feature and scale selection [C]. International Conference Visual Information Engineering 2003. Pages 25-28.
    [11] Kadir Timor, Michael Brady. Saliency, scale and image description [J]. International Journal of Computer Vision, 2001, 45(2): 83~105.
    [12] Solka J K, Marchette D J, Wallet B C. Identification of Man Made Regions in Unmanned Aerial Vehicle Imagery and Videos [J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1998, 20(8): 852-857.
    [13] David, Anqi Ye. Detection Filters and Algorithm Fusion for ATR [J]. IEEE Trans. On Image Processing, 1997, 6(1): 114-125.
    [14] Zhao YG, Zhu H. Adaptive Detection of Man-Made Objects in Natural Background [J]. ACTA ELECTRONICA SINICA, 1996, 24(4): 17-20.(赵亦工,朱红.自然背景中人造目标的自适应检测[J].电子学报,Vol.24,No.4,1996:17-20.)
    [15] Greenspan H, Belongie S, Goodman R, Perona P, Rakshit S, and Anderson C H. Over-complete steerable pyramid filters and rotation invariance [P]. Proceedings CVPR 1994, pp. 222-228.
    [16] Stephane G. Mallat. A theory for Multi-resolution Signal Decomposition: The Wavelet Representation [J]. IEEE Trans. On PAMI, 1989, 11(7): 674-693.
    [17] Gaurav Sharma, Trussell H J. Digital Color Imaging [J]. IEEE Trans. On Image Processing, 6(7): 901-927.
    [18] 王润生.图像理解[M].长沙:国防科学技术大学出版社,1995.
    [19] Tao Zhao, Ram Nevatia. Car detection in Low resolution Aerial Image [J]. www.citeseer.com.
    [20] 张天序,戴可荣,彭嘉雄.复杂图像序列的自适应目标提取和跟踪方法[J].电子学报,1994年10月,第10期,46-55.
    [21] 王岳环,张天序.基于视觉注意机制的实时红外小目标预检测[J].华中科技大学学报,2001年6月,第6期,7-9.
    [22] 桑农,李正龙,张天序.人类视觉注意机制在目标检测中的应用[J].红外与激光工程,2004年2月,第1期,38-42.
    [23] Laurent Itti. Models of Bottom-Up and Top-Down Visual Attention [D]. http://ilab.usc.edu/publications/bu.html.
    [24] Laurent Itti and Christof Koch. A Comparison of Feature Combination Strategies for Salient-Based Visual Attention Systems [J]. http://ilab.usc.edu/publications/bu.html.
    [25] Vidhya Navalpakkam and Laurent Itti. A Goal Oriented Attention Guidance Model [J]. http://ilab.usc.edu/publications/bu.html.
    [26] Laurent Itti, Christof Koch. A saliency-based search mechanism for overt and covert shifts of visual attention [J]. Vision Research 40 (2000): 1489-1506.
    [27] Laurent Itti, Christof Koch. Feature Combination Strategies for Salient-Based Visual Attention Systems [J]. http://ilab.usc.edu/publications/bu.html.
    [28] Laurent Itti, Carl Gold, Christof Koch. Visual attention and target detection in cluttered natural scenes [J]. http://ilab.usc.edu/publications/bu.html.
    [29] Laurent Itti. Visual Attention [J]. http://ilab.usc.edu/publications/bu.html.
    [30] Timor Kadir, Andrew Zisserman, Michael Brady. An affine invariant salient region detector [J]. www.citeseer.com.
    [31] Hare J S, Lewis. Scale Saliency, Applications in Visual Matching, Tracking and View[C]. The 9th International Conference on Distributed Multimedia Systems.
    [32] Robert Sim, Sandra Polifroni, Gregory Dudek. Comparing Attention Operators for Learning Landmarks [J]. June 21, 2003
    [34] Laurent Itti. Modeling Primate Visual Attention[M]. http://ilab.usc.edu/publications/bu.html.
    [35] Zenon Pylyshyn. Some Primitive Mechanisms of Spatial Attention. www.citeseer.com.
    [36] Robert Schneider and Maximilian Riesenhuber. The Role of Attentional Modulations in Object Recognition in Visual Cortex [R]. www.citeseer.com.
    [37] 袁晓辉,金立左,李久贤,夏良正.基于兴趣区检测与分析的水上桥梁识别[J].红外与毫米波学报,2003年10月,第5期:331-336.
    [38] 吴皓,刘政凯,张荣.TM图像中桥梁目标识别方法的研究[J].遥感学报,2003年11月,第6期:478-484.
    [39] 姜骊黎,史册,杨海波,姚庆栋.遥感图像中水上桥梁的识别[J].模式识别与人工智能,2000年6月,第2期:214-217.
    [40] Novak L M, Owirka G J, Netishen C M. Radar Target Identification Using Spatial Matched Filters[J]. Patten Recognition, Vol.27, No.4, 1994:607:617.
    [41] Gunther. Focus of Attention from Local Color Symmetries [J]. IEEE Trans. On PAMI, Vol.26, No.7, July, 2004, pp.817-830.
    [42] Treisman A, Paterson R. Emergent features, attention and object perception[J]. Journal of Experimental Psychology: Human Perception and Performance, 1984, 10: 12-31.
    [43] Treisman A. Preattentive Processing in Vision[J]. Computer Vision, Graphics, and Image Processing, 1985, 31(2): 156-177.
    [44] Treisman A, Gelade G. A feature integration theory of attention[J]. Cognitive Psychology, 1980, 12(2): 97-136.
    [45] Laurent Itti. Automatic Foveation for Video Compression using a Neurobiological Model of Visual Attention [J]. IEEE Trans. On PAMI, Vol.13, No. 10, October, 2004, pp 1304-1318.
    [46] Treisman A. Features and objects: the fourteenth Bartlett Memorial lecture [J].Q.J. Experimential Psychology, 40A, pp. 201-237, 1988.
    [47] Treisman A. The perception of features and objects. In A. Baddeley and L.Weiskrantz (Eds.) Attention: Selection, Awareness and Control, Oxford: Uarendon Press, pp. 5-35, 1993.
    [48] Treisman A. Feature binding, attention and object perception[J] Phil. Trans. R. Soc. Lond. B., 353, pp. 1295-1306, 1998.
    [49] Yaoru Sun. Hierarchical Object-Based Visual Attention for Machine Vision[D]. University of Edinburgh. College of Science and Engineering. School of Informatics, 2003.
    [50] Posner M E. Orienting of attention[J]. Q. J. Exp. Psychol., 32, pp. 3-25, 1980.
    [51] Eriksen C W, James J D St. Visual attention within and around the field of focal attention: a zoom lens model[J]. Perception and psychophysics, 1986, 40(4), pp.225-240.
    [52] Duncan J. Selective attention and the organization of visual information[J]. J.Exp. Psychol., 113, pp. 501-517, 1984.
    [53] Andersen C H, Van Essen D C. Shifter circuits: a computational strategy for dynamic aspects of visual processing[C]. Proc. Natl. Acad. Sci., USA, 84, pp. 6297-6301, 1987.
    [54] Olshausen B A, Andersen C H, Van Essen D C. A neurobiological model of visual attention and invariant pattern recognition based on dynamic routing of information[J]. J. Neuroscience, 13(11), pp. 4700-4719, 1993.
    [55] Wolfe J. W. Guided Search 2.0: A revised model of visual search[J]. Psychonomic Bulletin and Review, 1, pp. 202-238, 1994.
    [56] Humphreys G W. Search via recursive rejection (SERR): A connectionist model of visual search[J]. Cognitive Psychology, 25, pp. 43-110, 1993.
    [57] Heinke D, Humphreys G W. SAIM: A model of visual attention and neglect[C]. Proceedings International Conference on Artificial Neural Networks, pp.913-918, New York, NY, 1997.
    [58] Grossberg S, Mingolla E, Ross W. A neural theory of attentive visual search: interactions of boundary, surface, spatial and object representations[J]. Psychological Review, 101, pp. 470-489, 1994.
    [59] Grossberg S. How does the cerebral cortex work? Learning, attention and grouping by the laminar circuits of visual cortex[J]. Spatial Vision, 12(2), pp. 13-185, 1999.
    [60] Gottlieb J P, Kusunoki M, Goldberg M E. The representation of visual salience in monkey parietal cortex[J]. Nature, 391 (6666), pp. 481-484, 1998.
    [61] Robinson D J, Peterson S E. The pulvinar and visual salience[J]. Trends in Neuroscience, 15(4), pp. 127-132, 1992.
    [62] Tsotsos J K, et al. Modelling visual attention via selective tuning[J]. Artificial Intelligence, 78, pp. 507-545, 1995.
    [63] Clark J J, Ferrier N. Modal control of an attention vision system[C]. Proc. IEEE Inter. Conf. Computer Vision, Tarpon Springs, FL., pp. 514-523, 1988.
    [64] Clark J J. Spatial attention and latencies of saccadic eye movements[J]. Vision Research, 39(3), pp. 583-600, 1998.
    [65] Baluja S, Pomerleau D. Dynamic relevance: Vision-based focus of attention using artificial neural networks[J]. Artificial Intelligence, 97, pp. 381-395, 1997.
    [66] Baluja S, Pomerleau D. Expectation-based selective attention for visual monitoring and control of a robot vehicle[J]. Robotics and Autonomous Systems, 22, pp. 329-344, 1997.
    [67] Niebur E, Koch C, Rosin C. An oscillation based model for the neuronal basis of attention[J]. Vision Research, 33, pp. 2789-2802, 1993.
    [68] Niebur E, Koch C. A model for the neuronal implementation of selective visual attention based on tempporal correlation among neurons[J]. J. Neurosci., 1, pp. 141-158, 1994.
    [69] Milanese R, Wechsler H, Gil S, Bost J, Pun T. Integration of bottom-up and top-down cues for visual attention using non-linear relaxation[C]. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (Seattle, 1994), 1994, pp. 781-785.
    [70] Leavers V. Preattentive computer vision-towards a 2-stage computer vision system for the extraction of qualitative descriptors and the cues for focus of attention[J]. Image and Vision Computing, vol. 12, no. 9, pp. 583-599, 1994.
    [71] Maki A, Nordlund P, Eklundh J O. A computational model of depth-based attention[C]. In Proc. 13th Int. Conf. on Pattern Recognition, vol. 4, 1996, pp. 734-738.
    [72] 张志龙,曹承倜.一种保护彩色图像色度信息的矢量中值滤波器[J].计算机工程与应用,2001年,第21期,pp.99-101.
    [73] 张志龙.试温漆温度判读与数据处理系统[D].长沙:国防科技大学研究生院,2001.
    [1] GUEST EDITORS' INTRODUCTION Perceptual Organization in Computer Vision: Status, Challenges, and Potential[J]. Computer Vision and Image Understanding, 1999, 76 (1)1-5:
    [2] Marr D. VISION: A Computational Investigation into the Human Representation and Processing of Visual Information[M]. Freeman, San Francisco, 1981.
    [3] Witkin A, Tenenbaum J. On the role of structure in vision, in Human and Machine Vision(J. Beck, B. Hope, and A. Rosenfeld, Eds.) [M]. Academic Press, San Diego, 1983, pp. 481-543.
    [4] Lowe D G. Perceptual Organization and Visual Recognition[M]. Kluwer Academic, Boston, 1985.
    [5] Nelson R, Selinger A. A cubist approach to object recognition[J]. In International Conference on Computer Vision, 1998.
    [6] Modayur B P, Shapiro L G. 3D matching using statistically significant groupings[C]. In Proceedings of the International Conference on Pattern Recognition, 1996, pp. 238-242.
    [7] Mohan R, Nevatia R. Using perceptual organization to extract 3-D structures[C]. IEEE Trans. On Pattern Anal. Mach. Intell. 11, 1989, 1121-1139.
    [8] Allmen M, Dyer C R. Computing spatiotemporal relations for dynamic perceptual organizations[J]. Computer Vision, Graphics, Image Process, 58, 1993, 338-350.
    [9] Chang Y L, Aggarwal J K. Line correspondences from cooperating spatial and temporal grouping processes for a sequence of images[J]. Compute Vision Image Understand, 1997, pp. 186-201.
    [10] Malik J, Forsyth D A, Fleck M M, Greenspan H, Leung T, Carson C, Belongie Z, Bregler C. Finding objects in image databases by grouping[J]. In International Conference on Image Processing, 1996, pp.761-764.
    [11] Lin C, Huertas A, Nevatia R. Detection of building using perceptual grouping and shadows[J]. In Proceedings of the Conference on Computer Vision and Pattern Recognition, 1994, pp. 62-69.
    [12] Krisgnamachari S, Chellapa R. Delineating buildings by grouping lines with MRFs[J]. IEEE Trans. On Image Process, 5, 1996, pp. 164-168.
    [13] Henricsson O. The role of color attributes and similarity grouping in 3D building reconstruction[J]. Comput.Vision Image Understand, 1998, pp.163-184.
    [14] Sarkar S, Boyer K. L. Quantitative measure of change based on feature organization: Eigenvalues and eigenvectors [J]. Compute Vision Image Understanding, 1998, pp. 110-136.
    [15] Sarkar S, Padmanabhan Soundararajan. Supervised Learning of Large Perceptual Organization: Graph Spectral Partitioning and Learning Automata[J]. IEEE Trans. On Pattern Analysis and Machine Intelligence, Vol.22, No.5, MAY, 2000, pp:504-526.
    [16] Etemadi A, Schmidt J P, Matas G, Illingworth J, Kittler J. Low-Level Grouping of Straight Line Segments[J]. Proc. British Machine Vision Conf, pp.119-126, 1991.
    [17] Jacobs D W. Robust and Efficient Detection of Salient Convex Groups[J]. IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 18, no. 1, pp. 23-37, Jan. 1996.
    [18] Roth G, Levine M D. Geometric Primitive Extraction Using a Genetic Algorithm[J]. IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 1, no. 9, pp. 901-905, Sept. 1994.
    [19] Mohan R, Nevatia R. Using Perceptual Organization to Extract 3-D Structures [J]. IEEE
     Trans. Pattern Analysis and Machine Intelligence, vol. 11, no. 11, pp. 1,121-1,139, Nov. 1989.
    [20] Kang H B, Walker E. Characterizing and controlling approximation in hierarchical perceptual grouping [J]. Fuzzy Sets and Systems, 65, 1994, pp. 187-244.
    [21] 刘普寅,吴孟达.模糊理论及其应用[M].长沙:国防科技大学出版社,1998.
    [23] Ihler E, Wagner D, Wagner F. Modeling Hypergraphs by Graphs with the Same Mincut Properties[J]. Information Processing Letters, vol. 45, pp. 171-175, Mar. 1993.
    [24] Zadeh L A. A theory of approximate reasoning[A]. Hayes J, Michie D, Mikulich L I, Machine Intelligence[M], Vol.9 (Halstead Press, New York, 1979) 149-194.
    [25] 吴泉源,刘江宁.人工智能与专家系统[M].长沙:国防科学技术大学出版社,1995.
    [26] Milan Sonka, Vaclav Hlavac, Roger Boyle. Image Processing, Analysis, and Machine Vision (Second Edition) [M].北京:人民邮电出版社,2002年第1版.
    [27] James C, Bezdek, James Keller, Raghu Krisnapuram, Nikhil R. Pal. Fuzzy Models and Algorithms for Pattern Recognition and Image Processing [M]. Kluwer Academic Publishers, 1999.
    [28] Fabrizio Russo. A new class of fuzzy operators for image processing, design and implementation[C]. IEEE Int.Conf. on Neural Networks, 1993, pp.815-820.
    [29] Richard O Duda, Peter E Hart, David G Stork.李宏东,姚天翔译.模式分类[M].北京:机械工业出版社,2003。
    [30] Ralescu A L and Shanahan J G. Fuzzy Perceptual Grouping in Image Understanding [C]. Proc. 4th IEEE Int. Conf. on Fuzzy Systems / 2nd Int. Fuzzy Engineering Symp., Fuzz-IEEE'95, Yokohama, 1995.
    [31] Ralescu A, Hartani R. Some issues in fuzzy and linguistic modeling[C]. The 4th IEEE International Conference on Fuzzy Systems & 2nd International Fuzzy Engineering Symposium, Yokohama, Japan, 1995.
    [32] Russo F. A new class of fuzzy operators for image processing[C].IEEE Int.Conf.on Neural Networks, pp.815-820, 1993.
    [33] Kelly A R, Hancock E R. Grouping line segments using eigenclustering[C].Proceedings of the 11th British. Machine Vision Conference, Bristol, UK, 2000, 586-595.
    [34] Pietro Perona and William Freeman.A Factorization Approach to Grouping[C].Proc. 5th European Conference of Computer Vision (ECCV98), Freiburg, Germany, 1998, pp. 655-670.
    [35] 郭桂蓉,庄钊文.信息处理中的模糊技术[M].长沙:国防科技大学出版社,1993.
    [36] Wang S, Kubota T, Siskind J M. Salient Boundary Detection Using Ratio Contour[C]. Neural Information Processing Systems Conference (NIPS), 1571-1578, Vancouver, Canada, 2003
    [37] Julie Falkner, Franz Rendl, Henry Wolkowicz. A Computational Study of Graph Partitioning, 1994, www.citeseer.com.
    [38] Erik A, Engbers, Arnold W. M. Smeulders. Design Consideration for Generic Grouping in Vision [J]. IEEE Trans. On PAMI, 2003, 25(4): 445—457.
    [39] Wertheimer M. Laws of Organization in Perceptual Forms (partial translation), A Sourcebook of Gestalt Psycychology, W.B. Ellis, ed., pp. 71-88, Harcourt, Brace, 1938.
    [40] 王树禾.图论及其算法[M].合肥:中国科技大学出版社,1990.
    [41] Jianbo Shi and Jitendra Malik. Normalized Cuts and Image Segmentation [J]. IEEE Transactions On Pattern Analysis And Machine Intelligence, Vol. 22, No. 8, AUGUST 2000, pp.888-905
    [42] Sudeep Sarkar, Kim L. Boyer. Quantitative Measures of Change Based on Feature Organization: Eigenvalues and Eigenvectors [J]. Computer Vision and Image Understanding, Vol. 71, No. 1, July, 1998, pp.110-136.
    [43] Fiedler M. A Property of Eigenvectors of Nonnegative Symmetric Matrices and Its Applications to Graph Theory. Czech. Math. J., Vol. 25, No. 100, pp. 619-633, 1975.
    [44] Donath W E, Hoffman A J. Lower bounds for the partitioning of graphs[J]. IBM Journal of Research and Development, pages 420-425, 1973.
    [45] Stephen Guattery, Gary L. Miller. On the Performance of Spectral Graph Partitioning Methods [J]. www.citeseer.com.
    [46] 张贤达.矩阵分析[M].北京:清华大学出版社,2004.
    [47] 李庆扬,王能超,易大义.数值分析[M].武汉:华中理工大学出版社,1982.
    [48] 何光渝.Visual C++常用数值算法集[M].北京:科学出版社,2002.
    [49] 戴华.求解大规模矩阵问题的Krylov子空间方法[J].南京航空航天大学学报.第33卷,第2期,2001年4月,PP.139-145.
    [50] Pothen A, Simon H, Liou K P. Partitioning sparse matrices with eigenvectors of graphs [J]. SIAM J. Matrix Anal. Appl., 1990, 11, pp: 430—452.
    [51] Hagen L, Kahng A. New Spectral Methods for Ratio Cut Partitioning and Clustering [J]. IEEE Trans. On CAD, 1992, 11(9): 1074-1085.
    [52] Ding, He, Zha. Perturbation analysis of Laplacian matrix on sparsely connected graphs, KDD 2001, San Francisco, California, USA, www.google.com.
    [1] Huertas A, Nevatia R. Detecting buildings in aerial images [J]. Computer Vision, Graphics and Image Processing, 41,131-152 (1988).
    [2] Huertas A, Cole W, Nevatia R. Detecting Runways in Complex Airport Scenes [J]. Computer Vision, Graphics and Image Processing, 51, 107-145, (1990).
    [3] Yuh-Tay Liow, Theo Pavlidis. Use of Shadows for Extracting Buildings in Aerial Images [J]. Computer Vision, Graphics and Image Processing, 49, 242-277 (1990).
    [4] Barzohar M, Cooper M. Automatic Finding of Main Roads in Aerial Images by Using Geometric-Stochastic Models and Estimation [J]. IEEE Transactions on Pattem Analysis And Machine Intelligence, Vol. 18, No.7, July, 1996: 707-721.
    [5] Laptev L, Mayer H, Lindeberg T, Eckstein W, Steger C, Baumgartner A. Automatic extraction of roads from aerial images based on scale and snakes [J]. Machine Vision and Applications, 2000, 12: 23-31.
    [6] Baker D C, Hwang S S, Aggarwal J K. Detection and Segmentation of Man-Made Objects in Outdoor Scenes: Concrete Bridge [J]. Journal of Optical Society of America A, 1989, 6(6): 930-950.
    [7] 袁晓辉,金立左,李久贤,夏良正.基于兴趣区检测与分析的水上桥梁识别[J].红外与毫米波学报,2003年10月,第5期:331-336.
    [8] 徐胜荣,李忠兴.基于知识的桥梁目标识别方法研究[J].模式识别与人工智能,1992,5(2):123-128.
    [9] 袁再华,杨树谦.桥梁图像的自动识别跟踪方法探讨[J].红外与激光工程,1998,27(1):4-8.
    [10] 左震,张天序,汪有国.远距红外图像中桥梁目标识别研究[J].电子学报,1998,26(11):6-9.
    [11] 吴皓,刘政凯,张荣.TM图像中桥梁目标识别方法的研究[J].遥感学报,2003年11月,第6期:478-484.
    [12] 姜骊黎,史册,杨海波,姚庆栋.遥感图像中水上桥梁的识别[J].模式识别与人工智能,2000年6月,第2期:214-217.
    [13] 王运锋,汤志伟,王建国,黄顺吉.SAR图像中桥梁的识别方法研究[J].系统工程与电子技术,2001,23(6):76-78.
    [14] 文贡坚,王润生.从航空遥感图像中自动提取主要道路[J].软件学报,2000,11(7):957-964.
    [15] 鲁学军,王钦敏,明冬萍,王晶,徐志刚.空间特征在遥感影像分析中的应用[J].中国图像图形学报,2004,9(6):727-743.
    [16] 李艳,彭嘉雄.港口目标特征提取与识别[J].华中科技大学学报,2001,29(6):10-12.
    [17] 侯彪,刘芳,焦李成.基于小波变换的高分辨SAR港口目标自动分割[J].红外与毫米波学报,2002,21(5):385-389.
    [18] 范典,郭华东,岳焕印,王长林.基于二进小波变换的SAR图像湖岸线提取[J].遥感学报,2002年,6(6):511-516.
    [19] Lee J S, Jurkevich I. Unsupervised Coastline Detection and Tracing In SAR Images [C]. Geoscience and Remote Sensing Symposium, 1989. IGARSS'89. 12th Canadian Symposium on Remote Sensing. 1989 International , Volume 4 , July 13, 1989, Pages: 2611-2614.
    [20] Jong-Sen Lee, Igor Jurkevich. Coastline Detection And Tracing in SAR Images[J]. IEEE Transactions on Geoscience and Remote Sensing, Vol. 28, No. 4, July, 1990, pp.662-668.
    [21] Zhang D, L. Van Gool, A. Oosterlinck. Coastline Detection From SAR Images [C]. Geoscience and Remote Sensing Symposium, 1994. IGARSS '94. 'Surface and Atmospheric Remote Sensing: Technologies, Data Analysis and Interpretation'., International, Volume: 4,8-12 Aug. 1994, Pages:2134-2136, vol.4.
    [22] Bijaoui J, Cauneau F. Separation of Sea and Land in SAR images using texture classification[C].OCEANS '94. 'Oceans Engineering for Today's Technology and Tomorrow's Preservation.' Proceedings , Volume: 1 , 13-16 Sept. 1994, Pages:I/522 -1/526 vol.1.
    [23] David C Mason, Ian J. Davenport. Accurate and Efficient Determination of the Shoreline in ERS-1 SAR Images[J]. IEEE Transactions on Geoscience and Remote Sensing, Vol. 34, No. 5, September, 1996, pp. 1243-1253.
    [24] Miguel Moctezuma, Boris Escalante, Ricardo Mendezl, Juan R. Lopez, Francisco Garcia. Coastline Detection with Polynomial Transforms and Markovian Segmentations [C]. Geoscience and Remote Sensing, 1997. IGARSS '97. 'Remote Sensing - A Scientific Vision for Sustainable Development'., 1997 IEEE International , Volume: 1 , 3-8 Aug. 1997, Pages:38-40 vol.1.
    [25] Ireena A. Erteza. An Automatic Coastline Detector for Use with SAR Images [R]. Sandia Report, 1998.
    [26] Gunther Heene, Sidharta Gautama. Optimization of a Coastline Extraction Algorithm for Object-Oriented Matching of Multi-sensor Satellite Imagery [C]. Geoscience and Remote Sensing Symposium, 2000. Proceedings. IGARSS 2000. IEEE 2000 International, Volume: 6 , 24-28 July 2000, Pages:2632 - 2634 vol.6.
    [27] Andreas Niedermeier, Edzard Romanee?en, and Susanne Lehner. Detection of Coastlines in SAR Images using Wavelet Methods [J]. IEEE Transactions on Geoscience and Remote Sensing, Vol. 38, No. 5, September 2000, pp.2270-2281.
    [28] Giancarlo BO, Silvana Dellepiane, Raimondo De Laurentils. Semiautomatic Coastline Detection in Remotely Sensed Images [C]. Geoscience and Remote Sensing Symposium, 2000. Proceedings. IGARSS 2000. IEEE 2000 International, Volume: 5 , 24-28 July 2000, Pages: 1869-1871 vol.5.
    [29] Giancarlo BO, Silvana DELLEPIANE, Raimondo DE LAURENTIIS. Coastline Extraction in Remotely Sensed Images by Means of Texture Features Analysis [C].Geoscience and Remote Sensing Symposium, 2001. IGARSS '01. IEEE 2001 International, Volume: 3 , 9-13 July 2001, Pages:1493 -1495 vol.3.
    [30] Eduardo A. Loos, K. Olaf Niemann. Shoreline Feature Extraction from Remotely Sensed Imagery [C]. Geoscience and Remote Sensing Symposium, 2002. IGARSS '02. 2002 IEEE International, Volume: 6 , 24-28 June 2002, Pages:3417 - 3419 vol.6.
    [31] Karantzalos K G, Argialas D, Georgopoulos A. Towards Automatic Detection of Coastlines From Satellite Imagery [C]. Digital Signal Processing, 2002. DSP 2002. 2002 14th International Conference on , Volume: 2,1-3 July 2002, Pages:897 - 900 vol.2.
    [32] Francisco Eugenio, Ferran Marques, Javier Marcello. A contour-based approach to automatic and accurate registration of multi-temporal and multi-sensor satellite imagery [C]. Geoscience and Remote Sensing Symposium, 2002. IGARSS '02. 2002 IEEE International, Volume: 6 , 24-28 June 2002, Pages:3390 - 3392 vol.6.
    [33] Xu Jianbin, Hong Wen, Liu Zhe, Wu Yirong, Xiang Maosheng. The Study of Rough-location of Remote Sensing Image with Coastlines [C]. Geoscience and Remote Sensing Symposium, 2003. IGARSS '03. Proceedings. 2003 IEEE International, Volume: 6 , 21-25 July 2003, Pages:3964 - 3966 vol.6.
    [34] Ferdinando Giordano, Silvana Dellepiane, Raimondo De Laurentiis. Coastline
     Extraction in Remotely Sensed Images. www.google.com.
    [35] Della Rocca M R, Fiani M, Fortunato A, Pistillo P. Active Contour Model to Detect Linear Features in. Satellite Images. www.citeseer.com.
    [36] 瞿继双,王超,王正志.一种基于多阈值的形态学提取遥感图象海岸线特征方法[J].中国图像图形学报,2003,8(7):805-809.
    [37] 陆立明,王润生,李武皋.基于合成孔径雷达回波数据的海岸线提取方法[J].软件学报,2004,16(6):531-536.
    [38] Kass M, Witkin A, Terzopoulos D. Snakes: active contour models[J]. International Journal of Computer Vision. Vol. 1, No. 4, pp.321-331, 1987.
    [39] Xu C, Prince J L. Gradient Vector Flow: A New External Force for Snakes [C]. Proc. IEEE Conf. on Comp. Vis. Patt. Recog (CVPR), Los Alamitos: Comp. Soc. Press, pp. 66-71, June, 1997.
    [40] Chenyang Xu and Jerry L. Prince. Snakes, Shape, and Gradient Vector Flow [J]. IEEE Transactions on Image Processing, 1998, Vol. 7, No. 3, March, 1998, pp.359-369.
    [41] Laptev I, Mayer H, Lindeberg T, Eckstein W, Stager C, Baumgartner A. Automatic extraction of roads from aerial images based on scale space and snakes[J]. Computer Vision and Application, 2000, 12: 23-31.
    [42] Donna J, Williams, Mubarak Shah. A Fast Algorithm for Active Contours and Curvature Estimation[J]. CVGIP: Image Understanding, Vol. 55, No. 1 January, pp. 14-26, 1992.
    [43] Cohen L D. On active contour models and balloons [J]. CVGIP: Image Understanding, Vol. 53, No. 2, 1991, pp. 211-218.
    [44] Ghassan Hamarneh, Artur Chodorowski, Tomas Gustavsson. Active Contour Models: Application to Oral Lesion Detection in Color Images [C]. Systems, Man, and Cybernetics, 2000 IEEE Intemational Conference, Vol. 4, 8-11, Oct. 2000, Pages: 2458-2463 vol.4.
    [45] 张勇,欧宗英,侯建华.基于主动轮廓模型的医学图像边界跟踪[J].仪器仪表学报,2002年6月第三期,173-174.
    [46] 刘胜兰,周儒荣,张艳丽.用主动轮廓模型优化网格曲面上的特征线[J].计算机辅助设计与图形学学报,2004年4月第4期,439-448.
    [47] 蒋晓悦,赵荣椿.一种改进的活动轮廓图像分割技术[J].中国图形图像学报,2004年第9期.
    [49] 杨杨,张田文.一种新的主动轮廓线跟踪算法[J].计算机学报,1998,21(增刊):297-302。
    [50] 李培华,张田文.主动轮廓线模型(蛇模型)综述[J].软件学报,2000,11(6):751-757.
    [51] Amini A A, Tehrani S, Weymouth T E. Using dynamic programming for minimizing the energy of active contours in the presence of hard constraints[C]. In Proc. 2nd Int. Conf. Computer Vision, 1988, pp.95-99.
    [52] Gunilla Borgefors. Distance Transformations in Digital Images[J]. Computer Vision, Graphics, and Images Processing. Vol. 32, 1986, pp. 344-371.
    [53] Milan Sonka, Vaclav Hlavac, Roger Boyle. Image Processing, Analysis, and Machine Vision (Second Edition) [M]. Thomson Brooks/Cole, ),人民邮电出版社,2002年.
    [54] Teh C. H., Chin R. T. On detection of dominant points on digital curves [J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 1989, 11 (8): 859-872.
    [55] Aoyama H, Kawagoe M. A piecewise linear approximation method preserving visual feature points of original figures [J]. CVGIP, 1991, 53(5): 435-446.
    [56] Dunham J G. Optimum uniform piecewise linear approximation of plane curves[J]. IEEE Trans. On PAMI, 1986, 8(1): 67-75.
    [57] Pikaz A., Dinstein I. Optimal polygonal approximation of digital curves[J]. Pattern Recognition, 1995, 28(3): 373-379.
    [58] Attneave F. Some information aspects of visual perception [J]. Psychology Review, 1954, 61(3): 183-193.
    [59] 文贡坚,王润生.数字曲线上的特征点检测[J].计算机学报,1998年第6期,520-526。
    [60] 吴昊,王润生.一种数字曲线的分层自适应特征点检测方法[J].计算机工程与科学,2000年,第6期,16-18.
    [61] 肖轶军,丁明跃,彭嘉雄.基于B样条模型的曲线特征点检测算法[J].数据采集与处理,2000年,第4期,422-425.
    [62] 王晏民.矢量曲线的特征点提取[J].测绘工程,2002年第2期:8-10.
    [63] 樊宏斌,耿国华,周明全.一种求曲线极小特征点集的算法[J].西北大学学报(自然科学版),2002年,第2期,166-169.
    [64] 刘丹丹,张树有,刘元开,谭建荣.一种基于特征点识别的曲线离散化方法[J].中国图像图形学报,2004年第6期.
    [65] Rosenfeld A, Hummel R A, Zucker S W. Scene labeling by relaxation operations[J]. IEEE Trans. Sys., Man and Cybern., 1976, SMC-6(6), pp: 420-433.
    [66] Ranade S, Rosenfeld A. Point pattern matching by relaxation[J]. Pattern Recognition, 1980, 12(4), pp:269-275.
    [67] Cucka P., Rosenfeld A. Linear feature Compatibility for Pattern Matching Relaxation [J]. Pattern Recognition, 1992, 25(2), pp: 189-196.
    [68] Lee H, Park R. H. Relaxation algorithm for shape matching of two-dimensional objects [J]. Pattern Recognition Letter, 1989, 10, pp.309-313.
    [69] Gerard Medioni, Ramakant Nevatia. Matching Images Using Linear Features [J]. IEEE Transactions On Pattern Analysis and Machine Intelligence, Vol. PAMI-6, No. 6, November, 1984, pp.675-685.
    [70] Ramakant Nevatia, Keith E. Price. Locating Structures in Aerial Images[J]. IEEE Transactions On Pattern Analysis and Machine Intelligence, Vol. PAMI-4, No. 5, September, 1982, pp.476-484.
    [71] Medioni G.. Matching linear features of images and maps [J]. Proc. 1982 DARPA Image Understanding Workshop, 1982, pp. 103-111.
    [72] James H. Mcintosh, Kathleen M. Mutch. Matching Straight Lines [J]. Computer Vision, Graphics and Images Processing, 1988, 43, 386-408.
    [73] Richard C. Wilson, Edwin R. Hancock. Structural Matching by Discrete Relaxation [J]. IEEE Transactions On Pattern Analysis and Machine Intelligence, Vol. 19, No. 6, June, 1997, pp. 634-648.
    [74] 孙即祥.数字图像处理[M].石家庄:河北教育出版社,1993.
    [75] Eric Klassen, Anuj Srivastava, Washington Mio, Shantanu H. Joshi. Analysis of Planar Shapes Using Geodesic Paths on Shape Spaces [J]. IEEE Trans. On Pattern Analysis and Machine Intelligence, Vol. 26, No. 3, MARCH 2004, pp: 372-383.
    [76] 朱长征,张志龙,沈振康.一种基于点特征松弛匹配算法的星模式识别方法[J].宇航学报,2005年(待刊出).