基于表面等离激元的若干纳米光子学器件
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米光子学通常是指研究结构在亚微米尺度(特别在小于100nm尺度)下,光子与物质或者器件相互作用的科学。表面等离激元(Surface plasmon polaritons, SPPs)是在介电常数符号相反的两种介质面(通常用金属与绝缘体)上存在的一种电磁表面波的模式,可以打破衍射极限的限制。在适当的金属与介质组成的光波导结构中,光可以被束缚在亚波长的尺度之下。因此,利用金属与介电界面上的表面等离基元可以制作高度集成的纳米器件。目前,对表面等离激元的研究已经被称为表面等离子体学(Plasmonics),是当前纳米光子学的主要分支之一。金属-绝缘体-金属(metal-insulator-metal, MIM)结构是一种典型的表面等离激元波导,利用这种波导结构的特性,人们已经在理论或实验中设计了多种表面等离激元光学器件。本论文针对纳米光子学器件中的多功能全光逻辑门,光学传感器,以及滤波器开展研究工作。
     第一章概述性地介绍了表面等离激元。重点讨论了金属-绝缘体(metal-insulator, MI)界面与多层膜结构的表面等离激元的特性与激发方式,表面等离激元的应用特别是在MIM结构中的纳米光子学器件的应用,纳米光子学器件设计中常用的数值算法以及在数值计算中常用到的色散介质的模型。
     第二章我们使用了时域有限差分法(Finite-Different Time-Domain method, FDTD)研究了多层膜结构中的多功能全光逻辑门。理论与数值计算表明,通过控制双金属纳米间隙波导的耦合距离与三金属纳米间隙波导的耦合距离,可以在一个多层膜结构中同时集成AND逻辑操作、OR逻辑操作、NOT逻辑操作以及XOR逻辑操作。我们给出了双金属纳米间隙波导与三金属纳米间隙波导的耦合方程以及相应的本征模式,并且利用矩阵的形式把数值求解出的本征模式代入到耦合方程,从而得出在不同的输入配置下不同输出端口的光强。结果显示:在多功能全光逻辑门中,AND, OR, XOR和NOT逻辑操作的消光比分别为4.1dB,11.1dB,18.0dB和18.7dB。
     第三章我们使用有限元法(Finite Element method, FEM)研究了矩形谐振腔中的不同的共振模式。利用MIM波导激发出金属矩形谐振腔中的窄带共振模式与宽带共振模式,通过窄带共振模式与宽带共振模式的干涉,可以形成Fano共振。我们讨论了矩形腔的尺寸与共振波长的关系,通过调控窄带共振模式与宽带共振模式共振波长的相对位置,得到了不同形状的非对称的Fano透射谱线。我们利用这种非对称谱线特有性质,设计出了纳米光学传感器。结果表明:这种折射率传感器灵敏度为530nm/RIU, FOM (figure of merit)值为650。值得一提的是,与其它一些实现非对称结构实现Fano共振不同,我们的结构是对称的。
     第四章我们研究了在MIM波导中级联纳米圆盘结构的透射特性。通过控制级联纳米圆盘中不同的圆盘的半径,在通信波长1550nm处,实现了高透过率(约90%)、高Q值(约为60)滤波特性。分析这种滤波特性的本征模式可知,与单一纳米圆盘共振的模式不同,级联纳米圆盘结构中产生了联合共振模式。这种联合共振模式保证了滤波器的高透过率与高Q值。我们还分析了级联纳米圆盘的结构参数对滤波器的输出波长以及Q值的影响。结果显示:该滤波器的输出波长与圆盘的半径成线性关系,其Q值受到R1/D的调控。
     第五章我们对本论文进行了总结,并就下一步纳米光子学器件的研究工作进行了展望。
Nanophotonics is a newly developing and exciting field. By nanophotonics one usually refers to the science and devices involving structures with sub-micron dimensions (specifically less than100nm) and which are interacting with photons. Surface plasmon polaritons (SPPs) are electromagnetic excitations propagating at the interface between a dielectric and a conductor, evanescently confined in the perpendicular direction. Currently, in the proper consisting of metal and dielectric waveguide structure, electromagnetic fields is confined over dimensions on subwavelength can be used to produce highly integrated nanodevices. SPPs is now known as Plasmonics which is a major part of the fascinating field of nanophotonics. Metal-insulator-metal (MIM) waveguide is a typical SPPs waveguide. By using characteristics of MIM waveguide, numerous plasmonics device have been numerically and/or experimentally demonstrated, such as splitters, wavelength demultiplexer, Mach-Zennder interferometers, all-optical switches, nanofocusing, networks, and so on. This thesis focuses on nanophotonics devices of multifunctional all-optical logic gates, sensor, and filter in MIM structure.
     The first chapter introduces the characteristics of the multilayer film structure surface plasmon polaritons, and then describes the application of nanophotonics based on SPPs, especially a variety of nanophotonics devices with the MIM structure, and finally introduced numerical methods in the design of nanophotonics devices and the model of dispersive media in the numerical calculation.
     In the second chapter, we use the FDTD method to study multifunctional all-optical logic gates in the multilayer film structure. Theory and numerical calculations show that by tuning the coupling distance of metal gap waveguides, one can integrated AND, OR, NOT, and XOR logic gates in a multi-layer film structure. The coupled equations and the corresponding eigenmode was given, and so as the light intensity of each of the different output ports. In this work, the light intensity of each of the different output ports is strongly dependent on the thickness of the metal in the metal nano-gap waveguide arrays, which is due to the thickness of the metal film has a tremendous impact on the coupling coefficient. The extinction ratios of AND, OR, XOR, and NOT operation in multifunctional all-optical logic gates are4.1dB,11.1dB,18.0dB, and18.7dB, respectively.
     In the third chapter, a novel symmetric plasmonic structure which consists of an MIM waveguide and a rectangular cavity is proposed to investigate the Fano resonance performance by adjusting the size of the structure. The Fano resonance originates from the interference between a local quadrupolar and a broad spectral line in the rectangular cavity. It is realized that tuning the Fano profile by changing the size of the rectangular cavity. The nanostructure is expected to work as an excellent plasmonic sensor with a high sensitivity of about530nm/RIU and a figure of merit (FOM) of about650.
     In the fourth chapter, a plasmonic waveguide filter based on three cascaded nanodisks is proposed. By tuning the radius of cascaded nanodisks at telecommunication wavelength1550nm, the filter has a high transmittance (approximately90%) and a high Q factor (approximately60). The cascaded nanodisks support a united resonant (UR) mode. Light is trapped in the middle nanodisk when the UR mode exists. This phenomenon leads to the efficient transmittance and high Q factor of the plasmonic filter. The resonant wavelength and Q factor can be easily modulated by the radii of the nanodisks and the width of the waveguide.
     In the fifth chapter, the thesis is summarized and outlook of the further studies on nanophotonics devices are discussed.
引文
[1]Zalevsky Z, Abdulhalim I. Integrated Nanophotonic Devices. UK:Elsevier,2010
    [2]何赛灵,戴道锌.微纳光子集成.北京:科学出版社,2010
    [3]Wood R W. On a remarkable case of uneven distribution of light in a diffraction grating spectrum. Phil Mag,1902,4(396) 696-402
    [4]Fano U. The Theory of Anomalous Diffraction Gratings and of Quasi-Stationary Waves on Metallic Surfaces (Sommerfeld's Waves). J Opt Soc Am,1941,31(3) 213-222
    [5]Raether H. urface plasmons on smooth and rough surfaces and on gratings. Berlin::Springer, 1988.
    [6]Ebbesen T W, Lezec H J, Ghaemi H F, et al. Extraordinary optical transmission through sub-wavelength hole arrays. Nature,1998,391(6668) 667-669
    [7]Sarid D. Long-Range Surface-Plasma Waves on Very Thin Metal Films. Phys Rev Lett,1981, 47(26) 1927-1930
    [8]Berini P. Plasmon-polariton waves guided by thin lossy metal films of finite width:Bound modes of symmetric structures. Phys Rev B,2000,61(15) 10484-10503
    [9]Charbonneau R, Berini P, Berolo E, et al. Experimental observation of plasmon polariton waves supported by a thin metal film of finite width. Opt Lett,2000,25(11) 844-846
    [10]Berini P. Long-range surface plasmon polaritons. Adv Opt Photon,2009,1(3) 484-588
    [11]Berini P, Charbonneau R, Lahoud N, et al. Characterization of long-range surface-plasmon-polariton waveguides. J Appl Phys,2005,98(4) 043109-043112
    [12]Berini P, Charbonneau R, Jette-Charbonneau S, et al. Long-range surface plasmon-polariton waveguides and devices in lithium niobate. J Appl Phys,2007,101(11)113112-113114
    [13]De Leon I, Berini P. Amplification of long-range surface plasmons by a dipolar gain medium. Nat Photon,2010,4(6) 382-387
    [14]Ambati M, Nam S H, Ulin-Avila E, et al. Observation of Stimulated Emission of Surface Plasmon Polaritons. Nano Lett,2008,8(11) 3998-4001
    [15]Berini P, Charbonneau R, Lahoud N. Long-Range Surface Plasmons on Ultrathin Membranes. Nano Lett,2007,7(5) 1376-1380
    [16]Zia R, Selker M D, Catrysse P B, et al. Geometries and materials for subwavelength surface plasmon modes. J Opt Soc Am A,2004,21(12) 2442-2446
    [17]Dionne J A, Sweatlock L A, Atwater H A, et al. Plasmon slot waveguides:Towards chip-scale propagation with subwavelength-scale localization. Phys Rev B,2006,73(3) 035407
    [18]Prade B, Vinet J Y. Guided optical waves in fibers with negative dielectric constant. J Lightwave Technol,1994,12(1) 6-18
    [19]Miyazaki H T, Kurokawa Y. Squeezing Visible Light Waves into a 3-nm-Thick and 55-nm-Long Plasmon Cavity. Phys Rev Lett,2006,96(9) 097401
    [20]Kurokawa Y, Miyazaki H T. Metal-insulator-metal plasmon nanocavities:Analysis of optical properties. Phys Rev B,2007,75(3) 035411
    [21]Neutens P, Van Dorpe P, De Vlaminck I, et al. Electrical detection of confined gap plasmons in metal-insulator-metal waveguides. Nat Photonics,2009,3(5) 283-286
    [22]Chen J, Smolyakov G A, Brueck S R J, et al. Surface plasmon modes of finite, planar, metal-insulator-metal plasmonic waveguides. Opt Express,2008,16(19) 14902-14909
    [23]Kocabas S E, Veronis G, Miller D A B, et al. Modal analysis and coupling in metal-insulator-metal waveguides. Phys Rev B,2009,79(3) 035120
    [24]Verhagen E, Dionne J A, Kuipers L, et al. Near-field visualization of strongly confined surface plasmon polaritons in metal-insulator-metal waveguides. Nano Lett,2008,8(9) 2925-2929
    [25]Wen K H, Yan L S, Pan W, et al. Spectral Characteristics of Plasmonic Metal-Insulator-Metal Waveguides With a Tilted Groove. Ieee Photonics J,2012,4(5) 1794-1800
    [26]Neutens P, Lagae L, Borghs G, et al. Electrical Excitation of Confined Surface Plasmon Polaritons in Metallic Slot Waveguides. Nano Lett,2010,10(4) 1429-1432
    [27]Garcia-Blanco S M, Pollnau M, Bozhevolnyi S I. Loss compensation in long-range dielectric-loaded surface plasmon-polariton waveguides. Opt Express,2011,19(25) 25298-25310
    [28]Gosciniak J, Holmgaard T, Bozhevolnyi S I. Theoretical Analysis of Long-Range Dielectric-Loaded Surface Plasmon Polariton Waveguides. J Lightwave Technol,2011, 29(10) 1473-1481
    [29]Holmgaard T, Gosciniak J, Bozhevolnyi S I. Long-range dielectric-loaded surface plasmon-polariton waveguides. Opt Express,2010,18(22) 23009-23015
    [30]Volkov V S, Han Z H, Nielsen M G, et al. Long-range dielectric-loaded surface plasmon polariton waveguides operating at telecommunication wavelengths. Opt Lett,2011,36(21) 4278-4280
    [31]Holmgaard T, Bozhevolnyi S I. Theoretical analysis of" dielectric-loaded surface plasmon-polariton waveguides. Phys Rev B,2007,75(24) 245405
    [32]Holmgaard T, Bozhevolnyi S I, Markey L, et al. Dielectric-loaded surface plasmon-polariton waveguides at telecommunication wavelengths:Excitation and characterization. Appl Phys Lett,2008,92(1) 011124
    [33]Holmgaard T, Chen Z, Bozhevolnyi S I, et al. Bend-and splitting loss of dielectric-loaded surface plasmon-polariton waveguides. Opt Express,2008,16(18) 13585-13592
    [34]Krasavin A V, Zayats A V. Passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides. Appl Phys Lett,2007,90(21) 211101
    [35]Massenot S, Weeber J C, Bouhelier A, et al. Differential method for modelling dielectric-loaded surface plasmon polariton waveguides. Opt Express,2008,16(22) 17599-17608
    [36]Brunazzo D, Descrovi E, Martin O J F. Narrowband optical interactions in a plasmonic nanoparticle chain coupled to a metallic film. Opt Lett,2009,34(9) 1405-1407
    [37]Maier S A, Brongersma M L, Kik P G,et al. Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy. Phys Rev B,2002,65(19) 193408
    [38]Maier S A, Kik P G, Atwater H A. Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths:Estimation of waveguide loss. Appl Phys Lett,2002,81(9)1714-1716
    [39]Chu H S, Li E P, Bai P, et al. Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components. Appl Phys Lett,2010,96(22) 221103-1-3
    [40]Zhang X-Y, Hu A, Wen J Z, et al. Numerical analysis of deep sub-wavelength integrated plasmonic devices based on Semiconductor-Insulator-Metal strip waveguides. Opt Express, 2010,18(18) 18945-18959
    [41]Hu F F, Yi H X, Zhou Z P. Band-pass plasmonic slot filter with band selection and spectrally splitting capabilities. Opt Express,2011,19(6) 4848-4855
    [42]Lin X S, Huang X G. Tooth-shaped plasmonic waveguide filters with nanometeric sizes. Opt Lett,2008,33(23) 2874-2876
    [43]Lin X S, Huang X G. Numerical modeling of a teeth-shaped nanoplasmonic waveguide filter. J Opt Soc Am B,2009,26(7) 1263-1268
    [44]Lu H, Liu X M, Mao D, et al. Tunable band-pass plasmonic waveguide filters with nanodisk resonators. Opt Express,2010,18(17) 17922-17927
    [45]Chen J J, Li Z, Lei M, et al. Plasmonic Y-splitters of High Wavelength Resolution Based on Strongly Coupled-Resonator Effects. Plasmonics,2012,7(3) 441-445
    [46]Fu Y, Hu X, Lu C, et al. All-Optical Logic Gates Based on Nanoscale Plasmonic Slot Waveguides. Nano Lett,2012,12(11) 5784-5790
    [47]Lu H, Liu X M, Mao D, et al. Plasmonic nanosensor based on Fano resonance in waveguide-coupled resonators. Opt Lett,2012,37(18) 3780-3782
    [48]Zhang S, Bao K, Halas N J, et al. Substrate-Induced Fano Resonances of a Plasmonic: Nanocube:A Route to Increased-Sensitivity Localized Surface Plasmon Resonance Sensors Revealed. Nano Lett,2011,11(4) 1657-1663
    [49]Hu F F, Yi H X, Zhou Z P. Wavelength demultiplexing structure based on arrayed plasmonic slot cavities. Opt Lett,2011,36(8) 1500-1502
    [50]Lu F, Li G Y, Li K, et al. A compact wavelength demultiplexing structure based on-arrayed MIM plasmonic nano-disk cavities. Opt Commun,2012,285(24) 5519-5523
    [51]Wen K H, Yan L S, Pan W, et al. Wavelength demultiplexing structure based on a plasmonic metal-insulator-metal waveguide. Journal of Optics,2012,14(7) 075001
    [52]Cetin A E, Giiven K, Mustecapl O E. Active control of focal length and beam deflection in a metallic nanoslit array lens with multiple sources. Opt Lett,2010,35(12) 1980-1982
    [53]Fan X, Wang G P. Nanoscale metal waveguide arrays as plasmon lenses. Opt Lett,2006, 31(9) 1322-1324
    [54]Feigenbaum E, Atwater H A. Resonant Guided Wave Networks. Phys Rev Lett,2010,104(14) 147402
    [55]Gramotnev D K, Bozhevolnyi S I. Plasmonics beyond the diffraction limit. Nat Photonics, 2010,4(2) 83-91
    [56]Pitarke J M, Silkin V M, Chulkov E V, et al. Theory of surface plasmons and surface-plasmon polaritons. Rep on Prog Phys,2007,70(1) 1-87
    [57]Maier S A. PLASMONICS:FUNDAMENTALS AND APPLICATIONS. New York Springer; 2007.
    [58]Ebbesen T W, Genet C, Bozhevolnyi S I. Surface-plasmon circuitry. Phys Today,2008,61(5) 44-50
    [59]Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics. Nature,2003, 424(6950) 824-830
    [60]Zayats A V, Smolyaninov, II, Maradudin A A. Nano-optics of surface plasmon polaritons. Physics Reports-Review Section of Physics Letters,2005,408(3-4) 131-314
    [61]Otto A. Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Zeitschrift fur Physik,1968,216(4) 398-410
    [62]Hecht B, Bielefeldt H, Novotny L, et al. Local Excitation, Scattering, and Interference of Surface Plasmons. Phys Rev Lett,1996,77(9) 1889-1892
    [63]Kim D S, Hohng S C, Malyarchuk V, et al. Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures. Phys Rev Lett,2003,91(14) 143901-1-4
    [64]Salomon L, Bassou G, Aourag H, et al. Local excitation of surface plasmon polaritons at discontinuities of a metal film:Theoretical analysis and optical near-field measurements. Phys Rev B,2002,65(12) 125409-1-5
    [65]Zhang S P, Wei H, Bao K, et al. Chiral Surface Plasmon Polaritons on Metallic Nanowires. Phys Rev Lett,2011,107(9) 096801-1-4
    [66]Sepulveda B, Lechuga L M, Armelles G. Magnetooptic Effects in Surface-Plasmon-Polaritons Slab Waveguides. J Lightwave Technol,2006,24(2) 945-955
    [67]Wang B, Wang G P. Simulations of nanoscale interferometer and array focusing by metal heterowaveguides. Opt Express,2005,13(26) 10558-10563
    [68]Pile D E P, Gramotnev D K. Plasmonic subwavelength waveguides:next to zero losses at sharp bends. Opt Lett,2005,30(10) 1186-1188
    [69]Bozhevolnyi S I, Volkov V S-Devaux E, et al. Channel Plasmon-Polariton Guiding by Subwavelength Metal Grooves. Phys Rev Lett,2005,95(4) 046802-1-4
    [70]Liu L, Han Z H, He S L. Novel surface plasmon waveguide for high integration. Opt Express, 2005,13(17)6645-6650
    [71]Pile D F P, Ogawa T, Gramotnev D K, et al. Two-dimensionally localized modes of a nanoscale gap plasmon waveguide. Appl Phys Lett,2005,87(26) 261114-261114-261113
    [72]Bozhevolnyi S I, Volkov V S, Devaux E, et al. Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature,2006,440(7083) 508-511
    [73]Yuan G H, Wang P, Ming Y L H. Multimode interference splitter based on dielectric-loaded surface plasmon polariton waveguides. Opt Express,2009,17(15) 12594-12600
    [74]Tasolamprou A C, Zografopoulos D C, Kriezis E E. Liquid crystal-based dielectric loaded surface plasmon polariton optical switches. J Appl Phys,2011,110(9) 093102-1-9
    [75]Krasavin A V, Zayats A V. Electro-optic switching element for dielectric-loaded surface plasmon polariton waveguides. Appl Phys Lett,2010,97(4) 041109-1-3
    [76]Grandidier J, des Francs G C, Markey L, et al. Dielectric-loaded surface plasmon polariton waveguides on a finite-width metal strip. Appl Phys Lett,2010,96(6) 063105-1-3
    [77]Bian Y S, Zheng Z, Liu Y, et al. Dielectric-loaded surface plasmon polariton waveguide with a holey ridge for propagation-loss reduction and subwavelength mode confinement. Opt Express,2010,18(23) 23756-23762
    [78]Biagi G, Holmgaard T, Skovsen E. Near-field electrospinning of dielectric-loaded surface plasmon polariton waveguides. Opt Express,2013,21(4) 4355-4360
    [79]Guasoni M, De Angelis C. Analytical approximations of the dispersion relation of a linear chain of metal nanoparticles. Opt Commun,2011,284(7) 1822-1827
    [80]Krenn J R, Dereux A, Weeber J C, et al. Squeezing the Optical Near-Field Zone by Plasmon Coupling of Metallic Nanoparticles. Phys Rev Lett,1999,82(12) 2590-2593
    [81]Maier S A, Brongersma M L, Kik P G, et al. Plasmonics-A Route to Nanoscale Optical Devices (Adv Mater,2001,13,1501). Adv Mater,2003,15(7-8) 562-562
    [82]Chen L, Shakya J, Lipson M. Subwavelength confinement in an integrated metal slot waveguide on silicon. Opt Lett,2006,31(14) 2133-2135
    [83]Noginov M A, Zhu G, Bahoura M, et al. Enhancement of surface plasmons in an Ag aggregate by optical gain in a dielectric medium. Opt Lett,2006,31(20) 3022-3024
    [84]Burke J J, Stegeman G I, Tamir T. Surface-polariton-like waves guided by thin, lossy metal films. Phys Rev B,1986,33(8) 5186-5201
    [85]Pile D F P, Gramotnev D K. Plasmonic subwavelength waveguides:next to zero losses at sharp bends. Opt Lett,2005,30(10) 1186-1188
    [86]Veronis G, Fan S H. Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides. Appl Phys Lett,2005,87(13) 131102-1-3
    [87]Lee T-W, Gray S. Subwavelength light bending by metal slit structures. Opt Express,2005, 13(24)9652-9659
    [88]Wang B, Wang G P. Surface plasmon polariton propagation in nanoscale metalgap waveguides. Opt Lett,2004,29(17) 1992-1994
    [89]Xiao S, Liu L, Qiu M. Resonator channel drop filters in a plasmon-polaritons metal. Opt Express,2006,14(7) 2932-2937
    [90]Matsuzaki Y, Okamoto T, Haraguchi M, et al. Characteristics of gap plasmon waveguide with stub structures. Opt Express,2008,16(21) 16314-16325
    [91]Tao J, Huang X G, Lin X S, et al. Systematical research on characteristics of double-sided teeth-shaped nanoplasmonic waveguide filters. J Opt Soc Am B,2010,27(2) 323-327
    [92]Pan D, Wei H, Xu H. Optical interferometric logic gates based on metal slot waveguide network realizing whole fundamental logic operations. Opt Express,2013,21(8) 9556-9562
    [93]Mei X A, Huang X G, Tao J, et al. A wavelength demultiplexing structure based on plasmonic MDM side-coupled cavities. J Opt Soc Am B,2010,27(12) 2707-2713
    [94]Noual A, Akjouj A, Pennec Y, et al. Modeling of two-dimensional nanoscale Y-bent plasmonic waveguides with cavities for demultiplexing of the telecommunication wavelengths. New J Phys,2009,11 103020
    [95]Tao J, Huang X G, Zhu J H. A wavelength demultiplexing structure based on metal-dielectric-metal plasmonic nano-capillary resonators. Opt Express,2010,18(11) 11111-11116
    [96]Nikolajsen T, Leosson K, Bozhevolnyi S I. Surface plasmon polariton based modulators and switches operating at telecom wavelengths. Appl Phys Lett,2004,85(24) 5833-5835
    [97]Min C, Veronis G. Absorption switches in metal-dielectric-metal plasmonic waveguides. Opt Express,2009,17(13) 10757-10766
    [98]Verhagen E, Polman A, Kuipers L. Nanofocusing in laterally tapered plasmonic waveguides. Opt Express,2008,16(1) 45-57
    [99]Davoyan A R, Shadrivov I V, Zharov A A, et al. Nonlinear Nanofocusing in Tapered Plasmonic Waveguides. Phys Rev Lett,2010,105(11) 116804-1-4
    [100]Verhagen E, Polman A, Kuipers L. Nanofocusing in laterally tapered plasmonic waveguides. Opt Express,2008,16(1) 45-57
    [101]Gao H T, Shi H F, Wang C T, et al. Surface plasmon polariton propagation and combination in Y-shaped metallic channels. Opt Express,2005,13(26) 10795-10800
    [102]Reiserer A A, Huang J-S, Hecht B, et al. Subwavelength broadband splitters and switches for femtosecond plasmonic signals. Opt Express,2010,18(11) 11810-11820
    [103]Xu H X, Bjerneld E J, Kall M, et al. Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering. Phys Rev Lett,1999,83(21) 4357-4360
    [104]Persson B N J, Zhao K, Zhang Z Y. Chemical contribution to surface-enhanced Raman scattering. Phys Rev Lett,2006,96(20) 207401-1-4
    [105]Kneipp K, Wang Y, Kneipp H, et al. Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS). Phys Rev Lett,1997,78(9) 1667-1670
    [106]Anger P, Bharadwaj P, Novotny L. Enhancement and quenching of single-molecule fluorescence. Phys Rev Lett,2006,96(11) 113002-1-4
    [107]葛德彪,闫玉波.电磁波时域有限差分法.西安:西安电子科技大学出版社,2011
    [108]王长庆,祝西里.电磁场计算中的时域有限差分法.北京:北京大学出版社,1994
    [109]高本庆.时域有限差分法FDTD Method.北京:国防工业出版社,1995
    [110]张榴晨,徐松.有限元法在电磁计算中的应用.北京:中国铁道出版社,1996
    [111]Zimmerman W B J. COMSOL Multiphysics有限元法多物理场建模与分析.北京:人民交通出版社,2007
    [112]Zhanghua H, Forsberg E, Sailing H. Surface Plasmon Bragg Gratings Formed in Metal-Insulator-Metal Waveguides., IEEE Photonics Tech L,2007,19(2) 91-93
    [113]Johnson P B, Christy R W. Optical Constants of the Noble Metals. Phys Rev B,1972,6(12) 4370-4379
    [114]Rakic A D, Djurisic A B, Elazar J M, et al. Optical Properties of Metallic Films for Vertical-Cavity Optoelectronic Devices. Appl Opt,1998,37(22) 5271-5283
    [115]Markovic M I, Rakic A D. Determination of the reflection coefficients of laser light of wavelengths (0.22μm,200μm) from the surface of aluminum using the Lorentz-Drude model. Appl Opt,1990,29(24) 3479-3483
    [116]Ibrahim T A, Grover R, Kuo L C, et al. All-optical AND/NAND logic gates using semiconductor microresonators. Ieee Photonics Technology Letters,2003,15(10) 1422-1424
    [117]Zhang L, Ji R, Jia L, et al. Demonstration of directed XOR/XNOR logic gates using two cascaded microring resonators. Opt Lett,2010,35(10) 1620-1622
    [118]Li Z J, Chen Z W, Li B J. Optical pulse controlled all-optical logic gates in SiGe/Si multimode interference. Opt Express,2005,13(3) 1033-1038
    [119]Zeng S Q, Zhang Y, Li B J, et al. Ultrasmall optical logic gates based on silicon periodic dielectric waveguides. Photonic Nanostruct,2010,8(1) 32-37
    [120]Zhang Y L, Zhang Y, Li B J. Optical switches and logic gates based on self-collimated beams in two-dimensional photonic crystals. Opt Express,2007,15(15) 9287-9292
    [121]Tamsir A, Tabor J J, Voigt C A. Robust multicellular computing using genetically encoded NOR gates and chemical wires. Nature,2011,496(7329) 212-215
    [122]Alex S. Clark J F, John G, et al. All-optical-fiber polarization-based quantum logic gate. Phys Rev A,2009,79(3) 030303-1-4
    [123]Khorasaninejad M, Saini S S. All-optical logic gates using nonlinear effects in silicon-on-insulator waveguides. Appl Optics,2009,48(25) F31-F36
    [124]Li B, Lu D, Memon M I, et al. All-optical digital logic AND and XOR gates using four-wave-mixing in monolithically integrated semiconductor ring lasers. Electron Lett,2009, 45(13) 698-700
    [125]Fujisawa T, Koshiba M. All-optical logic gates based on nonlinear slot-waveguide couplers. J Opt Soc Am B,2006,23(4) 684-691
    [126]Fraga W B, Menezes J W M, da Silva M G, et al. All optical logic gates based on an asymmetric nonlinear directional coupler. Opt Commun,2006,262(1) 32-37
    [127]Ghadi A, Mirzanejhad S. All-optical logic gates using semiconductor-based three-coupled waveguides nonlinear directional coupler. Opt Commun,2011,284(1) 432-435
    [128]Wu Y D, Shih T T, Chen M H. New all-optical logic gates based on the local nonlinear Mach-Zehnder interferometer. Opt Express,2008,16(1) 248-257
    [129]Wei H, Wang Z, Tian X, et al. Cascaded logic gates in nanophotonic plasmon networks. Nat Commun,2011,2387
    [130]Wei H, Li Z, Tian X, et al. Quantum Dot-Based Local Field Imaging Reveals Plasmon-Based Interferometric Logic in Silver Nanowire Networks. Nano Lett,2010,11(2) 471-475
    [131]Fan X, Wang G P, Lee J C W, et al. All-Angle Broadband Negative Refraction of Metal Waveguide Arrays in the Visible Range:Theoretical Analysis and Numerical Demonstration. Phys Rev Lett,2006,97(7) 073901
    [132]Zhu Q, Wang D, Ye J, et al. Coupled metallic ring gap waveguide. Opt Commun,2010, 283(7) 1542-1545
    [133]Cardama A, Kornhauser E. Modal Analysis of Coupling Problems in Optical Fibers. IEEE T Microw Theory,1975,23(1) 162-169
    [134]Kuznetsov M. Coupled wave analysis of multiple waveguide systems:The discrete harmonic oscillator., IEEE J Quantum Elect,1985,21(12) 1893-1898
    [135]Bom M, Wolf E. Principles of Optics. London, U.K:Cambridge Univ. Press,1980.
    [136]Kang Z, Wang G P. Coupled metal gap waveguides as plasmonicwavelength sorters. Opt Express,2008,16(11) 7680-7685
    [137]Luk'yanchuk B, Zheludev N I, Maier S A, et al. The Fano resonance in plasmonic nanostructures and metamaterials. Nat Mater,2010,9(9) 707-715
    [138]Beutler H. Uber Absorptionsserien von Argon, Krypton und Xenon zu Termen zwischen den beiden Ionisierungsgrenzen 2P 32/0 und 2P12/0. Z Physik,1935,93(3-4) 177-196
    [139]Fano U. Sullo spettro di assorbimento dei gas nobili presso il limite dello spettro d'arco. Nuovo Cim,1935,12(3) 154-161
    [140]Fano U. Effects of Configuration Interaction on Intensities and Phase Shifts. Phys Rev,1961, 124(6) 1866-1878
    [141]Miroshnichenko A E, Flach S, Kivshar Y S. Fano resonances in nanoscale structures. Rev Mod Phys,2010,82(3) 2257-2298
    [142]Halas N J, Lal S, Chang W-S, et al. Plasmons in Strongly Coupled Metallic Nanostructures. Chem Rev,2011,111(6) 3913-3961
    [143]Rahmani M, Luk'yanchuk B, Hong M. Fano resonance in novel plasmonic nanostructures. Laser Photonics Rev,2012,1-21
    [144]Yong S J, Arkady M S, Chang Sub K. Classical analogy of Fano resonances. Phys Scripta, 2006,74(2) 259
    [145]Hao F, Sonnefraud Y, Dorpe P V, et al. Symmetry Breaking in Plasmonic Nanocavities: Subradiant LSPR Sensing and a Tunable Fano Resonance. Nano Lett,2008,8(11) 3983-3988
    [146]Hao F, Nordlander P, Sonnefraud Y, et al. Tunability of Subradiant Dipolar and Fano-Type Plasmon Resonances in Metallic Ring/Disk Cavities:Implications for Nanoscale Optical Sensing. ACS Nano,2009,3(3) 643-652
    [147]Chen J, Li Z, Yue S, et al. Plasmon-Induced Transparency in Asymmetric T-Shape Single Slit. Nano Lett,2012,12(5) 2494-2498
    [148]Piao X, Yu S, Park N. Control of Fano asymmetry in plasmon induced transparency and its application to plasmonic waveguide modulator. Opt Express,2012,20(17) 18994-18999
    [149]Aydin K, Pryce I M, Atwater H A. Symmetry breaking and strong coupling in planar optical metamaterials. Opt Express,2010,18(13) 13407-13417
    [150]Ahn W, Boriskina S V, Hong Y, et al. Photonic-Plasmonic Mode Coupling in On-Chip Integrated Optoplasmonic Molecules. ACS Nano,2011,6(1) 951-960
    [151]Toscano G, Raza S, Jauho A-P, et al. Modified field enhancement and extinction by plasmonic nanowire dimers due to nonlocal response. Opt Express,2012,20(4) 4176-4188
    [152]Husu H, Makitalo J, Siikanen R, et al. Spectral control in anisotropic resonance-domain metamaterials. Opt Lett,2011,36(12) 2375-2377
    [153]He Y, Zhou H, Jin Y, et al. Plasmon induced transparency in a dielectric waveguide. Appl Phys Lett,2011,99(4) 043113-043113
    [154]Artar A, Yanik A A, Altug H. Multispectral Plasmon Induced Transparency in Coupled Meta-Atoms. Nano Lett,2011,11 (4) 1685-1689
    [155]Christ A, Tikhodeev S G, Gippius N A, et al. Waveguide-Plasmon Polaritons:Strong Coupling of Photonic and Electronic Resonances in a Metallic Photonic Crystal Slab. Phys Rev Lett,2003,91(18) 183901
    [156]Yin X G, Huang C P, Wang Q J, et al. Fanolike resonance due to plasmon excitation in linear chains of metal bumps. Opt Express,2011,19(11) 10485-10493
    [157]Collin S, Vincent G, Haidar R, et al. Nearly Perfect Fano Transmission Resonances through Nanoslits Drilled in a Metallic Membrane. Phys Rev Lett,2010,104(2) 027401
    [158]Fan S H. Sharp asymmetric line shapes in side-coupled waveguide-cavity systems. Appl Phys Lett,2002,80(6) 908-910
    [159]Zhang S, Genov D A, Wang Y, et al. Plasmon-induced transparency in metamaterials. Phys Rev Lett,2008,101(4)047410
    [160]Lassiter J B, Sobhani H, Knight M W, et al. Designing and Deconstructing the Fano Lineshape in Plasmonic Nanoclusters. Nano Lett,2012,12(2) 1058-1062
    [161]Rahmani M, Lei D Y, Giannini V, et al. Subgroup Decomposition of Plasmonic Resonances in Hybrid Oligomers:Modeling the Resonance Lineshape. Nano Lett,2012,12(4) 2101-2106
    [162]Yang J, Rahmani M, Teng J H, et al. Magnetic-electric interference in metal-dielectric-metal oligomers:generation of magneto-electric Fano resonance. Opt Mater Express,2012,2(10) 1407-1415
    [163]Lu H, Liu X, Mao D, et al. Induced transparency in nanoscale plasmonic resonator systems. Opt Lett,2011,36(16) 3233-3235
    [164]Chen J J, Wang C, Zhang R, et al. Multiple plasmon-induced transparencies in coupled-resonator systems. Opt Lett,2012,37(24) 5133-5135
    [165]Pannipitiya A, Rukhlenko I D, Premaratne M, et al. Improved transmission model for metal-dielectric-metal plasmonic waveguides with stub structure. Opt Express,2010,18(6) 6191-6204
    [166]Matsuzaki Y, Okamoto T, Haraguchi M, et al. Characteristics of gap plasmon waveguide with stub structures. Opt Express,2008,16(21) 16314-16325
    [167]Wang T B, Wen X W, Yin C P, et al. The transmission characteristics of surface plasmon polaritons in ring resonator. Opt Express,2009,17(26) 24096-24101
    [168]Tao J, Huang X G, Lin X S, et al. A narrow-band subwavelength plasmonic waveguide filter with asymmetrical multiple-teeth-shaped structure. Opt Express,2009,17(16) 13989-13994
    [169]Hosseini A, Massoud Y. Nanoscale surface plasmon based resonator using rectangular geometry. Appl Phys Lett,2007,90(18) 181102