1,4-二氢吡啶衍生物与DNA相互作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1,4-二氢吡啶(1,4-DHP)衍生物是一类厂泛便用的降血压药物。研究发现,1,4-DHP类药物在人体内的代谢过程是通过肝脏中的细胞色素P-450氧化成吡啶衍生物而产生药效的,因此,1,4-DHP衍生物的氧化过程引起了研究者的关注。其次,许多药物分子是通过与DNA的相互作用而产生药效的,因此,研究药物分子与DNA的相互作用对了解药物作用机理,进行药物体外筛选,还是利用药物的构效关系进行结构改造,设计活性更高、毒副作用更低的新药都具有十分重要的意义。因此,本论文用电化学和多种光谱方法研究了一系列1,4-DHP的衍生物的电化学行为,总结1,4-DHP的取代基和溶剂等对1,4-DHP电化学性能的影响。在这基础上,研究它们与DNA相互作用前后的电化学性能的变化,比较了不同取代基衍生物与DNA作用的差异,从而对药物的结构与活性的关系提供一些实验依据。所得主要结果如下:
     1.1,4-DHP衍生物中的二氢吡啶基团能在玻碳电极上进行不可逆的电化学反应。拉曼光谱的结果证明,1,4-DHP衍生物电化学氧化时,它们的二氢吡啶基团会失去2个电子和2个质子,形成吡啶衍生物。
     2.1,4-DHP衍生物的二氢吡啶基团的氧化峰和还原峰峰电位与二氢吡啶基团上的4位取代基的吸电子能力有关,当取代基的吸电子能力增强时,二氢吡啶基团上电子云密度减小,使还原容易而氧化难,因此氧化峰峰电位和还原峰峰电位正移。从循坏伏安曲线来看,1,4-DHP衍生物的二氢吡啶基团的氧化峰峰电流一般远大于还原峰峰电流,表明氧化容易而还原难。所以,二氢吡啶基团上的取代基的吸电子能力对其还原反应难易程度的影响要大于对氧化反应的影响。因此,当取代基的吸电子能力增强时,二氢吡啶基团的△Ep反而减小,表明电化学反应的可逆性增加。
     3.1,4-DHP衍生物的二氢吡啶基团的电化学行为与溶剂的性质有关。首先,在无水的有机溶剂中,它们的二氢吡啶基团的电化学反应的不可逆性大,在有水的有机溶剂中的不可逆性小,这由于1,4-DHP衍生物的二氧吡啶基团的电化学反应牵涉到质子的得失而引起的。其次,在有些无水的有机溶剂,如乙腈(CH_3CN)中,1,4-DHP衍生物的二氢吡啶基团在玻碳电极上会发生不可逆的电化学反应,但在无水CHCl_3中,没有观察到电化学反应,这可能与溶剂分子的极性和共轭性有关。
    
    摘要
    4.1,4一DHP衍生物与小牛胸腺DNA(CT一DNA)的相互作用后,其氧化峰峰电位都发生
    正移,表明1,4一DHP衍生物能部分嵌入到CT一DNA的双螺旋链中。嵌入的程度与样
    品分子的空间位阻有关。其分子的空间位阻越小,嵌入的程度越大,峰电位正移也
    越大。
    5.圆二色谱(CD)谱的研究结果表明,1,4一DHP衍生物与CT一DNA的相互作用使CT一DNA
    的构象产生变化,构象变化的程度也与1,4一DHP衍生物的结构有关。分子的平面性
    越差,与CT一DNA的相互作用后,使CT一DNA分子构象的变化越大。
    6.荧光光谱的研究结果表明,1,4一D即衍生物本身的发射荧光能力与样品分子的
    结构有关,如样品分子的4位取代基是硝基苯基时,由于硝基为强吸电子基团,它
    会减弱荧光。而且硝基在苯基上的位置对样品的荧光淬灭的程度依次为间位>对位
    >邻位。其次,当激发光波长在31Onm左右时,有的样品的荧光峰强度随CT一DNA
    浓度的增加而增加,表明样品和CT一DNA发生了嵌入作用。这是由于样品分子嵌入
    CT一DNA后,使样品分子的刚性增强且碰撞淬灭减小,因而荧光显著增强。而对有
    些样品,它的荧光峰强度随CT一DNA浓度的增加而降低,这就可能由于其分子的非
    平面性大,因此不易嵌入到CT一DNA中的缘故。
1,4-dihydropyridine(1,4- DHP) derivatives are a kind of extensively applied drugs for reducing the blood pressure. It was found that this kind of drugs produces the medical efficacy only after they were oxidated by cytochrome P-450 in the liver during the metabolism in the human body. Therefore, the oxidation process of 1,4- DHP derivatives has been attracted the considerable attention. Secondly, the medical efficacy of many drugs is produced through the interaction between the drug and DNA. Thus, the study of the interaction between a drug and DNA is very important for understanding the mechanism of medical action, proceeding the extracorporeal filtration of drugs, reconstructing the structures of drugs with the relationship between the structure and medical efficacy and designing new drugs with high medical efficacy and low side-effect. In this thesis, using the spectroscopic and electrochemical methods, the electrochemical behaviors of 1,4-DHP derivatives were studied and summarized the effects of the sub
    stituent groups of 1,4- DHP derivatives and solvent on the electrochemical behaviors of 1,4- DHP derivatives were summarized. Based on it, the changes in their electrochemical properties before and after the interaction of 1,4- DHP derivatives with DNA were investigated. The differences of the interactions of 1,4-DHP derivatives with different substituent groups with DNA were compared. It will offer some experimental basises for the relationships of structures of drugs with their medical efficacy. The main results obtained are as follows.
    1 .The electrochemical reaction of the dihydropyridine group of 1,4- DHP derivatives is irreversible at the glassy carbon electrode. The results of Raman spectroscopy demonstrated that when the electrochemical reactions of the 1,4- DHP derivatives occur, their dihydropyridine groups will lose two protons and two electrons forming the pyridine derivatives.
    2.The anodic and cathodic peak potentials of the dihydropyridine groups of 1,4- DHP derivatives relate to the electron-accepting ability of 4-substituents of the dihydropyridine groups. When the electron-accepting ability increases, the density of
    
    
    
    the electron cloud of the dihydropyridine groups decreases, so that the dihydropyridine group is easy to be reduced and difficult to be oxidized. Thus, the anodic peak potential shifts to the positive direction and the cathodic peak potential shifts to the negative direction. The results of cyclic voltammograms showed that the anodic peak current is much more larger than the cathodic peak current, proving that the oxidation of the dihydropyridine groups is easier than their reduction. Therefore, the effect of the electron-accepting ability of the 4-substituents on the oxidation reaction is larger than that the reduction reaction. Thus, when the electro-accepting ability increases, the difference between the anodic and cathodic peak potentials. AEp of the dihydropyridine groups decreases, illustrating that the reversibility of the electrochemical reactions of the dihydropyridine groups increases.
    3.The electrochemical behaviors of the dihydropyridine group of 1,4- DHP derivatives is related the properties of the solvent. Firstly, in the organic solvent without water, the electrochemical irreversibility of the dihydropyridine group of 1,4- DHP derivatives is larger than that in the organic solvent with water. It is due to that the electrochemical reaction of the dihydropyridine group is related to obtaining or losing the protons. Secondary, in some organic solvent without water, such as CH3CN, the dihydropyridine group of 1,4- DHP can proceed the irreversible electrochemical reaction, but in CHCI3 without water, no electrochemical reaction of the dihydropyridine group can be observed. It maybe related to the polarity and conjugation of the solvent molecules. 4.After 1,4- DHP derivatives interact with calf thymus DNA (CT-DNA), their anodic peak potentials shift to the positive direction, indicating that 1,4- DHP derivatives can intercalate into the double-strand of CT-DNA. Th
引文
1.陆庆林,广西疾病预防控制在西部大开发中的作用与发展思路探讨,中国公共卫生管理,2002,18(1):454-457
    2.白树华,陈玉彬,二氢吡啶类钙拮抗剂研究的新进展,药学进展,1999,23(1):13-18
    3.丁俊杰,丁晓琴,赵立峰,陈冀胜,二氢吡啶类化合物的三维定量构效关系,物理化学学报,2003,19(12):1108-1113
    4.赵炳筠,朱晓晴,何家骐,夏炽中,程津培,1,4-二氢Hantzsch吡啶衍生物的合成及其~1H NMR利荧光光谱研究,高等学校化学学报,1999,20(11):1733-1737
    5. Yoshihiro Sambongi.Hajime Nitta, Kayoko Ichihashi,Masamitsu Futai,and Ikuo Ueda,A Novel Water-Soluble Hantzsch 1,4-Dihydropyridine Compound That Functions in Biological Processes through NADH Regeneration, J.Org.Chem.,2002,67: 3499-3501
    6. Sabir H.Mashraqui,Madhavi A.Karnik,Bismuth Nitrate Pentahydrate: A Convenient Reagent for the Oxidation of Hantzsch 1,4-Dipydropyridines. Synthesis, 1998,5: 713-714
    7. Jean Jacques Vanden Eynde, Florence Delfosse, Annie Mayence and Yves Van Haverbeke, Old Reagents,New Results: Aromatization of Hantzsch 1,4-Dihydropyridines with Manganese Dioxide and 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone, Tetrahedron, 1995,51 (23): 6511-6516
    8.陈慧民,叶慧珍,二氧吡啶类钙拮抗剂在治疗高血压中的研究进展,国外医药-合成药、生化药、制剂分册,1994,15(2):72-76
    9. Rodolfo Lavilla, Recent developments in the Chemistry of dihydropyridineds, J.Chem.Soc.,Perkin Trans.1,2002,9-12: 1141-1156
    10. Nadeem, Triggle D J, 1,4-dihydropyridine calcium channel ligands: The roles of state-dependent interactions, channel isoforms and other factors in determining pharmacologic and therapeutic selectivity of action, Drug Development Research,2002,55(4): 120-130
    11. Rodolfo Lavilla, Recent developments in the Chemistry of dihydropyridineds, J.Chem.Soc.,Perkin Trans. 1,2002,9-12: 1141-1156
    12. Arkadij Sobolev, Maurice C,R. Franssen,Brigita Vigante,Brigita Cekavicus,Effect of Acyl Chain Length and Branching on the Enantioselectivity of Candida rugosa Lipase in the Kinetic Resolution of 4-(2-Difluoromethoxyphenyl)-Substituted 1,4-Dihydropyridine 3,5-Diesters,J.Org.Chem.,2002,67: 401-410
    
    
    13. Yadav JS,Reddy BVS,Basak AK, Three-component coupling reactions in ionic liquids: An improved protocol for the synthesis of 1,4-dihydropyridines,Green Chemistry,2003,5(1): 60-63
    14. Sabitha, Gowravaram; Reddy, G.S. Kiran Kumar; Reddy, Ch. Srinivas; Yadav, J.S., A novel TMSI-mediated synthesis of Hantzsch 1,4-dihydropyridines at ambient temperature Tetrahedron Letters,2003,44(21): 4129-4131.
    15. Tiziana Benincori,Elisabetta Brenna and Franco Sannicolo, Studies on Wallach's Imidazole Synthesis, JCS Perkin Transactions 1,1993(1): 676-679
    16. Peri R, Padmanabhan S, Rutledge A, Permanently charged chiral 1.4-dihydropyridines: Molecular probes of L-type calcium channels. J. Med. Chem., 2000, 27(7): 2906-2914
    17. Triggle DJ, 1,4-dihydropyridines as calcium channel ligands and privileged structures, Cellular And Molecular Neurobiology,2003,23(3): 293-303
    18. Bossert V F, Meyer H, Wehiger E, 4-Aryldihydropyridines,a New Class of Highly Active Calcium Antagonists, Angew. Chem. Int. Ed. Engl., 1981,20: 762-766
    19.路军,白银娟,杨秉勤,马怀让,1,4-二氢吡啶衍生物合成方法的改进和芳构化研究,有机化学,2000,20(4):514-517
    20.张立新,王炳祥,朱世民等,1,4-二氢吡啶及其衍生物电化学反应机理研究,高等学校化学学报,1997,18(11):1779-1782
    21.曾泳淮,周颖琳,尼莫地平的示波极谱法测定与其电化学行为,分析试验室,2000,19(1):5-8
    22.刘永明,李桂芳,荆济荣,尼群地平在玻碳电极上的伏安行为及应用,分析化学,2002,30(11):1341-1343
    23.朱世名,成全,胡秀贞,彭慈贞,尼群地平儿种测定方法的比较,药学学报,1988,28(7):527-531
    24.张家海,杜定准,吴季辉,西尼地平核磁共振碳谱氢谱的谱峰归属,分析化学,2003,31(9):1044-1047
    25.李红 计亮年,电化学脱氧核糖核酸传感器进展,药物分析杂志,2000,20(5):353-355
    26.庞代文,陆琪,核酸修饰电极研究进展,化学通报,1998,5:15-18
    27.庞代文,齐义鹏,王宗礼,程介克,DNA的电化学研究,化学通报,1994,2:1-4
    28. Michael T.Carter, Marisol Rodriguez and Allen J.Bard,Voltammetric Studies of theInteraction of Metal Chelates with DNA.2. Tris-Chelated Complexes of Cobalt(Ⅲ) and Iron(Ⅱ) with 1,10-Phenanthroline and 2,2'-Bipyridine,J.Am.Chem.Soc., 1989,111: 8901-8911
    
    
    29. Michael T.Carter and Allen J.Bard,Voltammetric Studies of the Interaction of Tris(1,10-phenanthroline)cobalt(Ⅱ)with DNA, J.Am.Chem.Soc.,1987,109: 7528-7530
    30. Xiao-Hong Xu and Allen J.Bard ,Immobilization and Hybridization of DNA on an Aluminum(Ⅲ) Alkanebisphosphonate Thin Film with Electrogenerated Chemiluminescent Detection, J.Am.Chem.Soc., 1995,117, 2627-2631
    31. Marisol Rodriguez and Allen J.Bard, Electrochemical Studies of the Interaction of Metal Chelates with DNA.4.Voltammetric and Electrogenerated Chemiluminescent Studies of the interaction ofTris(2,2'-bipyridine)osmium(Ⅱ) with DNA. Anal.Chem., 1990,62: 2658-2662
    32.庞代文,齐义鹏,杜全胜,于宗礼,程介克,张敏,DNA与水溶性卟啉H_2TMAP的相互作用,科学通报,1994,39(17):1605-1610
    33. Qu Feng, Li Nanqiang, Jiang Yuyang, Electrochemical studies of porphyrin interacting with DNA and determination of DNA, Anal.Chim.Acta, 1997, 344(1-2): 97-104
    34. Qu Feng, Li Nanqiang, Jiang Yuyang, Electrochemical Studies of CuTMAP Interaction with DNA and Determination of DNA, J.Microchemical., 1998, 58(1): 39-51
    35. Qu Feng, Li Nan-Qiang, Jiang Yu-Yang, Electrochemical studies of NiTMpyP and interaction with DNA, Talanta,1998,45(5): 787-793
    36. Sethuraman Mahadevan and Mallayan Palaniandavar, Spectral and Electrochemical Behavior of Copperet(Ⅱ)-phenanthrolines Bound to Calf Thymus DNA.[(5,6-dimethyl-OP)_2 Cu]~(2+)(5,6-dimethyl-OP =5,6-Dimethyl-1,10-phenanthroline)Induces a Conformational Transition from B to Z DNA,Inorg.Chem., 1998,37(16-18): 3927-3934
    37.王自春,黄登宇,郝军山,袁静明,平阳霉素和DNA的相互作用,中国抗生素杂志,1994,19(6):464-467
    38. Marin D., Valera R., de la Red E.,Teijeiro C., Electrochemical study of antineoplastic drug thiotepa hydrolysis to thiol form and thiotepa-DNA interactions, Bioelectrochemistry and Bioenergetics ,1997,44(1): 51-56
    39. Joseph Wang,Mehmet Ozsoz,Xiaohua Cai,Gustavo Rivas,Haruki Shiraishi, Douglas H.Grant,Manuel Chicharro,Joao Fernandes,Emil Palecek;Interactions of antitumor drug daunomycin with DNA in solution and at the surface, Bioelectrochemistry and Bioenergetics, 1998, 45: 33-37
    
    
    40. Koji Hashimoto, Kei Ito and Yoshio Ishimori, Novel DNA sensor for electrochemical gene detection,Anal.Chim.Acta, 1994, 286: 219-224
    41. Miroslav Fojta,Renata Doffkova and Emil Palecek, Determination of Traces of RNA in submicrogram Amounts of Single-or Double-stranded DNAs by Means of Nucleic Acid-Modified Electrodes,Electroanalysis, 1996,8(5): 420-425
    42.王宏飞,杨频,李青山,邬强,阿霉素—铁(Ⅲ)配合物的电化学特征及其与DNA结合作用研究,高等学校化学学报,1997,18(5):671-673
    43.赵元弟,庞代文,王宗礼,程介克,乐芝凤,冯长建,沈昊宇,张香才,抗癌药物的电化学研究,化学学报,1998,56:178-180
    44.刘锐玲,赵正保,李青山,袁胜涛,丁健,二乙基邻菲咯啉二氯合锡与DNA作用的研究.药学学报,1998,33(12):927-930
    45. El-Mahdaoui L., Neault J. E,Tajmir-Riahi H.A.,Carbohydrate-Nucleotide Interaction. The Effects of Mono- and Disaccharides on the Solution Structure of AMP, dAME ATP, GMP, dGMP, and GTP Studied by FTIR Difference Spectroscopy, Journal of Inorganic Biochemistry, 1997,65(2): 123-131
    46. Neault J.F.,Naoui M., Manfait M.,Tajmir-Riahi H.A., Aspirin-DNA interaction studied by FTIR and laser Raman difference spectroscopy, FEBS Lett., 1996,382(1-2): 26-30
    47. Nahar S.,Carpentier R., Tajmir-Riahi H.A.,Interaction of Trivalent Al and Ga Cations with Proteins of PSII. Cation Binding Mode and Protein Conformation by FTIR Spectroscopy 1997,65(4): 245-250
    48. Ahmed A., Tajmir-Riahi H.A.,Carpentier R. ,A quantitative secondary structure analysis of the 33 kDa extrinsic polypeptide of photosystem Ⅱ by FTIR spectroscopy, FEBS Lett.,1995,363(1-2): 65-68
    49. Neault J.F.,Tajmir-Riahi H.A.,Interaction of cisplatin with human serum albumin. Drug binding mode and protein secondary structure, Biochimica et Biophysica Acta (BBA)/Protein Structure and Molecular Enzymology, 1998,1384(1): 153-159
    50. Yang Guang,Wang Lei,Wu Jian-zhong,Zhen Tian-xian and JI Liang-nian,Ruthenium Coordination Compounds with Polypyridineds(Ⅵ), Chemical Research in Chinese Universities, 1997,13(4): 283-288
    
    
    51.罗黎,江崇球,李磊,光谱法研究氧氟沙星—铽络合物与脱氧核糖核酸的相互作用,分析化学,2003,31(12):1504-1507
    52. Tomohide Tanaka T, Keiko Tsurutani,Atsushi Komatsu,Toyofumi Ito.Kazumi Iida,Yuki Fujii,Synthesis of New Cationic Schiff Base Complexes of Copperet(Ⅱ)and their Selective Binding with DNA, Bull.Chem.Soc.Jpn., 1997,70(1-4): 615-629
    53.郭茂林,杨频,赵春贵,杨斌盛,杨维萍,二茂铁(Ⅲ)鎓离子三氯乙酸盐对艾氏腹水癌细胞DNA合成的抑制,高等学校化学学报,1995,16(8):1177-1180
    54. Feng Qu,Nan-Qiang Li,Yu-Yang Jiang,Eletrochemical studies of NiTMpyP and interaction with DNA, Talanta, 1998,45: 787-790
    55. Jin Lan,Yang Pin and LI Qing-shan,Studies on the Binding of Tris(1,10-phenanthroline)Nickel(Ⅱ) to Calf Thymus DNA, Chemical Research in Chinese Universities,1997,13(3): 201-206
    56.沈鹤柏,康玉专,杨海峰,郁林,章宗穰,稀土离子对DNA作用的循环伏安法和光谱法研究,电化学,1998,4(4):400-405
    57.赵广超,王雪梅,陈洪渊,金电极上钴-2,2′-联吡啶的电化学特性及其与生物小分子腺嘌呤的相互作用,高等学校化学学报,1997,18(4):547-550
    58.卜显和,朱树梅,杨铭,王夔,RuNi双核配合物识别DNA的分子机理研究,高等学校化学学报,1995,16(7):1064-1067
    59.曹瑛,何锡文,DNA与邻苯二胺-过氧化氢酶体系相互作用的光谱研究,分析化学,1998,26(10):1165-1168
    60.李天剑,沈含熙,乙基紫-脱氧核糖核酸共振发光体系的研究及其分析应用,高等学校化学学报,1998,19(10):1570-1573
    61.曹瑛,何锡文,吩噻染料与DNA分子相互作用的紫外-可见光谱研究,高等学校化学学报,1998,19(5):714-717
    62.杨频,王宏飞,杨斌盛,米托蒽醌与生物大分子DNA结合平衡的研究,高等学校化学学报,1995,16(7):1075-1077
    63.曹瑛,李一峻,高志,何锡文,EB探针研究吩噻类药物与DNA的作用,药学学报,1999,34(4):276-279
    64.贺吉香,江崇球,高明霞,盐酸小蘖碱与脱氧核糖核酸相互作用的研究,光谱学与光谱分析,2003,23(4):755-758
    
    
    65.徐春,何品刚,方禹之,溴化乙锭标记DNA电化学探针的研究,高等学校化学学报,2000,21(8):1187-1190
    66.赵长春,于俊生,章杰兵,药物与DNA的相互作用的研究,无机化学学报,1997,13(3):325-328
    67.王瑞琼,鄢远,黄坚锋,荧光法研究丝裂霉素C与DNA的作用机制,化学学报,1999,57(2):171-173
    68. Tang Guoqing, Naoki Tanaka, and Shigeru Kunugi, Effects of Pressure on the DNA Minor Groove Binding of Hoechst 33258, Bull.Chem.Soc.Jpn.,1998,71: 1725-1730
    69.曹瑛,李一峻,何锡文,中性红作为DNA作用方式光谱探针的研究,高等学校化学学报,1999,20(5):709-711
    70.唐宏武,陈蓓,陈观铨,曾云鹗,吖啶橙-细胞DNA荧光抑制法筛选抗癌药物,高等学校化学学报,1997,18(12):1960-1963
    71.黄承志,李克安,童沈刚,核酸-8-羟基喹啉-钪(Ⅲ)体系的荧光特性及其分析应用,分析化学,1997,25(7):759-761
    72.李青山,杨频,王宏飞,郭茂林,万嘉铸,吴文士,二氯二苯基锡与单核苷酸配位作用的研究,高等学校化学学报,1996.17(8):1345-1348
    73.朱自莹,顾仁敖,陆天虹编著,拉曼光谱在化学中的应用,沈阳,东北大学出版社,1998,12,P7-8
    74.许以明,杨红英,张志义,竹红菌乙素敏化的人红细胞膜结构光损伤的Raman光谱特征,中国科学(C辑),1999,29(2):138-141
    75.许以明,张志义,竹红菌素及其衍生物敏化的生物膜和DNA结构的光损伤的Raman光谱研究,光散射学报,1998,10(2):68-70
    76.赵红霞,许以明,张志义,竹红菌乙素及其溴化物对DNA结构的光损伤的Raman光谱研究,科学通报,1998,43(9):955-957
    77. Zheling Zhang,Weimin Huang,Jilin Tang,Erkang Wang,Shaojun Dong,Conformational transition of DNA induced by cationic lipid Vesicle in acidic solution: spectroscopy investigation,Biophyical Chemistry, 2002,97: 7-16
    78.宋玉民,杨培菊,王流芳,杨美玲,康敬万,全反式维甲酸合钐(Ⅲ)配合物与DNA作用的研究,化学学报,2003,61:1266-1270
    79.卢继新,张贵珠,黄志娜,赵鹏,巯嘌呤金属配合物与小牛胸腺DNA的作用,化学学报,2002,60(6):967-972
    
    
    80.程圭芳,张冬梅,丁敏,屈海云,何品刚,方禹之,柔红霉素与DNA作用的序列特异性研究,高等学校化学学报,2003,24(8):1395-1399
    81. Eynde J. J. V., Delfosse F., Mayence A., Haverbeke Y.V; Old Reagents, New Results: Aromatization of Hantzsch 1,4-Dihydropyridines with Manganese Dioxide and 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone, Tetrahedron, 1995,51 (23): 6511-6516
    82.王保怀,张开江,李芝芬,张有民,杨铭,王夔,二甲亚砜及一些含氮稠环化合物与DNA的相互作用,物理化学学报,1993,9(1):1-3
    83. Wang,B.H.;Zhang,K.J.;Li,Z.F.;Zhang,Y.M.;Yang, M.;Wang,K. Effect of Dimethyl Sulphoxide and Some Multicycles Compounds With Nitrogen Atoms on Calf Thymus DNA,Acta Phy.-Chim.Sin.,1994,10(3): 266-271
    84.熊亚,黄素秋,吴鼎泉,屈松生,两种水溶性卟啉与DNA相互作用的研究,物理化学学报,1996,12(6):543-546
    85.周力,王保怀,李芝芬,李册,杨铭,环方铂立体异构体与小牛胸腺DNA作用的研究,物理化学学报,2000,16(8):729-731
    86. Feng Ping,Huang Xin-Hua,Li Yuan-Fang,Huang Cheng-Zhi,Spectra of the Supramolecular Interaction of Neutral Red with Double-stranded DNA in a Neutral Medium, Acta Physico-Chimica Sinica,2001,17(3): 222-225
    87.杨周生,于俊生,陈洪渊,四环素-Al(Ⅲ)配合物与DNA的相互作用研究,高等学校化学学报,2002,23(8):1457-1459
    88. Joseph Wang,Mehmet Ozsoz,Xiaohua Cai,Gustavo Rivas,Haruki Shiraishi, Douglas H.Grant,Manuel Chicharro,Joao Fernandes,Emil Palecek;Interactions of antitumor drug daunomycin with DNA in solution and at the surface, Bioelectrochem.Bioenerg.,1998,45: 33-35