旱稻连作障碍的成因及其调控
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
国内外已有的研究结果表明旱稻产量可达5-8.7t/ha。总体上看,旱稻的产量比相同条件下的水稻低20%-30%,用水量比水稻低60%,水分利用效率比水稻高1.6-1.9倍。然而,旱稻的种植推广面积有限,究其原因,“连作障碍”是限制旱稻发展的主要因素。“连作障碍”是指旱稻在连作情况下的生长受抑和产量下降。这种现象可能与连作情况下线虫或土传病害的发生,由水分胁迫导致土壤结构和供肥能力的变化,根系分泌的有毒物质的累积等有关。到目前为止,造成旱稻“连作障碍”的具体原因尚不清楚。
     本研究目的在于:(1)考查旱稻对土壤热处理的生长反应;(2)探明营养缺乏是否是造成旱稻“连作障碍”的主要原因;(3)比较旱稻对不同形态氮源的生长反应;(4)研究栽培管理措施对缓解“连作障碍”的作用;(5)研究在连作旱稻土壤中不同品种间是否存在基因型差异。在国际水稻研究所,利用大田、微区和盆栽试验进行了相关研究。取得的主要研究结果如下:
     (1)与未经热处理的连作旱稻土壤相比,土壤热处理显著地促进了旱稻的生长。不同热处理温度和热处理时间的试验结果表明,在90℃下处理12h或在120℃下处理3h就已经观察到对旱稻生长显著的促进作用。在120℃下处理12h,旱稻的生长表现最佳。在所调查的参数中,旱稻的叶面积对土壤热处理的反应最敏感,总生物量和茎蘖数次之。比较不同土壤对热处理反应的结果发现,连作旱稻土壤经热处理后对旱稻生长的促进作用大于水稻土壤热处理。土壤热处理为判断旱稻土壤“连作障碍”的程度提供了一套简便、快速的检验方法。旱稻生长对土壤热处理的反应越大,表明土壤“连作障碍”的程度越严重。
     (2)在第9季连作旱稻小区进行的大田微区试验和一系列的盆栽试验结果表明,增施氮肥显著地促进了连作旱稻的生长,改善了叶片的氮营养和提高了旱稻的产量;Yashida溶液中的微量元素、磷肥和钾肥对旱稻生长均没有起到显著的促进作用。不同磷肥对连作旱稻土壤中旱稻生长的促进作用不同,钙镁磷肥、磷矿粉和磷化学试剂(二水合磷酸二氢钠)对旱稻生长没有起任何的促进作用,过磷酸钙对早稻生长的促进作用较小,而solophos的效果较大。对这些磷肥化学成分的分析结果表明,过磷酸钙和sol~s分别含有1.70%和2.91%的氮。因此,过磷酸钙和solophos对旱稻生长的促进效果可能是由于改善了植株的氮营养,而不是磷营养。此外,大田连作土壤的有效磷含量随着连作季数的增加而增加。这就排除了磷素缺乏造成早稻“连作障碍”的可能性。热处理后连作旱稻土壤的总氮量保持不变,但使土壤中NH_4~+的释放量增加了62%。盆栽试验中,在0.23-0.90 g N pot~(-1)的施氮量下,旱稻的生长随着施氮量的增加而增加。增施氮肥对连作旱稻生长的促进作用表明氮素缺乏可能是旱稻“连作障碍”的主要原因。这种氮素缺乏可能与土壤供氮能力的降低或植株吸氮能力的下降有关。
     (3)在旱稻连作土壤中,不同氮源对旱稻生长的促进作用不同,其中,硫酸铵对旱稻生长的促进作用最大。盆栽试验中,低施用量下的硫酸铵和尿素均显著地促进了旱稻的生长,然而,在较高施用量下,旱稻在硫酸铵处理中的生长表现明显优于尿素处理,并且这种差异随着施氮量的增加而增大。比较不同土壤对硫酸铵和尿素施入的反应发现,在连作旱稻土壤中,硫酸铵和尿素对旱稻生长的的促进作用大于水稻土壤。连作旱稻土壤的pH接近中性(6.93)。在1.2 g N pot~(-1)的施用量下施入硫酸铵和尿素后,土壤pH分别降低了0.64和0.28个单位。硫酸铵对土壤的酸化可能提高了连作土壤中养分的有效性或者改变了微生物的群落,从而促进了旱稻的生长。采取适当的氮肥管理措施,如施用硫酸铵可能缓解旱稻的连作障碍。
     (4)休耕、水旱轮作、以及与旱地作物轮作均缓解了旱稻的连作障碍。在两季休耕、三季水稻后的田块中,旱稻的产量、生物量、库容(单位面积颖花数)和千粒重均显著地高于连作旱稻。经过两季休耕和三季水稻后,旱稻产量对施氮的反应增加,土壤的持水能力和根系活力增强,0-10cm土壤容重降低。旱稻-旱地作物轮作模式下的旱稻产量显著地高于旱稻-休耕模式。三种旱地作物中,与大豆轮作后的旱稻产量高于玉米和甘薯。
     (5)在连作旱稻土壤中,不同品种在生长方面表现出显著的基因型差异。所有品种在硫酸铵处理下的生长表现明显优于土壤热处理和未处理对照。在热处理、施用硫酸铵处理和对照土壤中,两个新的旱稻品系IR80508-B-57-3-B和IR78877-208-B-1-2的生长表现均优于其它品种。其中,在未处理的对照土壤中,IR80508-B-57-3-B和IR78877-208-B-1-2的总生物量分别为Apo的4.2和3.4倍。与水稻土壤相比,在连作旱稻土壤中,不同品种所表现的基因型差异较大。品种在连作旱稻土壤中生长表现的差异与根系有关。在未处理的连作旱稻土壤中,IR80508-B-57-3-B和IR78877-208-B-1-2的根系生物量分别比Apo高约3和2倍。庞大的根系增加了与土壤的接触面积,从而能够更多地从土壤中吸收水分、矿质营养。同时,较大的根系还能分泌出较多的酸性物质来活化土壤养分,从而增加根系对养分的吸收。
     本研究表明,硫酸铵的施用、休耕、轮作以及对连作障碍不敏感的高产旱稻新品种的选用等措施都可以用来缓解旱稻的“连作障碍”。对这些管理措施的生理机制的研究将有助于找到旱稻“连作障碍”的真正原因。在实际的旱稻生产中,要结合当地的土壤状况、灌溉条件、施肥和管理水平来综合考虑这些管理措施。
Aerobic rice yields of 5-8.7t/ha were reported in China and abroad. Compared with flooded rice, aerobic rice had on the average 20-30% lower yields, about 60% lower total water use, and 1.6-1.9 times higher water productivity. However, the continuous cropping obstacle limits the adoption of monocropping of aerobic rice. The term "soil sickness" was used to describe the reduction in growth and yield caused by continuous monocropping of aerobic rice. Soil sickness may be related to the buildup of nematodes or soil-borne pathogens, changes in nutrient availability in the soil, or growth inhibition by toxic substances from root residues. The causes of continuous cropping obstacle in aerobic rice system are still unclear.
     The objectives of this dissertation were: 1) to examine the growth response of aerobic rice to oven heating of soil with a monocropping history, 2) to identify if nutrient deficiency is responsible for the yield decline in continuous aerobic rice system, 3) to compare the effects of different N forms on the growth of aerobic rice grown under continuous aerobic rice soil, 4) to determine if management strategies can mitigate the yield decline of continuous aerobic rice, and 5) to examine the genotypic variations in tolerance to the "soil sickness" due to continuous cropping of aerobic rice. In this study, field, micro-plot and pot experiments were conducted at the International Rice Research Institute (IRRI) experimental farm at Los Banos, Laguna, Philippines. The following results were obtained:
     (1) Oven heating of "sick soil" with an aerobic history increased plant growth significantly over the unheated control. A growth increase in a continuous aerobic soil was observed with heating at 90℃for 12 hours or at 120℃for as short as 3 hours. Highest growth response of aerobically grown rice was observed with heating at 120°C for 12 hours. Leaf area was the most responsive to soil heating, followed by total biomass and stem number. Heating of soil increased plant growth greatly in soils with an aerobic history but a relatively small increase was observed in soils with a flooded history. Soil oven-heating provides a simple and quick test to determine whether a soil has any sign of sickness caused by continuous cropping of aerobic rice. The bigger the magnitude of growth enhancement by soil heating, the more severe is the "sickness" of the soil.
     (2) The micro-plot experiment arranged in the 9th-season aerobic rice plots of the long-term field experiment and a series of pot experiments indicated that additional N application significantly improved plant growth and leaf N nutrition and increased the grain yield of aerobic rice under continuous aerobic cropping. P, K, and micronutrients from Yoshida solution had no effect. The effects of different P sources on plant growth in the continuous aerobic rice soil showed that Ca-Mg phosphate, rock phosphate or monosodium phosphate dihydrate did not improve plant growth or leaf N nutrition compared with the control. Calcium superphosphate slightly increased plant height, stem number, leaf area, total biomass, SPAD value, and aboveground N uptake compared with the control. Solophos application had significant effects on plant growth and leaf SPAD value. Chemical analysis of P fertilizers revealed that solophos and calcium superphosphate contained 2.91% and 1.70% N, respectively. The N content in Ca-Mg phosphate and rock phosphate were negligible. Hence, the effect of solophos and calcium superphosphate on plant growth in this study was probably not associated with the improvement in P nutrition but N nutrition. In our long-term field experiment with continuous cropping of aerobic rice, 60 and 30 kg P ha~(-1) was applied during dry and wet season, respectively, since 2001. Soil Olsen P increased from 9.0 mg kg~(-1) at the beginning of the experiment to 22.5 mg kg~(-1) after the 7th-season aerobic rice was grown in the dry season of 2004. Therefore, it was unlikely that P nutrition was associated with the soil sickness in this continuous aerobic rice system.
     Oven heating of the aerobic soil increased the release of NH_4~+/ by 62% compared with untreated soil but did not change the total N content of the soil. In a pot experiment, increasing the rate of urea application from 0.23 to 0.90 g N pot~(-1) increased the vegetative growth parameters, chlorophyll meter readings, and aboveground N uptake consistently. Our results suggested that N deficiency due to poor soil N availability or reduced N uptake ability of the plant might cause the yield decline of continuous cropping of aerobic rice.
     (3) Different N forms had different effects on plant growth in continuous aerobic rice soil. Among N forms, ammonium sulfate was the most effective on plant growth improvement. In pot experiments, both ammonium sulfate and urea significantly increased the plant growth, however, the plant growth was better with ammonium sulfate than that with urea and the difference increased as the N rates increased. Another pot experiment showed that ammonium sulfate and urea were much more effective on the growth of aerobic rice in the "sick" continuous aerobic soil than in the "healthy" continuous flooded soil. The soil pH of the control, urea, and ammonium sulfate treatments in the aerobic soil was 6.93 (±0.01 standard deviation), 6.65 (±0.02), and 6.29 (±0.04), respectively. Therefore, the application of ammonium sulfate and urea in the aerobic soil reduced soil pH and the reduction was greater for ammonium sulfate than urea. Changes in nutrient availability and microbial community caused by the acidification of soil due to the application of ammonium sulfate could be associated with its greater effect on plant growth. Our experiments suggested that ammonium sulfate may be used to mitigate the yield decline caused by continuous cropping of aerobic rice and that it is possible to reverse the yield decline by developing improved N management strategies.
     (4) Fallow and crop rotation mitigated the continuous cropping obstacle in aerobic rice. The yields of aerobic rice after two seasons of fallow and after three seasons of flooded rice were significantly higher than that of continuous aerobic rice. The effects of fallow and aerobic-flooded rice rotation on yield improvement were attributed to higher total biomass production, bigger sink size (spikelet per m~2), and greater 1000-grain weight. In addition, fallow and aerobic-flooded rice rotation increased N response, soil water holding capacity, and root activity and decreased 0-10 cm soil bulk density. When grain yields were compared among different rotation patterns, the aerobic rice yielded more after two seasons of upland crops than after two seasons of fallow. Among the three upland crops, relatively higher yield of aerobic rice was observed after two seasons of soybean, but the difference was not statistically significant.
     (5) Different varieties showed variations in plant growth in the continuous aerobic rice soil. Application of ammonium sulfate and soil oven-heating consistently improved plant growth and N nutrition compared with the untreated control across all three varieties. The two new aerobic rice lines (IR80508-B-7-3-B and IR78877-208-B-1-2) produced much more vigorous root systems and much more biomass than other varieties in all three treatments. The genotypic variations were greater in continuous aerobic soil than in flooded soil. The genotypic variations in plant growth in continuous aerobic soil were associated with the variations in root systems. The root biomass of IR80508-B-7-3-B and IR78877-208-B-1-2 was three and two times higher than that of Apo, respectively. The root morphological factors such as length, thickness, surface area and volume have profound effects on the plant's ability to acquire and absorb water and nutrients from soil. These parameters affect the ability of the roots to penetrate deep soil layers, to tolerate drought stress, and deficiencies and toxicities of elements. Therefore, selection of rice cultivars with a large and deep root system was considered to be an important strategy for sustaining the yield stability of rice under aerobic conditions.
     The results of this study showed that the continuous cropping obstacle in aerobic rice may be mitigated by ammonium sulfate application, fallow, crop rotation, or adoption of new aerobic rice varieties. Studying the mechanisms of the effects of these crop management practices will help find the causes of the continuous cropping obstacle in aerobic rice. The best way is to combine these crop management strategies properly depending on the soil properties, irrigation, fertilization, and local management technologies in the real aerobic rice production conditions.
引文
1.程建峰,潘晓云,方加海,刘宜柏.旱作条件下水陆稻灌浆期根系生长特性研究.江西农业大学学报,1999,21(2):149-152
    2.安红卫.水、陆稻根粗与抗旱性关系的研究.西北农业学报,1993,2(3):58-60
    3.程建峰,潘晓云,刘宜柏.快速鉴定稻种资源抗旱性的生理指标筛选及其遗传背景.西南农业学报,2005,(18):529-533
    4.高吉寅,胡荣海,路漳,杨国良.水稻等品种苗期抗旱生理指标的探讨.中国农业科学,1984,4:41-45
    5.龚明.作物抗旱性鉴定方法与指标及其综合评价.云南农业大学学报,1989,4(11):73-81
    6.国际水稻研究所.陆稻的研究.北京:农业出版社,1981,63-65.
    7.郭振飞,卢少云,李宝盛,李明启,黎用超.不同耐旱性水稻幼苗对氧化胁迫的反应.植物学报,1997,39:748-752
    8.蒋明义,荆家海,王韶唐.渗透胁迫对水稻幼苗膜脂过氧化及体内保护系统的影响.植物生理学报,1991,17(1):80-84
    9.景蕊莲.作物抗旱研究的现状与思考.干旱地区农业研究,1999,17(2):79-85
    10.李长明,刘保国,任昌福,蔡锡贵,杨麒麟,陈显薇.水稻抗旱机理研究.西南农业大学学报,1993,15:409-411
    11.李成业,熊昌明,魏仙君.中国水稻抗旱研究进展.作物研究,2006,5:426-429
    12.李冠.陆稻抗旱性与某些生理生化特性的关系.新疆大学学报,1990,1:65-67
    13.李杰,林杉.NO_3~-和NH_4~+对水稻和旱稻生长及水分利用的影响.中国土壤与肥料,2007,4:49-52
    14.李明,王根轩.干旱胁迫对甘草幼苗保护酶活性及脂质过氧化作用的影响.生态学报,2002,22:503-507
    15.李士杭.旱稻一二十一世纪新粮源.南方农机,1999(2):24
    16.林文,郑景生,姜照伟,李义珍.水稻根系研究方法.福建稻麦科技,1997,15(4):18-21
    17.凌祖铭,李自超,余荣,穆平.水、陆稻根部性状的研究.中国农业大学学报,2002,7(3):7-11
    18.刘炜,史延丽,王坚,马洪文.水旱栽培条件下水、陆稻根系性状及其与抗旱性的关系.宁夏农林科技,2006,1:27-28
    19.罗利军,张启发.栽培稻抗旱性研究的现状与策略.中国水稻科学,2001,15(3):209-214
    20.吕凤山,侯建华.陆稻抗旱性主要指标研究.华北农学报,1994,9(4):7-12
    21.马宗仁.植物在水分胁迫下脯氨酸积累的研究.草业科学,1994,11(1):15-18
    22.缪颖,武炳华.植物抗逆性的获得与信息传导.植物生理学通讯,2001,37(1):71-76
    23.潘瑞炽.植物生理学.北京:高等教育出版社,2001:291.
    24.钱晓晴,沈其荣,王娟娟,柏彦超,周明耀,杨建昌.不同水分供应及氮素形态对旱作水稻铁素营养特征的影响.中国农业科学,2003,36(10):1184-1190
    25.申亚梅,童再康,蔡建国,吴家森,张素雅.植物抗旱机制的研究进展.安徽农业科学,2006,34(20):5214-5215
    26.汤学军,傅家瑞.植物胚胎发育后期富集(LEA)蛋白的研究进展.植物学通报,1997,14(1):13-18
    27.汤章城.水分胁迫和植物的气孔运动.植物生理生化进展,1986,4:43-50
    28.王昌华,张燕之,郑文静,赵家铭,滕国锋.北方旱作水稻研究现状及发展前景.北方水稻,2007,6:13-18
    29.王贺正,马均,刘慧远.水稻抗旱性研究现状与展望.中国农学通报,2005,21(1):110-113
    30.王贺正,马均,李旭毅,李艳,张荣萍,汪仁全.水稻开花期一些生理生化特性与品种抗旱性的关系.中国农业科学,2007,40(2):399-404
    31.王化琪.早稻-21世纪粮源.中国农村小康科技,1998,(7):26-27
    32.王辉,程式华,蒋文春.分子标记及其在水稻抗旱育种中的应用.安徽农业科学,2006,34(13):2988-2900
    33.王辉,曾祥宽,张燕之,邹吉承,王昌华.水稻旱作在我国发展的前景分析.农业经济,2001,11:36-38
    34.王秀珍.水、陆稻苗期淀粉酶活性与抗旱性的关系.北京农业大学学报,1991,17(2):37-41
    35.谢光辉,王素英,王化琪,赵明.旱稻矿质养分吸收与施肥效应.中国农业科学,2003,36(10):1171-1176
    36.徐久升,王东阁,展广军.水稻耐旱研究.垦殖与耕作,2002,3:13-15
    37.薛全义,荆宇华.略论我国早稻的生产和发展.中国稻米,2002(4):5-7
    38.颜莹洁,樊宏伟,马宗国,刘延刚.不同供氮水平对旱稻产量的影响.山东农业科学,2007,5:80-81
    39.杨建昌,王志勤,朱庆森.水稻品种的抗旱性及其生理特性的研究.中国农业科学,1995a,28(5):65-72
    40.杨建昌,王志琴,朱庆森.水稻在不同土壤水分状况下脯氨酸的累积与抗旱性的关系.中国水稻科学,1995b,9(2):92-96
    41.张彤,齐麟.植物抗旱机理研究进展.湖北农业科学,2005,4:107-110
    42.张杨珠,万大娟,黄顺红,周卫军,邹应斌.湖南主要耕地土壤固定态铵含量与最大固铵容量的剖面变化特征.湖南农业大学学报,2006,32(5):473-481
    43.郑丕尧,杨孔平,王经武,周殿玺.水、陆稻在水田、旱地栽培的生态适应性研究Ⅱ.稻株碳、氮代谢的生态适应性观察.中国水稻科学,1990,4(2):69-74
    44.郑成本,黄东益,莫饶等.热大99W序列旱稻新品系农艺特性与抗旱性的研究.热带作物学报,2000,21(4):52-57
    45.周春霖,尹金来,沈其荣,洪立州,王凯,丁金海,王茂文.水作与旱作水稻生物量、籽粒产量及吸磷的比较研究.江苏农业科学,2002,5:1-3
    46.邹春琴,范晓云,石荣丽,张福锁.铵态氮和硝态氮对早稻、水稻生长及铁营养状况的影响.中国农业大学学报,2007,12(4):45-49
    47.Abekoe M K,Sahrawat K L.Phosphate retention and extractability in soils of the humid zone in West Africa.Geoderma,2001,102:175-187
    48.Abifarin A O,Chabrolin R,Jacquot M.Upland rice improvement in West Africa.In:InternationalRice Research Institute,rice breeding.Los Banos,Philippines.1972.625-635
    49.Anderson B H,Magdoff F R.Autoclaving soil samples affects algal-available phosphorus.J Environ Qual,2005,34:1958-1963
    50.Akanvon R,Becker M,Chano M,Johnson D E,Henri Gbaka-Tcheche,Amadou Toure.Fallow residue management effects on upland rice in three agroecological zones of West Africa.Biol Fertil Soils,2000,31(6):501-507
    51.Angus J F S,Hasegawa S,Hsiao T C,Liboon S P,Zandstra H G.The water balance of post-monsoonal dryland crops.J Agric Sci,1983,101:699-710
    52.Araki H,Iijima M.Stable isotope analysis of water extraction from subsoil in upland rice(Oryza sativa L.) as affected by drought and soil compaction.Plant Soil,2005,270:147-157
    53.Arayarungsanit L.Yield ability of rice varieties in fields infested with root-knot nematode.InternationalRice Research Newsletter,1987,12:14
    54.Arnold K.Methods of soil analysis.Madison,Wis.:Ame Soc Agron:Soil Sci Soc Amer,1986a.503-507
    55.Arnold K.Methods of soil analysis.Madison,Wis.:Amer Soc Agron:Soil Sci Soc Amer,1986b.364-367
    56.Atlin G N,Lafitte H R.Developing and testing rice varieties for water-saving systems in the tropics.In:Bouman B A M,Hengsdijk H,Hardy B,Bindraban P S,Tuong T P,Ladha J K eds.,Water-Wise Rice Production,Proceedings of the International Workshop on Water Wise Rice Production. Manila: International Rice Research Institute (IRRI), 2002.275-283
    
    57. Baker J, Steele C, Dure E L. Sequence and characterization of 6 LEA proteins and their genes from cotton. Plant Mol Biol, 1988,11:277-291
    
    58. Baligar V C, Duncan R R. Crops as enhancers of nutrient use. Academic Press, San Diego, CA, 1990
    59. Barber S A. Soil nutrient bioavailability: A mechanistic approach. 2nd ed. New York: John Wiley & Sons, 1995.
    60. Barker R, Dawe D, Tuong T P, Bhuiyan S I, Guerra L C. The outlook for water resources in the year 2020: challenges for research on water management in rice production. In: Assessment and Orientation towards the 21st Century. Proc 19th session of the InternationalRice Commission, Cairo, Egypt, 1999, 96-109
    61. Belder P, Bouman B A M, Spiertz J H J, Peng S, Castaneda A R, Visperas R M. Crop performance, nitrogen and water use in flooded and aerobic rice. Plant Soil, 2005, 273:167-182
    62. Beusichem M L, Vankirkby E A, Baas R. Influence of nitrate and ammonium nutrition on the uptake, assimilation and distribution of nutrients in Ricimus communis. Plant Physiology, 1988, 86: 914-92
    63. Bird A F, Zuckerman B M. Studies on the surface coat (glycocalyx) of the dauer larva of Anguina agrostis. InternationalJ Parasitology, 1989,19:235-240
    64. Blum A. Towards atandard assays of drought resistance in crop plants. In: Molecular approaches for the genetic improvements. An international workshop held at the International Maize and Wheat Improvement Center, EI Batan, Mexica, 1999, June 21-25. EI Batan, Mexica: IMWIC, 1999.
    65. Bonner J. The role of toxic substances in the Internationaleraction of higher plants. Bot Rev, 1950, 16:51-65
    66. Borner H. Liberation of organic substances from higher plants and their role in the soil sickness problem. Bot Rev, 1960,26:393-424
    67. Bouman B A M, Peng S, Castaneda A R, Visperas R M. Yield and water use of irrigated tropical aerobic rice systems. Agric Water Manage, 2005, 74:87-105
    68. Bouman B A M, Tuong T P. Field water management to save water and increase its productivity in irrigated rice. Agric Water Manage, 2001,49:11 -30
    69. Bremner J M, Mulvaney C S. Nitrogen-total. In: Page A L et al. eds., Methods of Soil Analysis, Part 2. Madison, Wis.: Amer Soc Agron, 1982. 595-624
    70. Broadbent F E, Reyes O C. Uptake of soil and fertilizer nitrogen by rice in some Philippine soils. Soil Sci, 1971, 112:200-205
    
    71. Bruun T B, Mertz O, Elberling B. Linking yields of upland rice in shifting cultivation to fallow length and soil properties. Agric Ecosyst Environ, 2006,113(1 -4): 139-149
    72. Cabezas W A R L, de Arruda M R, Cantarella H, Pauletti V, Trivelin P C O, Bendassolli J A. Nitrogen immobilization of urea and ammonium sulphate applied to maize before planting and as top-dressing in a no-till system. Revista Brasileira de Ciencia do Solo, 2005,29(2):215-226
    73. Cabuslay G S, Ito O, Alejar A A. Physiological evaluation of responses of rice to water deficit. Plant Sci, 2002,163:815-827
    74. Cassman K G Ecological intensification of cereal production systems: yield potential, soil quality, and precision agriculture. Proc National Acad Sci (USA), 1999, 96:5952-5959
    75. Christie J R. Some Internationalerrelationships between nematodes and other soil-borne pathogens. In: Sasser J N, Jenkins W R eds., Nematology, Fundamentals and recent advances with emphasis on plant parasitic and soil forms. Raleigh: The University of North Carolina Press, 1960. 432-436
    76. Clark R B, Duncan R R. Improvement of plant mineral nutrition through breeding. Field Crops Res, 1991,27:219-240
    77. Conway G, Toenniessen G Feeding the world in the twenty-first century. Nature, 1999,402:55-58
    78. Dalmacio I F, Raymundo A K, Zamora A K. Microbiology 101: A Laboratory Manual. Manila: University of the Philippines, 1999.
    79. Dang-ngoc K, Huong N M, Ut N V, Kinh D N. Root-knot disease of rice in the Mekong Delta, Vietnam. International Rice Research Newsletter, 1982, 7:15
    80. Davidson R L. Effects of soil nutrients and moisture on root/shoot ratios in Lolium perenne L. and Trifoliym repens L. Ann Bot, 1969, 33:571-577
    81. De Datta S K, Beachell H M. Varietal response to some factors affecting production of upland rice. In: International Rice Research Institute, rice breeding. Los Banos, Philippines, 1972. 685-700
    82. Delgado J A, Mosier A R. Mitigation alternatives to decrease nitrous oxides emissions and urea-nitrogen loss and their effect on methane flux. J Environ Qual, 1996,25:1105-1111
    83. Duncan R R, Cairow R N. Turfgrass-Molecular genetic improvement for abiotuic/edaphic atress environment. Adv Agron, 1999, 67:233-306
    84. Dutky E M, Sayre R M. Some factors affecting infection of nematodes by the bacterial spore parasite Bacillus penetrans. J Nematology, 1978,10:285 (Abstract)
    85. Ericsson T. Growth and root:shoot ratio of seedlings in relation to nutrient availability. Plant Soil, 1995,168-169:205-214
    86. Fageria N K. Nutrient management for improving upland rice productivity and sustainability. Commun Soil Sci Plant Anal, 2001,32:2603-2629
    87. Fageria N K, Baligar V C. Improving nutrient use efficiency of annual crops in Brazilian acid soils for sustainable crop production. Commun Soil Sci Plant Anal, 2001, 32(7-8):1303-1319
    88. Fageria N K, Barbosa F M P, Carvalho J R P. Response of upland rice to phosphorus fertilization on an oxisol of central Brazil. Agron J, 1982,74:51-56
    89. Fageria N K, Breseghello F. Nutritional diagnostic in upland rice production in some municipalities of state of Mato Grosso, Brazil. J Plant Nutri, 2004,27(1):15-28
    90. Fageria N K, Gheyi H R. Efficient crop production. Campina Grande: University of Paraiba, 1999
    91. Fairhurst T, Lefroy R, Mutert E, Batjes N. The importance, distribution and causes of phosphorus deficiency as a constraInternational to crop production in the tropics. Agroforestry Forum, 1999, 9:2-8
    92. Fischer K S. Foreword. In: Balasubramanian V et al. eds., Resource Management in Rice System: Nutrients. P. ix. Dordrecht: Kluwer Academic Publishers, 1999.
    93. Fukai S, Cooper M. Development of drought resistant cultivars using physio-morphological traits in rice. Field Crops Res., 1995,40(2):67-86
    94. Fukai S, Pantuwan G, Jongdee B, Cooper M. Screening for drought resistance in rainfed lowland rice. Field Crops Res, 1999a, 64:61-74
    95. Fukai S, Inthapanya P, Blarney F P C, Khonthosuvon S. Genotypic variation in rice grown in low fertile soils and drought-prone, rainfed lowland environments. Field Crops Res, 1999b, 64:121-130
    96. Garrity D P, Mamaril C P, Soepardi G. Phosphorus requirements and management in upland rice-based cropping systems. In: Phosphorus requirements for sustainable agriculture in Asia and Oveanic. Manila: International Rice Research Institute, 1990. 333-347
    97. Gebauer J, El-Siddig K, Ebert G. Response of Tamarindus indica seedlings to salt stress. J Applied Bot-Angewandte Botanik, 2001, 75(3-4):97-100
    98. George T, Magbanua R, Garrity D P, Tubana B S, Quiton J. Rapid yield loss of rice cropped successively in aerobic soil. Agron J, 2002, 94:981-989
    99. George T, Magbanua R, Roder W, Van Keer K, Trebuil G, Reoma V. Upland rice response to phosphorus fertilization in Asia. Agron J, 2001, 93(6):1362-1370
    100.Gerloff G C, Gabelman W H. Genetic basis of inorganic plant nutrition. In: Lauchli A, Bieleski R L eds., Inorganic Plant Nutrition. Encyclopedia and Plant Physiology New Series, Volume 15B. New York: Springer Verlag, 1983. 453-480
    
    101.Grab S. Differential growth inhibitors produced by plants. Bot Rev, 1961,27:422-443
    102.Guimaraes C M, Moreira J A A. Compactacao do Solo na Cultura do arroz de terras altas. Pesqui Agropecu Bras, 2001, 36:703-707
    103.Guimaraes C B, Yokoyama L P. Upland rice in rotation with soybean. In: Breseghello F, Stone L F eds., Technology for Upland Rice. Embrapa Rice and Bean National Center, Santo Antonio de Goias, Brazil, 1998. 19-24
    104.Guimaraes E P, Stone L F. Current status of high-yielding aerobic rice in Brazil. Paper, the Aerobic Rice Workshop, 2000, International Rice Research Institute, Los Banos, Philippines
    
    105.Hall A E. Ecological studies. Analysis Synthesis, 1976, 19:76-83
    106.He Y Q, Shen Q R, Kong H M, Xong Y S, Wang X X. Effect of soil moisture content and phosphorus application on phosphorus nutrition of rice cultivated in different water regime systems. J Plant Nutr, 2004,27(12):2259-2272
    107.Hedley M J, Kirk G J D, Santos M B. Phosphorus efficiency and the forms of soil phosphorus utilized by upland rice cultivars. Plant Soil, 1994,158:53-62
    108.Howard D D, Newman M A, Essington M E, Percell W M. Nitrogen fertilization of conservation-tilled wheat. I. Sources and application rates. J Plant Nutri, 2002, 25(6): 1315-1328
    109.Ingram J, Chandler J W, Gallager L. Analysis of cDNA clones encoding sucrose-phosphatesynthase in relation to sugar interconversions associated with dehydration in the resurrection plant Crater stigma plantagineum Hoechst. Plant Physiology, 1997,115:113-121
    110.Inthapanya P. Genotype differences in nutrient uptake and utilization for grain yield production of rainfed lowland rice under fertilized and non-fertilized conditions. Field Crops Res, 2000, 65(1):57-68
    111.Inubushi K, Acquaye S, Tsukagoshi K, Shibahara F, Komatsu S. Effects of controlled-released coated urea (CRCU) on soil microbial biomass N in paddy fields examined by the 15N tracer technique. Nutr Cycl Agroecosyst, 2002, 63(2/3):291-300
    112.IRRI. Annual report 1969. IRRI, Manila, Philippines, 1970. 266
    113.IRRI. Program report for 1975. IRRI, Manila, Philippines, 1976.
    114.IRRI. Program report for 1976. IRRI, Manila, Philippines, 1977.
    115.IRRI. Program report for 1977. IRRI, Manila, Philippines, 1978.
    116.IRRI. Rice almanac. 2nd ed. Manila: International Rice Research Institute, 1997. 187-196
    
    117.IRRI. World rice statistics 1985. IRRI, Manila, Philippines, 1986.
    118.Jairajpuri M S, Baqri Q H. Nematode pests of rice. New Delhi: IBH Publishing Co, 1992. 66
    119.John V J. Regulation of ribonucleic acid metabolism by plant hormones. Plant Physiol, 1977,28:537-564
    120.Jongdee B, Fukai S, Cooper M. Leaf water potential and osmotic adjustment as physiological traits to improve drought tolerance in rice. Field Crops Res, 2002, 76:153-163
    121.Kato Y, Kamoshita A, Yamagishi J, Abe J. Growth of three rice (Oryza sativa L.) cultivars under upland conditions with different levels of water supply 1. Nitrogen uptake and dry matter production. Plant Prod Sci, 2006a, 9(4):422-434
    122.Kato Y, Kamoshita A, Yamagishi J. Growth of three rice (Oryza sativa L.) cultivars under upland conditions with different levels of water supply 2. Grain yield. Plant Prod Sci, 2006b, 9(4):435-445
    123.Kato Y, Kamoshita A, Yamagishi J, Imoto H, Abe J. Growth of rice (Oryza sativa L.) cultivars under upland conditions with different levels of water supply 3. Root system development, soil moisture change and plant water status. Plant Prod Sci, 2007, 10(1):3-13.
    
    124.Kawano K, Sanchez P A, Nurena M A. Upland rice in the Peruvian jungle. In: International Rice Research Institute, rice breeding. Los Banos, Philippines. 1972. 637-643
    125.Ketterings Q M, van Noordwijk M, Bigham J M. Soil phosphorus availability after slash-and-burn fires of different Internationalensities in rubber agroforests in Sumatra, Indonesia. Agric Ecosyst Environ, 2002,92:37-48
    126.Kirkegaard J A, Munns R, James R A, Gardner P A, Angus J F. Reduced growth and yield of wheat with conservation cropping. 2. Soil biological factors limit growth under direct drilling. Austra J Agric Res, 1995,46(1):75-88
    127.Kobayashi J. Chemical composition of river waters in Southeast Asian countries. On the water quality of rivers in Thailand. Nogaku Kenkyu, Okayama, Japan, 1958, 46:63-112
    128.Lafitte R H, Courtois B, Arraudeau M. Genetic improvement of rice in aerobic systems: progress from yield to genes. Field Crops Res, 2002, 75:171-190
    129.Levitt J. Responses of plants to environmental stress. Water relation, salt and other stresses. Vol. 2,2nd ed. New York: Academic Press, 1980. 606
    130.Lin S, Dittert K, Sattelmacher B. The Ground Cover Rice Production System (GCRPS)—a successful new approach to save water and increase nitrogen fertilizer efficiency? In: Bouman B A M, Hengsdijk H, Hardy B, Bindraban P S, Tuong T P, Ladha J K eds., Water-wise rice production. Proc International Workshop on Water-wise Rice Production, Los Banos, Philippines, 2002,187-196
    131.Lin S, Li J, Sattelmacher B, Bruck H. Response of lowland and aerobic rice to ammonium and nitrate supply during early growth stages. J Plant Nutr, 2005, 28(9): 1495-1510
    132.Mambani B, Lal R. Response of upland rice varieties to drought stress. 1. Relation between the root system development and leaf water potential. Plant Soil, 1983, 73:59-72
    133.McCalla T M, Haskins F A. Phytotoxic substances from soil microorganisms and crop residues. Bacteriol Rev, 1964,28:181-207
    134.McSorley R. Host suitability of potential cover crops for root-knot nematodes. J Nematology, 1999, 31:619-623
    135.Mitsui S. Inorganic nutrition, fertilization and soil amelioration for lowland rice. Tokyo: Yokendo Ltd, 1964. 107
    136.Moritsuka N, Matsuoka K, Matsumoto S, Masunaga T, Matsui K, Wakatsuki T. Effects of the application of heated sewage sludge on soil nutrient supply to plants. Soil Sci Plant Nutr, 2006, 52(4):528-539
    137.Moritsuka N, Yanai J, Kosaki T. Effect of soil heating on the dynamics of soil available nutrients in the rhizosphere. Soil Sci Plant Nutr, 2001,47(2):323-331
    138.Mulder D. Replant disease. Agric Environ, 1974,1:217-220
    139.Mulholland B J, Taylor I B, Jackson A C, Thompson A J. Can ABA mediate responses of salinity stressed tomato? Environ Exp Bot, 2003, 50(1): 17-28
    140.Nearpass D C, Clark F E. Availability of sulfur to rice plants in submerged and upland soil. Soil Sci Soc Amer, 1960,24:385-387
    141 .Nie L, Peng S, Bouman B A M, Huang J, Cui K, Visperas R M, Park H K. Alleviation of soil sickness caused by aerobic monocropping: Growth response of aerobic rice to soil oven heating. Plant Soil, 2007, 300:185-195
    142.Nie L, Peng S, Bouman B A M, Huang J, Cui K, Visperas R M, Xiang J. Alleviation of soil sickness caused by aerobic monocropping: Growth response of aerobic rice to nutrient supply. Field Crops Res, 2008, (in press)
    143.Nishio M, Kusano S. Fungi associated with roots of continuously cropped upland rice. Soil Sci Plant Nutr, 1973,19:205-217
    144.Nishio M, Kusano S. Effect of root residues on the growth of upland rice. Soil Sci Plant Nutr, 1975,21:391-395
    145.Nishio M, Kusano S. A growth inhibitor specific to upland rice produced by Pyrenochaeta sp. ibid, 1976a, 22:227-286
    146.Nishio M, Kusano S. A fungal substance of selective action on plant growth produced by Pyrenochaeta sp. ibid, 1976b, 22:467-472
    147.Nishizawa T, Ohshima Y, Kurihara H. Survey of the nematode population in the experimental fields of successive or rotative plantation. Proc Kanto-Tosan Plant Protection Soc, 1971,18:121-122
    148.Oji Y, Izawa G Studies on the absorption and assimilation of inorganic nitrogen in Internationalact plants (Part 2). Physiological characteristics in absorption and assimilation of nitrate-N and ammonium-N in young rice seedlings. J Sci Soil Manure Japan, 1970,41:31-36
    149.O'Toole J C, Garrity D P. Upland rice soil-plant-water relationships. In: An Overview of Upland Rice Research, IRRI, Los Banos, Philippines, 1984. 394-411
    150.Page A L, Miller R H, Keeney D R. Methods of soil analysis Part 2. Chemical and microbiological properties. 2nd ed. Madison: Amer Soc of Agron: Soil Sci Soc Amer, 1982. 643-693
    151.Paliwal A K, Singh R N, Singh V K. Effect of nitrogen and phosphorus on yield and uptake of N, P and K by upland rice. Advances in Plant Science, 1997,10(2):257-259
    152.Pan G X, Li L Q, Qi Z, Wang X K, Sun X B, Xu X B, Jiang D A. Organic carbon stock in topsoil of Jiangsu province, China, and the recent trend of carbon sequestration. J ENV SCI China, 2005,17(1):l-7
    153.Peng S, Bouman B A M, Visperas R M, Castaiieda A, Nie L, Park H K. Comparison between aerobic and flooded rice in the tropics: agronomic performance in an eight-season experiment. Field Crops Res, 2006, 96:252-259
    154.Peoples M B, Freney J R, Mosier A R. Minimizing gaseous losses of nitrogen. In: Bacon P E ed., Nitrogen Fertilization in the Environment. New York: Marcel Dekker, Inc, 1995. 565-602
    155.Pinheiro B D S, Castro E D M D, Guimaraes C M. Sustainability and profitability of aerobic rice production in Brazil. Field Crops Res, 2006, 97:34-42
    156.Ponnamperuma F N. Growth- limiting factors of aerobic soils. In: International Rice Res Inst Major Research in Upland Rice. Los Banos, Laguna, Philippines, 1975. 40-43
    157.Poster A, Lopezcarbonell M A. Abscisic acid immunolocalization and ultrastructural changes in water-stressed camender. Plant Physiol, 1999, 105:272-279
    158.Prasad K S K, Rao Y S. Effect of foliar application of systematic pesticides on the development of Meloidogyne graminicola in rice. Indian J Nematology, 1985, 14:125-127
    159.Prot J C, Matias D M. Effect of water regime on the distribution of Meloidogyne graminicola and other root-parasitic nematodes in a rice field topsequence and pathogenicity of M. graminicola on rice cultivar UPL Ri5. Nematologica, 1995, 41:219-228
    160.Qian X, Shen Q, Xu G, Wang J, Zhou M. Nitrogen form effects on yield and nitrogen uptake of rice grown in aerobic soil. J Plant Nutr, 2004, 27(6):1061-1076
    161.Rahman M L. Effect of different cropping sequences on root-knot nematode, Meloidogyne graminicola, and yield of deepwater rice. Nematologia Mediterranea, 1991,18:213-217
    162.Reichardt W, Inubushi K, Tiedje J. Microbial prosesses in C and N dynamics. In: Krik E G J D, Oik D C eds., Carbon and Nitrogen Dynamics in Flooded Soils. 2000. 101-146
    163.Roder W, Maniphone S, Keoboulapha B. Pigeon pea for fallow improvement in slash-and-burn systems in the hills of Laos? Agroforestry Syst, 1997, 39(1):45-57
    164.Rosegrant M W. Water and irrigation policy: prospects for the future and implications for rice production. 1998. 83-112
    
    165.Rovira A D. Plant root exudates. Bot Rev, 1969, 35:35-37
    166.Roy H K, Ajay K, Sarkar A K, Prasad R, Dubey S C, Kumar A. Yield, nutrient uptake, pest and disease incidence in upland rice as influenced by N, K and FYM application in acid sedentary soils. J Potassium Res, 1997,13(2): 131-136
    167.Ruschell A P, de Paula M M. Allelopathy and Autotoxicity in Upland Rice. In: Pinheiro, B S, Guimaraes E P eds., Rice in Latin America: Perspectives for Increasing Yield and Yield Potential. Goiania: Embrapa/CNPAF, 1996. 117
    168.Sadhu M K, Das T M. Physiological activities of natural growth inhibitors from root exudates of tropical crops and weeds. Proc 54th Indian Sc Congr, 1966. 544
    169.Sadhu M K, Das T M. The nature and physiological activities of organic substances liberated from the roots of rice seedlings growing under aseptic condition in vitro. Proc 55th Indian Sc Congr, 1967. 591
    170.Sadhu M K, Das T M. The physiological activities of the root exudates of rice seedlings. Bull Bot Soc Beng, 1969,23:41 -48
    171.Sahrawat K L, Jones M P, Diatta S, Adam A. Response of upland rice to fertilizer phosphorus and its residual value in an Ultisol. Commun Soil Sci Plant Anal, 2001, 32:2457-2468
    172.Saiten H, Yamamuro S. Rotation of upland and paddy crops in ill-drained clayey paddy field behaviors of nitrogen in soil and its absorption by crops. Agric Tec, 1988, 43:385-389
    173.Saito K, Linquist B, Atlin G N. Response of traditional and improved rice cultivars to N and P fertilizer in northern Laos. Field Crops Res, 2006,96:216-223
    174.Sanchez P A. Productivity of soils in rainfed farming systems: Examples of long-term experiments. In: Potential productivity of field crops under different environments. IRRI, Manila, Philippines, 1983. 441-465
    175.Sanchez P A, Salinas J G Low input technology for managing Oxisols and Ultisols in tropical America. Adv Agron, 1981, 34:280-406
    176.Sarkar M C, Narayanasamy G, Gupta P K, Mukherjee T K. Comparison of fertilizer use efficiency of anhydrous ammonia, urea and ammonium sulfate for wheat and rice. J Nucl Agric Biol, 1978, 7(2):64-68
    177.Sarkar P K, Debnath N C, Root C E C. Growth, composition and uptake of nutrients in upland rice (Oryza sativa L.) as influenced by levels of nitrogen. Enviro Ecology, 1992,10(2):440-444
    
    178.SAS Institute. 2003. SAS Version 9.1.2 (?) 2002-2003. SAS Institute, Inc., Cary, NC.
    179.Sasakawa H, Yamamoto Y. Comparison of the uptake of nitrate and ammonium by rice seedlings. Plant Physiol, 1978,62:665-669
    180.Sasaki Y, Hosen Y, Peng S, Nie L, Rodriguez R, Agbisit R, Fernandez L, Bouman B A M, Kobayashi N. Possibility of abiotic factors on the gradual yield decline under continuous aerobic rice cropping system. Abstract, Annual Meeting of Japanese Society of Soil Science and Plant Nutrition, 2006, Akita, Japan
    181. Savant N K, De Datta S K. Nitrogen transformation in wetland rice soils. Adv Agron, 1982,35:241-302
    182.Singh J S, Raghubanshi A S, Singh R S, Srivastava S C. Microbial biomass acts as a source of plant nutrients in dry tropical forest and savanna. Nature, 1989, 338:499-500
    183.Skrier K, Mandy J. Gene expression in response to abscisic acid osmotic stress. Plant Cell, 1990,2:1503-1512
    184.Sojka R E, Busscher W J, Lehrsch G A. In situ strength, bulk density, and water content relationships of a Durinodic Xeric Haplocalcid soil. Soil Sci, 2001, 66(8): 520-529
    185.Soriano I R, Reversal G Management of Meloidogyne graminicola and yield of upland rice in South-Luzon, Philippines. Nematology, 2003, 5:879-884
    
    186.Soriano I R S, Prot J C, Matias D M. Expression of tolerance for Meloidogyne graminicola in rice cultivars as affected by soil type and flooding. J Nematology, 2000,32:309-317
    187.Stephen R C, Waid J S. Pot experiments on urea as a fertilizer: I. A comparison of responses by various plants. Plant Soil, 1963, XVIII, no. 3
    188.Stockdale E A, Rees R M. Relationship between biomass nitrogen and nitrogen extracted by other nitrogen available methods. Soil Biol Biochem, 1994, 26:1213-1220
    189.Swamy P M, Smith B N. Role of abscisic acid in plant stress tolerance. Current Sci, 1999, 76(9):1220-1227
    190.Thies J A, Mueller J D, Fery R L. Use of a resistant pepper as a rotational crop to manage root-knot nematode. HortScience, 1998, 33:716-718
    191.Thunjai T, Boyd C E, Dube K. Pond soil pH measurement. J Word Aquaculture Soc, 32(2):141-152
    192.Tian G, Olimah J A, Adeoye G O, Kang B T. Regeneration of earthworm population in a degraded soil by natural and planted fallows under humid tropical conditions. Soil Sci Soc Am J, 2000, 64:222-228
    193.Tomar V S. Soil physical limitations for rainfed lowland rice. In: Fukai S et al. eds., Breeding strategies for rainfed lowland rice in drought-prone environments. ACIAR, Canberra, 1997. 209-210
    194.Tuong T P, Bouman B A M. Rice production in water-scarce environments. In: Kijne J W, Barker R, Molden D eds., Water Productivity in Agriculture: Limits and Opportunities for Improvement. UK: CABI Publishing, 2003. 53-67
    195.Vancura V, Catska V, Hudska G Fluorescent pseudomonads and soil fatigue in apple-tree orchard. Folia Microbiol, 1977,22:458
    196. Ventura W, Watanabe I. Growth inhibition due to continuous cropping of dryland rice and other crops. Soil Sci Plant Nutr, 1978,24:375-389
    197.Ventura W, Watanabe I, Castillo M B, dela Cruz A. Involvement of nematodes in the soil sickness of a dryland rice-based cropping system. Soil Sci Plant Nutr, 1981, 27:305-315
    198.Ventura W, Watanabe I, Komada H, Nishio M, dela Cruz A, Castillo M B. Soil sickness caused by continuous cropping of upland rice, mungbean, and other crops. IRRI Res Paper Ser, 1984, 99:13
    199.Vlasta C, Vancura V, Hudska G, Prikryl Z. Rhizosphere microorganisms in relation to the apple replant problem. Plant Soil, 1982,69:187-197
    
    200.von Uexkull H R. Efficient fertilizer use in acid upland soils of the humid tropics. FAO fertilizer and plant nutrition bulletin, 1986,10
    
    201.Vose P B. Screening techniques fro plant nutrient efficiency: philosophy and methods. In: Bassam E N. et al. eds., Genetic Aspects of Plant Mineral Nutrition. Dordrecht: Kluwer Academic Publishers, 1990. 283-289
    202. Wang H, Bouman B A M, Zhao D, Wang C, Moya P F. 2002. Aerobic rice in northern China: opportunities and challenges. In: Bouman B A M, Hengsdijk H, Hardy B, Bindraban P S, Tuong T P, Ladha J K eds., Water-wise rice production. Proc International Workshop on Water-wise Rice Production. Manila: International Rice Research Institute, 2002. 143-154
    203.Wang H Q, Tang S X. Upland rice production in China: its past, today and future. Abstract, the Aerobic rice workshop, 2000, International Rice Research Institute, Los Banos, Philippines
    204.Watanabe T, Yasuo M, Ishii K, Nagai M, Ichiki K. Studies on the malnutrition in upland rice resulted from its successive cropping. J Cent Agric Exp Stn, 1963, 5:1-44
    205.Wang Y F, Zhou Y H. Water-saving rice cultivation in northern China. Shenyang: Liaoning science and technology press, 2000. 161-182
    206.Woods F W. Biological antagonisms due to phytotoxic root exudates. Bot Rev, 1960, 26: 546-569
    207.Xu D, Duan X L, Wang B Y, ET A L. Expression of a late embryogenesis aboundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol, 1996,110:249-257
    208.Yamagata M, Ae N. Direct acquisition of organic nitrogen by crops. Japan Agricultural Research Quarterly, 1999,33(1):15-21
    209.Yang Y Q, Yao Y, Xu G, Li C Y. Growth and physiological responses to drought and elevated ultraviolet-B in two contrasting populations of Hippophae rhamnoides. Physiol Plant, 2005,124(4):431-440
    210.Yoshida S. Factors that limit the growth and yields of upland rice in major research in upland rice. Manila: International Rice Research Institute, 1975. 46-71
    211.Yoshida S, Forno D A, Cock J H, Gomez K A. Laboratory Manual for Physiological Studies of Rice. Manila: International Rice Research Institute, 1976. 83
    212.Zollinger N, Kjelgren R, Cerny-Koenig T, Kopp K, Koenig R. Drought responses of six ornamental herbaceous perennials. Scientia Horticulturae, 2006,109(3):267-274