裂褶菌F17对染料脱色的研究及偶氮染料刚果红降解产物的分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全世界每年大约生产8×10~5吨的染料,其中80%是偶氮染料,10~15%的染料在生产和使用过程中被释放到环境中,造成严重的环境污染。白腐真菌依靠在次生代谢阶段产生的细胞外酶对多种难降解的有机污染物具有广普的降解能力,包括多种染料。白腐真菌对染料废水脱色方面的研究已经得到广泛的重视。
     本实验室选育的一株白腐真菌——裂褶菌F17可脱色降解多种不同结构的染料,具有很好的应用前景。本文研究了裂褶菌F17的生长特性及其对染料的脱色能力;研究了培养温度、初始pH、染料加入时间、染料初始浓度、诱导剂、天然物质、金属离子、抑制剂对染料脱色率的影响;新构建了一脱色降解体系,并在非灭菌条件下,研究了裂褶菌F17对染料的脱色降解能力;此外,分离并鉴定了偶氮染料刚果红的降解产物,初步推测了其可能的降解途径。实验结果如下:
     1、裂褶菌F17在马铃薯综合固体培养基中的生长速度明显快于限氮和麦芽汁固体培养基,最佳生长温度为28℃,生长pH范围在4.5~8.0之间;黄孢原毛平革菌和变色栓菌的最佳生长温度分别为37℃和28℃,生长pH范围均在4.5~6.0之间。
     2、裂褶菌F17、黄孢原毛平革菌和变色栓菌对染料刚果红都有一定的脱色能力。温度28℃、染料初始浓度100 mg·L~(-1)时,在限氮培养基中,脱色72小时后脱色率分别为66.9%、82.1%和81.9%。
     3、裂褶菌F17对染料刚果红脱色的最佳条件:温度28℃、初始pH值为4.5以及菌体摇瓶培养3天加入染料,刚果红初始浓度以100 mg·L~(-1)为宜,诱导因子藜芦醇、吐温80、土豆汁、松木屑的加入明显提高了刚果红的脱色率,其最佳终浓度分别为1.0 mmol·L~(-1)、0.1%、50 g·L~(-1)、3.0 g·L~(-1),刚果红的最高脱色率在72小时后达到97.4%,而叠氮化钠和氰化钾的加入对刚果红的脱色有显著的抑制作用。
     4、裂褶菌F17在染料脱色体系中的最佳产酶条件:温度28℃、初始pH值为4.5以及菌体摇瓶培养3天加入染料,刚果红初始浓度以100 mg·L~(-1)为宜。另外,菌体产酶以MnP为主,最高酶活达到103.4 U·L~(-1),LiP活力很小,未检测到Lac。刚果红的脱色率与累积MnP酶活具有良好的线性关系,相关系数为0.973。
     5、新构建了一脱色降解体系:0.1 mol·L~(-1)乳酸—乳酸钠缓冲液(pH=4.0)100 mL·L~(-1),染料100 mg·L~(-1),松木屑3.0 g·L~(-1),湿菌球约70.0 g·L~(-1)。裂褶菌F17在此体系中对不同结构染料均表现出一定的脱色降解能力,其中刚果红和茜素红在脱色120小时后脱色率达90%以上,降解率达80%以上。在非灭菌条件下,裂褶菌F17在新构建的体系中也对染料表现出较高的脱色降解能力,脱色120小时后刚果红的脱色率达89.7%,降解率达78.6%。
     6、在新构建的体系中,裂褶菌F17对偶氮染料刚果红表现出较高的脱色能力,脱色192小时后刚果红脱色率为95.1%,而吸附率只有6.7%,表明染料的脱色主要是降解作用。对脱色96小时和192小时后的脱色液进行紫外—可见扫描,发现刚果红在可见光区495 nm处的吸收峰已消失,并在紫外区出现多个吸收峰。通过高效液相色谱分离得到一种刚果红降解产物,用质谱和傅立叶红外光谱鉴定,发现该产物分子量为184.2,主要官能团为—C_6H_4—和芳基—NH_2,结合刚果红结构和该产物的核磁共振波谱推测其为联苯胺,并且随着时间的延长,联苯胺逐渐被降解。
The total annual world textile dye production is estimated at about 800,000 tons, among which azo dyes account for 80%. During processing, up to 10~15% of the used dyestuff are released into the process water, and generating serious pollution. White rot fungus are directly involved in the degradation of various xenobiotic compounds including dyes. The study on the treatment of dye effluents by White rot fungus already obtained the widespread value.
     The white-rot fungal strain--Schizophyllum sp. F17, which was isolated and stocked by our Lab., is effective to decolorize a wide range of structurally diverse synthetic dyes. This paper studied the growth and decolorization ability of Schizophyllum sp. F17, and the effect of culture temperature, original pH, the time of dye addition, original dye concentration, inducer, crudes, metal ions, inhibitor on the dye decolorization percentage. At the same time, a novel decolorization and degradation system was designed, and the test of dye decolorization by schizophyllum sp. F17 under non-sterile conditions was studied too. Moreover, a degradation product of Congo Red was separated and identified, and the degradation approach was speculated. The results showed:
     1. The growth rate of Schizophyllum sp. F17 in potato integration solid culture mediun was quicker than that in nutrient nitrogen limited and wort solid culture medium, and the optimum growth temperature was 28℃the range of growth pH was 4.5~8.0. The optimum growth temperature of Phanerochaete chrysosporium and Trametes versicolor were 37℃and 28℃respectively, the ranges of growth pH were all 4.5~6.0.
     2. Schizophyllum sp.F17, Phanerochaete chrysosporium and Trametes versicolor all had the ability to decolorize Congo Red. The decolorization percentage of Congo Red reached 66.9%, 82.1% and 81.9% respectively after 72h in nutrient nitrogen limited liquid culture medium, while temperature 28℃, original dye concentration 100mg·L~(-1).
     3. The optimum conditions of Congo Red decolorization by Schizophyllum sp. F17 were as follows: temperature 28℃, initial pH 4.5, dyes added to the medium after 3 days of incubation in shaken flasks, and original dye concentration was 100mg·L~(-1). The addition of veratryl alcohol, tween 80, potato extract and deal rag all had a great promotion on decolorization percentage, the maximum decolorization percentage of Congo Red reached 97.4% after 72h, but the addition of NaN_3 and KCN all had maked inhibition action on decolorization.
     4. The optimum conditions of enzyme production by Schizophyllum sp. F17 were as follows: temperature 28℃, initial pH 4.5, dyes added to the medium after 3 days of incubation in shaken flasks, and original dye concentration was 100mg·L~(-1). The maximum activity of MnP, the main degradation enzyme, reached 103.4 U·L~(-1), LiP activity was very low, and no laccase was detected. Moreover, there was a good linear relationship between percentage decolorization of Congo Red and cimulative MnP activity, and correlation coefficient was 0.973.
     5. A novel decolorization and degradation system was established: 0.1 mol·L~(-1) lactic acid-sodium lactate buffer solution(pH=4.0) 100 mL·L~(-1), dyes 100 mg·L~(-1), deal rag 3.0 g·L~(-1), wet mycelial pellets about 70.0 g·L~(-1). Schizophyllum sp. F17 was effective to decolorize and degrade the tested dyes in the system, and the decolorization percentage of Congo Red and Alizarin Red all reached 90% upwards after 120h, the degradation percentage all reached 80% upwards. Schizophyllum sp. F17 was also effective to decolorize Congo Red in the system under non-sterile conditions, and the decolorization and degradation percentage reached 89.7 % and 78.6 % respectively after 120h.
     6. In the novel decolorization and degradation system, Schizophyllum sp. F17 was effective to decolorize and degrade Congo Red, and the decolorization and adsorption percentage reached 95.1% and 6.7% respectively after 192h. Therefore, it could be known that the decolorization of Congo Red by Schizophyllum sp. F17 in the system was achieved mainly by degradation. Furthermore, the UV-Vis spectrum of Congo Red reveals that the absorption peak at 495 nm vanished and some new absorption peaks appeared at ultraviolet region at both 96h and 192h of decolorization. A degradation product of Congo Red, molecular weight of 184.2 Da, was separated by HPLC. The MS and FTIR analyses demonstrate that the functional groups were-C_6H_4-and arylamine, suggesting that the degradation product was benzidine, which was confirmed by NMR, thereafter benzidine was degraded gradually with operational time.
引文
[1]Zollinger H.. Colour chemistry, synthesis,properties and applications of organic dyes and pigments[M]. New York:VCH, 1987,pp92-102..
    [2]Breen A., Singleton FL..Fungi in lignocellulose breakdown and biopulping[J]. Curr. Opin. Biotechnol., 1999,10: 252~258.
    [3]Chang J., Chou C., Lin P., et al. Kinetic characteristics of bacterial azo dye decolorization by Pseudomonas luteola. [J].Water Res., 2001,35:2841~2850.
    [4]Ibrahim MB., Poonam N.,Datel SR.. Microbial decolorization of textile-dye-containing effluents: a review[J]. Bioresour. Technol., 1996, 58: 217~227.
    [5]张朝晖,夏黎明,林建平,等.黄抱原毛平革菌对染料和印染废水的降解[J].应用与环境生物学报,2001,7(4):382~387.
    [6]徐成勇,郭波,周莲,等.白腐菌对染料脱色和降解作用的研究进展[J].生物工程进展,2002,22(1):57~60.
    [7]Dirk W., Irene K., Spiros N., et al. White-rot fungi and their enzymes for the treatment of industrial dye effluents [J]. Biotechnol. Adv., 2003,22: 161~187.
    [9]Kirby N., Marchant R., Mcmullan G.. Decolorisation of synthetic textile dyes by Phlebia tremellosa [J]. FEMS Microbiol. Lett., 2000, 188:93~96.
    [10]Ambrosio ST., Campos-Takaki GM.. Decolorization of reactive azo dyes by Cunninghamella elegans UCP 542 under co-metabolic conditions[J]. Bioresour. Technol., 2004, 91:69~75.
    [11]Heinfling A., Bergbauer M., Szewzyk U.. Biodegradation of azo and phthalocyanine dyes by Trametes versicolor and Bjerkandera adusta[J]. Appl. Environ Microbiol., 1997,48:261~266.
    [12]Kapdan IK., Kargi F.. Biological decolorization of textile dyestuff containing wastewater by Coriolus versicolor in a rotating biological contactor[J]. Enzyme Microb. Technol., 2002,30:195~199.
    [13]程永前,黄民生,张国莹.白腐真菌对染料脱色及降解过程机理和影响因素[J].环境污染治理技术与设备,2000,1(6)25~34.
    [14]Pointing SB.Dye decolorization by subtropical basidiomycetous fungi and the effect of metale on decolorizing ability[J], J. Microbiol. Biotechnol., 2000, 16:199~205
    [15]高大文,文湘华,周晓燕,等.非灭菌环境投加染料时间对白腐真菌降解活性染料的影响[J].环境科学学报,2005,25(4):519~524.
    [16]Leidig E., Prusse U., Vorlop KD., et al. Biotransformation of Poly R-478 by continuous cultures of PVAL2encapsulated Trametes versicolor under non-sterile conditions[J]. Bioprocess Eng., 1999,21 (1):5~12.
    [17]Libra J A, Borchert M, Banit S. Competition strategies for the decolorization of a textile2reactive dye with the white2rot fungi Trametes versicolor under non-sterile conditions[J]. Biotechnol. Bioeng., 2003,82(6):736~744.
    [18]Martins MAM., Lima N., Silvestre AJD. et al. Comparative studies offungal degradation of single or mixed bioaccessible reactive azo dyes[J]. Chemosphere,2003,52:967~973.
    [19]Tauber MM., Guebitz GM., Rehorek A.. Degradation of azo dyes by Laccase and ultrasound treatment[J]. Appl. Environ. Microbiol.,2005, 71 (5): 2600~2607.
    [20]Kumar K, Saravana Devi S, Krishnamurthi K, et al. Decolorisation, biodegradation and detoxification of benzidine based azo dye[J]. Bioresour. Technol.,2006,,97:407~413.
    [21]荚荣,周业亭,刘自平.染料脱色真菌的选育及其对合成染料的脱色作用[J].安徽大学学报(自然科学版),2004,28(1):64~68.
    [22]陈孔常,田禾,孟凡顺,等.2000.有机染料合成工艺[M].北京:化学工业出版社:4—5.
    [23]Walker, GM., Weatherley IR.. Biodegradation and biosorptionof acid anthraquinone dye[J]. Environ. Pollut.,2000,108:219~223.
    [24]Youssef BM.. Adsorption of acid dyes by cellulose derivatives. A. M. dyest. Rep.,1999,82:30~33.
    [25]Sumathi S., Manju BS.. Fungal mediated decolorization of media containing procion dyes. Water Sci.Technol., 2001,43:285~290.
    [26]精细化学品辞典编辑委员会编(日),禹茂章等译.精细化学品辞典[M].北京:化学工业出版社,1989.
    [27]Vaidya AA., Datye KV.. Environmental pollution during chemical processing of synthetic fibers[J]. Colourate,1982,14:3~10.
    [28]北京市环境保护科学研究所编.水污染防治手册[M].上海:上海科学技术出版社,1989.
    [29]吴国宾.国内外活性染料的现状和发展趋势[J].江苏化工,1999,27(1):12~14.
    [30]Yuzhu Fu,Viraraghavan T.. Fungal decolorization of dye wastewaters: a review. Bioresour. Technol., 2001, 79:251~262.
    [31]Nagarathnamma R,,Bajpai, Pratima.Studies on decolourization,degradation and detoxification of chlorinated lignin compounds in kraft bleaching effluents by Ceriporiopsis subvermispora[J].Pro.Bio.1999,34(9):939~948.
    [32]Shaul GM., Holdsworth TJ., Dempsey CR., et al. Fate of water soluble azo dyes in the activated sludge process[J]. Chemosphere, 1991,22:107~119.
    [33]Willmott N., Guthrie J., Nelson G.. The biotechnology approach to colour removal from textile effluent[J]. J. Soc. Dyers Colour, 1998,114:38~41.
    [34]Claus H., Faber G., Konig H.. Redox-mediated decolorization of synthetic dyes by fungal laccase[J]. Appl. Microbiol. Biotechnol., 2002,59: 672~678.
    [35]Patricio PZ. Degradation of reactive dyes I, A comparative study of ozonation, enzymatic and photochemical process[J],Chemosphere, 1999,38(4): 835~852.
    [36]许玫英,郭俊,岑英华,等.染料的生物降解研究[J].微生物学通报,2006,33(1):138~143.
    [37]Poonam N., Ibrahim M., Banat, et al.Microbial process for the decolorization of textile effluent containing azo, diazo and reactive dyes[J]. Bioresour. Technol.,1996,31(5): 435~442.
    [38]林刚,文湘华,钱易.应用白腐真菌技术处理难降解有机物的研究进展[J].环境污染治理技术与设备.2001,2(4):1~8.
    [39]Pointing SB.. Feasibility of bioremediation by white-rot fungi[J]. Appl. Microbiol. Biotechnol., 200157: 20~33.
    [40]梁利华,杨东虎,阐振荣.白腐真菌对染料废水脱色及降解的研究[J].生物学杂志,2003,20(3):5~8.
    [41]梁利华.染料脱色真菌的筛选与脱色条件的研究[D].河北:河北大学,2004.
    [42]赵继鼎.中国真菌志[M].北京:科学出版社.1998.
    [43]戴芳澜.真菌的形态和分类[M].北京:科学出版社.1987.赵继鼎.中国真菌志[M].北京:科学出版社.1998.
    [44]李慧蓉.白腐真菌生物学和生物技术[M].北京:化学工业出版社,2005.
    [45]谢明杰,宋玉媛,曹文伟,等.徽生物杀虫剂应用的研究进展[J].辽宁师范大学学报,1998,21(4):326~329.
    [46]Fakoussa R., Hofrichter M.. Biotechnology and microbiology of coal degradation[J]. Appl. Microbiol. Biotechnol. 1999,52:25~40.
    [47]Eggert C., Temp U., Eriksson K-EL. Laccase is essential for lignin degradation by the white-rotfungus Pycnoporus Cinnabarinus[J]. FEBS Lett. 1997,407:89~92.
    [48]付时雨,詹怀宇,余惠生.漆酶/介体系统漂白叶按硫酸盐浆的初步研究[J].中国造纸,2000,3:8~12.
    [49]邓振旭,王宜磊.碳源和氮源对毛栓菌菌丝体生长和漆酶分泌的影响[J].微生物学杂志,2000,20(2):60~61.
    [50]Ha HC., Honda Y., Watanabe T., et al.Production of manganese peroxidase by pellet culture of the lignindegrading basidiomycete, Pleurotus ostreatus[J]. Appl, Microbiol. Biotechnol., 2001,55:704~711.
    [51]董新姣,陈珠,杜志游.无花果曲霉对直接冻黄(G)的脱色特性研究[J].城市环境与城市生态,2001,14(1):1~3.
    [52]吴涓,肖亚中,王怡平.白腐真菌处理灰法造纸黑液废水的研究[J].生物学杂志,2002,19(5):17~19.
    [53]荚荣,赵凤,武胜.白腐真菌生物接触氧化法处理染料废水[J].中国环境科学,2004,24(2):205~208.
    [54]高航,徐宏勇,刘勇弟.白腐菌附着式生物膜反应器处理垃圾渗沥液技术研究[J].环境科学学报,2004,24(2):309~314.
    [55]高大文,文湘华,钱易.应用白腐真菌降解染料的研究现状及发展趋势[J].哈尔滨工业大学学报,2005,37(9):1200~1204.
    [56]Kich IH., Kazunor IN.. Decolorization of mixtures of different reactive textile dyes by the white-rot basidiomycete Phanerochaete sordida and inhibitory effect of polyvinyl alcohol[J]. Chemosphere,2005 59: 63~68.
    [57]Knapp JS., Newby PS., Reece LP..Decolorization of dyes by wood-rotting basidiomycete fungi[J].Enzyme. Microb. Technol., 1995,17(7):664~668.
    [58]Wang Y.,Yu J.. Adsorption and degradation of synthetic dyes on the mycelium of Trametes versicolor [J]. Water Sci. Technol.,1998,38(4-5):233~238.
    [59]Aggelis G., Ehaliotis C., Nerud F.,et al. Evaluation of white-rot fungi for detoxification and decolorization ofeffiuents from the green olive debittering pricess[J].Appl. Microbiol. Biotechnol,2002,59:353~360.
    [60]Mester T., Tien M.. Oxidation mechanism of ligninolytic enzymes involved in the degradation of environmental pollutants[J]. Int. Biodeterior. Biodegrad., 2000,46:51~59.
    [61]Graca MB., Soares MT.. P.essoa A., et al. Study on the biotransformation of novel disazo dyes by Laccase [J]. Process Biochem.,2002,37:581~587.
    [62]Yesitada O., Fiskin K., Yesilada E..The use of white rot fungus Funalia trogii for the decolorization phenol removal from olive mill wastewater[J]. Enoiron. Technol.,1995, 16:95~100.
    [63]Lesley D..Potential of a fungus Acrernoniu sp. to decolorize pulp mill effluent[D]. USA: Oregon state university, 1993.
    [64]Eaton D., Chang, H.M., et al. Finguldecolorization kraft bleach plant effluent[J]. Tappi J., 1980,63:103~109.
    [65]Knapp JS., Newby PS..The decolorization of a chemical industry effluent by white rot fungi[J].Water Res.,1999,33 (2):575~577.
    [66]Kaal EEJ., Field JA., Joyce TW.. Increasing ligninolytic enzyme activities in several white-rot basidiomycetes by nitrogen-sufficient media[J]: Bioresour. Technol., 1995,53:133~139.
    [67]Novotny C., Rawal B., Bhatt M., et al.. Capacity of lrpex lacteus and Pleurotus ostreatus for decolorization of chemically different dyes[J]. J. Biotechnol.,2001,89:113-122.
    [68] Heinfling A., Martinez MJ., Martinez AT., et ah. Transformation of industrial dyes by manganese peroxidases from Bjerkandera adusta and Pleurotus eryngii in a manganese-independent reaction[J].Appl. Environ. Microbiol., 1998, 64: 2788-2793.
    [69] Heinfling A., Ruiz-Duenas FJ., Martinez MJ., et al.A study on reducing substrates of manganese-oxidizing peroxidases from Pleurotus eryngii and Bjerkandera adusta[J]. FEBS Lett., 1998,428:141 —146.
    [70] Moreira MT., Mielgo I., Feijoo G.,et al. Evaluation of different fungal strains in the decolourisation of synthetic dyes[J]. Biotechnol. Lett., 2000,22:1499—1503.
    [71] Gill PK., Arora DS., Chander M.. Biodecolourization of azo and triphenylmethane dyes by Dichomitus squalens and Phlebia spp[J]. J. Ind.Microbiol. Biotech., 2002,28:2001-2003.
    [72] Perie FH., Gold MR. Manganese regulation of manganese peroxidase expression and lignin degradation by the white-rot fungus Dichomitus squalense[J]. Appl.Environ. Microbiol., 1991,57:2240-2245.
    [73] Kim SJ., Shoda M.. Decolorization of molasses and a dye by a newly isolated strain of the fungus Geotrichum candidum Dec. 1[J]. Biotechnol.Bioeng.,1999,62:114~119.
    [74] Conneely A., Smyth WF., McMullan G.. Metabolism of the phthalocyanine textile dye remazol turquoise blue by Phanerochaete chrysosporium[J]. FEMS Microbiol. Lett., 1999,179:333-337.
    [75] Cameron MD., Timofeevski S., Aust SD.. Mini-review: enzymology of Phanerochaete chrysosporium with respect to the degradation of recalcitrant compounds and xenobiotics[J]. Appl. Microbiol. Biotechnol., 2000,54:751 —758.
    [76] Balan DSL., Monteiro RTR.. Decolorization of textile indigo dye by ligninolytic fungi[J]. J. Biotechnol., 2001,89:141 —145.
    [77] Chagas EP., Durrant LR.. Decolorization of azo dyes by Phanerochaete chrysosporium and Pleurotus sajorcaju[J] .Enzyme Microb. Technol.,2001,29:473-477.
    [78] Capalash N., Sharma P..Biodegradation of textile azo-dyes by Phanerochaete chrysosporium[i].World J. Microbiol. Biotechnol., 1992,8.
    [79] Jain N., Kaur A., Singh D., et al.. Degradation of acrylic Red 2B dye by P-crysosporium: involvement of carbon and nitrogen source. J. Environ. Biol.,2000,21:179—183.
    [80] Kapdan I., Kargi F., McMullan G., et al. Comparison of white-rot fungi cultures for decolorization of textile dyestuffs[J]. Bioprocess Eng., 2000,22:347—351.
    [81] Ralph JP., Graham LA., Catcheside DEA.. Extracellular oxidases and the transformation of solubilised low-rank coal by wood-rot fungi[J]. Appl.Microbiol. Biotechnol., 1996,46:226—232.
    [82] Vares T., Niemenmaa O., Hatakka A.. Secretion of ligninolytic enzymes and mineralization of ~(14)C-ring labeled synthetic lignin by three Phlebia tremellosa strains[J]. Appl. Environ. Microbiol., 1994,60:569—575.
    [83] Martinez MJ., Ruiz-Duenas FJ., Guillen F., et al.. Purification and catalytic properties of two manganese peroxidase isoenzymes from Pleurotus eryngii[J].Eur.J. Biochem., 1996,237:424-432.
    [84] Sarkar S., Martinez AT., Martinez MJ.. Biochemical and molecular characterization of a manganese peroxidase isoenzyme from Pleurotus ostreatus[J]. Biochim. Biophys. Acta, 1997,1339:23—30.
    [85] Boyle CD., Kropp BR., Reid ID.. Solubilization and mineralization of lignin by white rot fungi[J]. Appl. Environ.Microbiol., 1992,58:3217—3224.
    [86] Pointing SB., Vrijmoed LLP.. Decolorization of azo and triphenylmethane dyes by Pycnoporus sanguineus producing laccase as the sole phenoloxidase[J].World J. Microbiol. Biotechnol., 2000,16:317—318.
    
    [87] Hatakka A.. Lignin-modifying enzymes from selected white-rot fungi: production and role in lignin degradation[J].FEMS Microbiol. Rev.,1994,13:125—135.
    [88]Swamy J., Ramsay JA.. Effects of glucose and NH_4~+ concentrations on sequential dye decoloration by Trametes versicolor[J]. Enzyme Microb. Technol., 1999,25:278~284.
    [89]谭国民,柳荣展,李群,等.治理内电解法白腐菌生物处理活性染料染色废水[J].环境工程,2004(3):7~10.
    [90]Faison BD., Kirk TK.,Farrell RL..Role of veratryl alcohol in regularting ligninase activity in Phanerochaete chrysosporium[J]. Appl. Environ. Micobiot., 1986, 52:251~254.
    [91]Tonon F., Odier E.. Lingin peroxidase ofPhanerochaete chrysosporium[J]. Appl. Environ. Micobiol., 1988,54:466~472.
    [92]Arora DS., Gill PK..Comparison of two assay procedures for lignin peroxidase[J]. Enzyme Microb. Technol., 2001,28:602~605.
    [93]Asther M.,Corrieu G., Drapron R, et al. Effect of tween80 and oleic acid onlinnase production by Phanerachaete chrysosporiumI NA-12[J]. Enzyme Microb. Technol., 1987,9:245~249.
    [94]Acharya KR., Bhattacharya SC.,.Mouliie SP.. Effects of urea and thiourea on the absorption and fluorescence behaviours of the dye safranine T in micellar medium[J].J. Mol. Liq.,2000,87:85~96.
    [95]荚荣,汤必奎,张晓宾,等.藜芦醇和吐温80对白腐菌产木质素降解酶的影响及在偶氮染料脱色中的作用[J].生物工程学报,2004,2:302~305.
    [96]陈叶福,郭雪娜.木质素生物降解与纸浆工业废水脱色[J].工业微生物,2001,1(4):49~53.
    [97]Cripps C., Bumpus JA., Aust SD..Biodegradation of Azo and Heterocyclic Dyes by Phanerochaete chrysosporium.Appl. Environ. Microbiol.,1990,56(4): 1114~1118
    [98]丁佐龙,费本华,刘盛全.木材白腐机理研究进展[J].木材工业1997,11(5):18~21.
    [99]黄民生.适盐细菌生物技术处理高含盐量有机工业废水[J].污染防治技术,1998.11(1):30~31.
    [100]黄民生,吴苑,黄异.白腐真菌生物膜反应器处理染料废水生产废水实验研究[J]上海环境科学,2003,22(7):451~455
    [101]Michel FC., Dass SB., Grulke EA.,et al.Role of manganese peroxidases of phanerochaete chrysop-orium in the decorization of kraft bleach plant effiuent[J].Appl. Environ. Microbiol., 1992,57:2368~2375.
    [102]Wong Y., YU J.. Laccase-catalyzed decolorization of synthetic dyes[J]. Water Res., 1999,33 (16):3512~3520.
    [103]Spadaro JY, Gold MH.,Renganathan V..Degradation of azo dyes by the Lignini-degrading fungus Phanerochaete chrysosporium[J]. Appl. Environ. Microbiol., 1992,58(8):2397~2401.
    [104]Zhang F., Knapp JS., Yapley KN., et al.. Decolorization of cotton bleaching effluent with wood rotting fungus[J]. Water Res., 1999, 33(4):919~928.
    [105]Linko S.. Production and characterization of exreacellular lignin peroxidase from immobilized Phanerochaete chrysosporiumin a 10-L bioreactor[J]. Enzyme Microb. Technol., 1988,19(7):410~417.
    [106]谭国民,柳荣展.白腐菌对染料脱色及降解的影响因素[J].中国造纸学报,2003,18(1):131~134.
    [107]安世杰.白腐真菌处理染料废水及外源调控研究[D].上海:华东师范大学,2004.
    [108]李慧蓉,罗丽娟,罗光坤.黄孢原毛平革菌对代表性染料的生物降解及降解途径的初探[J].环境化学,2001,20(4):378~385.
    [109]Heiss GS., Gowan B., Dabbs ER.. Cloning of DNA from a Rhodococcus strain conferring the ability to decolorize sulfonated azo dyes[J]. FEMS Microbiol. Lett., 1992,99:221~226.
    [110]Zille A., Gornacka B., Rehorek A., et al. Degradation of azo by Trametes villosa Laccase over long periods of oxidative conditions[J]. Appl. Environ. Microbiol., 2005,71(11): 6711~6718.
    [111]Zhao XH, Hardinb IR, Hwang HM. 2006. Biodegradation of a model azo disperse dye bythe white rot fungus Pleurotus ostreatus[J]. Int. Biodeterior. Biodegrad., 57:1~6
    [112]Bumpus JA, Brock BJ. Biodegradation of crystal violet by the white rot fungus Phanerochaete chrysosporium[J]. Appl. Eviron. Microbiol., 1988,54 (5):1143~1150.
    [113]Eichlerova I., Homolka L., Nerud F.. Synthetic dye decolorization capacity of white rot fungus Dichomitus squalens[J]. Bioresour. Technol.,2006,97:2153~2159.
    [114]Kariminiaae-Hamedaani HR., Sakurai A., Sakakibara M.. Decolorization of synthetic dyes by a new manganese peroxidase-producing white rot fungus[J]. Dyes and Pigments,2007, 72: 157~162.
    [115]Glenn JK., Gold MH.. Decolorization of several polymeric dyes by the lignin-degrading basidiomycete Phanerochaete chrysosporium[J]. Appl. Environ. Microbiol., 1983,45(6): 1741~1747.
    [116]肖亚中,王军,王怡平,等.密环菌胞外漆酶的合成、纯化及性质研究[J].生物工程学报,2002,18(4):457~462.
    [117]Machii Y., Hirai H., Nishida T.. Lignin perosidase is involved in the biobleaching of manganese-less oxygen-delignified hardwood kraft pulp by white-rot fungi in the solid-fermentation system[J]. FEMS Microbiol. Lett., 2004,233:283~287.
    [118]李慧蓉,李华兵,李文琼,等.黄孢原毛平革菌对6种染料的脱色降解[J].环境科学研究,1999,12(3):14~17.
    [119]Tekere M., Mswaka AY., Zvauya R., et al. Growth, dye degradation and ligninolytic activity studies on zimbabwcan white-rot fungi[J]. Enzyme Microb. Technol, 2001,28:420~426.
    [120]汪正范,杨树民,吴侔天,等.色谱联用技术[M].北京:化学工业出版社,2000:144—145
    [121]汪正范.色谱定性于定量[M].北京:化学工业出版社,2000:63—108.
    [122]Akalin E., Akyuz S.. Structure and vibrational spectra of benzidine[J]. J. Mol. Struct.,2000, 651-653:571~577.