青藏高原腹地中新世陆相地层研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文研究区域南以拉萨地体北部的措勤盆地为界,北以昆仑山为界的广大地区,地理分布范围为N30-36°,E80-95°,整个研究区的面积为3.0×10~5km~2。其中论文的重点研究部分为可可西里盐地的五道梁群,同时对羌北盆地和措勤盆地的唢呐湖组进行了对比研究。
     论文选择青藏高原腹地研究程度最低的可可西里盆地、羌北盆地和措勤盆地的中新世陆相地层为研究对象,野外实测资料结合区域地质资料的收集,对青藏高原腹地中新世五道梁群和唢呐湖组的岩石学、岩石地层学、沉积相、沉积时代等方面作了比较深入的研究,旨在对青藏高原腹地中新世的沉积环境和气候特征及高原的隆升历史做尝试性探讨。
     论文对可可西里盆地中新世五道梁群的典型剖面和特殊岩性剖面进行了分析,并以泥灰岩和生物碎屑灰岩作为五道梁群的标志层。对羌北盆地和措勤盆地中新世的唢呐湖组剖面作了综合对比,将内碎屑灰岩作为唢呐湖组的标志层。
     根据火山岩年龄、化石年龄、ESR测年数据详细研究了青藏高原腹地中新世陆相地层沉积的时间序列。由火山岩和覆于其上的羌塘组的年龄限定五道梁群的沉积时间为20-5Ma,五道梁群中发现大量的孢粉和介形虫化石(以Eucypris为主),分析认为它们都是中新世时期的典型分子,因此五道梁群的沉积时间为中新世是无疑的;唢呐湖组的ESR测年数据范围为9-2Ma,代表中新世晚期—上新世时期,孢粉和化石都具有中新世时期的特征。因此,论文认为五道梁群和唢呐湖组都是中新世时期的产物。
     五道梁群以灰白色、灰黄色灰岩为主,含有砾岩、砂岩,夹有少量泥岩、油页岩和未固结砂泥沉积。唢呐湖组主要发育浅灰色、浅黄灰色碳酸盐岩、碎屑岩,少量泥岩和石膏岩沉积,以碳酸盐岩为主。
     可可西里盆地五道梁群碳酸盐岩微相类型主要为泥灰岩相、泥晶灰岩相、泥(亮)晶粒屑灰岩相、粒屑泥晶灰岩相、白云岩相、叠层石灰岩相、核形石灰岩相等7种微相。羌北盆地唢呐湖组碳酸盐岩微相为内碎屑灰岩相、生物碎屑灰岩相、核形石灰岩相、含膏藻灰岩相、泥灰岩相和纯微晶灰岩相等6种微相。措勤盆地唢呐湖组碳酸盐岩微相由内碎屑灰岩相、生物碎屑灰岩相和泥灰岩相组成。
     论文重点对青藏高原腹地中新世五道梁群和唢呐湖组的岩相和沉积环境进行了系统分析和研究。根据五道梁群沉积岩相特征及其组合,将五道梁沉积相划分为扇三角洲--湖泊相,以湖泊相为主。羌北盆地唢呐湖组沉积相划分为河流相和湖泊相,以湖泊相为主。措勤盆地唢呐湖组以陆湖泊相为主,划分为扇三角洲、
    
    滨湖相和浅湖相。
     由于五道梁群和琐呐湖组主要是一套内陆湖泊相生物碎屑灰岩沉积,因此论
    文提出中新世青藏高原腹地为一个大湖泊,形成分布广泛的五道梁群和琐呐湖组
    湖相沉积。
Research region of the thesis south to the Cuoqin basin, north to the Kunlun mountain, the geographical distribution scope is N30-36 , E80-95 and the studying area is 3.0 X 105 km2. The point part of thesis is Wudaoliang Group in the Hoh Xil basin, at the same time , the thesis studied Suonahu formation in the Northern Qiangtang basin and Cuoqin basin.
    The Hoh Xil basin and the Northern Qiangtang basin and Cuoqin basin ,which lying in the hiterland of the Tibet Plateau, are the main subject of the research reported here. The Miocene Epoch continental facies stratum including Wudaoliang Group and Suonahu Formation, which are the research object. The lithostratigraphy, petrology, sedimentary facies, Epoch of sedimentary have been studied. The information aim at studying tentativly the sedimentary environment and climate characteristic of the Miocene Epoch in the hinterland and the uplift history of the Tibet Plateau.
    The thesis analysises the typical model profile and the special rock profile of Wudaoliang Group of Miocene Epoch in Hoh Xil basin. And be used the biocalcarenite with the marl rock take the marker bed of Wudaoliang Group. Synthesizely contrasted the Suonahu Formation profile of the Northern Qiangtang basin and Cuoqin basin of Miocene Epoch, used the intraclast ash rock as the marker bed of the Suonahu Formation.
    Based on the data of the volcanic rock age, fossil age and ESR age detailedly studies the time series of the accumulates of the Wudaoliang Group of the Miocene Epoch continental facies stratum in hinterland of the Tibet Plateau. The volcanic rock age and the age of the Qiangtang Formation determined the Wudaoliang group between 20-5Ma, discovering a flood of spore and pollen with ostracods fossils( regard Eucypris as principle), which are Miocene Epoches typical numerator, therefore Wudaoliang Group accumulate in Miocene Epoch is doubtless;9-2Ma are the age of the Suonahu Formation based on the data of the ESR, which were characteristic of later period in Miocene Epoch - Pliocene Epoch, spore and pollen with fossil all were Miocene Epoch period. Therefore, the thesis thinks Wudaoliang Group and Suonahu Formation are the outcome of the Miocene Epoch.
    
    
    Wudaoliang Group is grayish-white, yellow- grey, dark-grey ash rock, which interbeded with the conglomerate, sandstone, a little amount mudstone, oil shale with unconsolidated sand mud rock. Light gray, light yellow gray carbonate rock, clastic rock, a little amount mudstone with the gypsum rock in Suonahu Formation, regarding carbonate rock as principle.
    The microfacies of carbonate rock of the Wudaoliang Group in Hoh Xil basin is divided for marl lithofacies, micrite facies, micrite (spar) scraps ash lithofacies, grain scraps micrite facies, dolimite rock lithofacies, and the stromatolite ash lithofacies. The Northern Qiangtang basin Suonahu Formation microfacies of carbonate rock is divided for the intraclast ash lithofacies, biological detritus ash lithofacies, oncolite limestone lithofacies, contain the calcium and alga ash lithofacies, marl lithofacies and pure microlite limestone lithofacies. The microfacies characteristic of carbonate rock of Suonahu Formation in Cuoqinin basin constitutes with the marl lithofacies , the intraclast ash lithofacies, biological detritus ash lithofacies.
    Analyses and researches systematically the facies and depositional environment of Miocene Epoch Wudaoliang Group in Hoh Xil basin in hinterland of the Tibet Plateau . Dividing the sedimentary facies as a delta- lacustrine facies according to Wudaoliang Group sedimentary rock facies and its combination, regarding lacustrine facies as principle; The Northern Qiangtang Suonahu Formation sedimentary facies was divided for fluvial facies and the lacustrine facies, regarding lacustrine facies as principle. The Cuoqin basin Suonahu Formation is lacustrine facies and been divided into fan-delta and shallow lagoon facies.
    The thesis puts forward the Miocene Epoch of hinterland of Tibet plateau being a big lake, forming lacustrine facies of the Wudaolia
引文
1. An Zhisheng, John E. Kutzbach, Warren L. Prell & Srephen C. Porter. 2001. Evolution of Asian monsoons and phased uplift of the Himalaya—Tibetan plateau since Late Miocene times. Nature, 411:62~66
    2. Andreds Lucke et al. 2003. A Lateglacial and Holocene organic carbon isotope record of lacustrine palaeoproductivity and climatic change derived from varved lake sediments of Lake Holzmaar, Germany. Quaternary Science Reviews, 22:569~580
    3. Burne R V and Moore L S. 1987. Microbiallies or Organosedimentary deposites of benthic microbial communities. Palaios, 2:241~254
    4. Chung S., Lo C., 1998. Diachronous uplift of the Tibetan Plateau starting 40 Myr ago. Nature, 394: 769~773
    5.Flügel 著,曾允孚译.1989.石灰岩微相.北京:地质出版社
    6. Guo Z.T., Ruddiman W.F., Hao Q.Z et al. 2002. Onset of Asian desertification by 22 myr ago inferred from loess deposits in China. Nature, 416, 159~163
    7. Harrison T.M., Copeland P., Kidd W.S.E, Yin A. 1992. Raising Tibet. Science, 255, 1663~1670
    8. Kelts K. 1991. Reading pages from limnogeological archives. Beijing, special proceedings, Review Reports, 10~19
    9. Kutzbach J.E., Guetter P.J., Ruddiman W.F. 1989. Sensitivity of climate to Late Cenozoic Uplift in southern Asia and the American West: Numerical experiments. Journal of Geophysical Research, 94 (D15): 18393~18407
    10. Kutzbach J.E., Prell W.L., Ruddiman W.M., 1993. Sensitivity of Eurasian climate to surface uplift of the Tibetan Plateau. J. Geol. 101: 177~190
    11. Liu Z., Wang C., Facies analysis and depositional systems of Cenozoic sediments in the Hoh Xil basin, northern Tibet, Sedimentary Geology, 2001, 140:251~270
    12. Liu Zhifei, Wang Chengshan, Yi Haisheng. Evolution and Mass accumulation of the Cenozoic Hoh Xil basin, northern Tibet. Journal of Sedimentary Research, 2001, 71 (6): 973~986
    13. Liu, Z., Wang, C., Trentesaux, A., Zhao, X., Yi, H., Hu, X., Jin, W., 2003. Paleoclimate changes during early Oligocene in the Hob Xil region, northern Tibetan Plateau. Acta Geologica Sinica, 77 (4): 504~513
    14. Liu, Z., Zhao, X., Wang, C., Liu, S., Yi, H., 2003. Magnetostratigraphy of Tertiary sediments from the Hob Xil Basin: implications for the Cenozoic tectonic history of the Tibetan plateau. Geophysical Journal International, 154: 233~252
    
    
    15. Morten Stage. 2001. Magnetic susceptibility as carrier of a climatic sigal in chalk. Earth and Planetary Science Letters, 188: 17~27
    16. Maliva R G, Dickson J A G. 1992. Microfacies and Diagenetic controls of porosity in Cretaceous/Tertiary chalks, Eldfisk field:Norwegian North Sea. AAPG Bulletin, 76 (11): 1825~1838
    17. Miall A D. 2000. Principal of sedimentary basin analysis. New York Berlin Heideberg Tokyo, Springer-Verlag, p668
    18. Michael W. Rasser, Alois Fenninger. 2002. Paleoenvironmental and diagenetic implications of δ ~(18)O and δ ~(13)C isotope ratios from the Upper Jurassic Plassen limestone (Northern Calcareous Alps, Austria) Geobios 35:41~49
    19. P Copeland, T.M.Harrison. 1990. Episodic rapid uplift in the Himalaya revealed by~(40)Ar/~(39)Ar anylisis of detrital K-feldspar and muscovite, Bengal fan. Geology, 18:354~357
    20. Remstein G., Fluteau F., Besse J et al. 1997. Effect of orogeny, plate motion and land—sea distribution on Eurasian climate change over the past 30 million years. Nature, 386: 788~785
    21. R.E.Crick. B.B.Ellwood et al. 2001. Magnetostratigraphy susceptibility of the prcey-dolian-lochkovian Gssp and a coeval sequence in Anti-Atlas Morocco. Palaeogeography, Palaeoclimatology, Palaeoecology, 167:73~100
    22. Ruddiman W.E, Prell W.L., Raymo M.E. 1989. Late Cenozoic uplift in southern Asia and the American West: Rational for general circulation modeling experiments. Journal of Geophysical Research, 94 (D15): 18379~18391
    23. Ruddiman W F, Kutzbach J E. 1991. Plateau uplift and climatic change. Science, 264 (3): 66-75
    24. Spicer R A, Harris N B W, et al. 2003. Constant elevation of southern Tibet over the past 15 million years. Nature, 421: 622~624
    25. Thouveny et al. 1994. Climate variation in Europe over the past 140kyr dedused from rock magnetism, Nature, 371: 503~506
    26. Tung-YiLee, L A Lawver. 1995. Cenozoic plate reconstruction of Southeast Asia. Tectonophysics, 251 (1~4): 85~138
    27. Turner S, Hawkesworth C, Liu J. 1993. Timing of Tibetan uplift constrained by analysis of volcanic rocks. Nature, 364:50~54
    28. W.W. Hay., R.M. Deconto., Ch.N.Wold. 1997. Climate: Is the past the key to the future? Geol Rundsch, 86:471~491
    29. Wang Chengshan, Liu Zhifei, Yi Haisheng. 2002. Tertiary crustal shortening and
    
    peneplanation in the Hoh Xil region: implications for the tectonic history of the northern Tibetan Plateau. Journal of Asian Earth Sciences, 20 (3): 211-223
    30. Yi Haisheng, Wang Chengshan and Liu Shun. 2000. Sedimentary record of planation surface in Hoh Xil region of northern Tibet Plateau. Acta Geologica Sinica, 74 (4): 827~835
    31.包洪平,杨承运.1999.碳酸盐岩微相分析及其在岩相古地理研究中的意义.岩相古地理,19 (6):59~64
    32.包洪平,杨承运.2000.碳酸盐岩层序分析的微相方法——以鄂尔多斯东部奥陶系马家沟组为例.海相油气地质,5 (1、2):153~157
    33.边千韬,常承法等.1997.青海可可西里大地构造基本特征.地质科学,32 (1):37~46
    34.成都理工大学区域地质调查队.2003.措勤县区域地质调查报告 (1:25万),内部资料
    35.成都理工学院青藏可可西里石油地质调查队.1997.青藏地区可可西里盆地区域石油地质调查报告.内部资料
    36.迟振卿,间隆瑞等.2002.泥河湾湖相沉积层记录的古气候周期性.地学前缘 (中国地质大学,北京),9 (1):182~186
    37.丁林,钟大赉等.1995.东喜马拉雅构造结上新世以来快速抬升的裂变径迹证据.科学通报,(40):1497~1500
    38.丁学林.1998.西藏羌塘盆地北部第三纪沉积与高原隆升初探 (硕士学位论文).成都理工学院,未出版
    39.苟金.1991.可可西里地区中新统五道梁群的建立及找矿意义.西北地质,12 (3):1~6
    40.苟金.1993.唐古拉地区第二纪地层的划分及依据.中国区域地质,(4):302~310
    41.郭耕成.1991.可可西里—唐古拉地区的第三系.青海地质科技情报,1:6~11
    42.胡守云,王苏民等.1998.呼伦湖湖泊沉积物磁化律变化的环境磁学机制.中国科学 (D辑),28 (4):334~339
    43.胡修棉,王成善.1999.100Ma以来若干重大地质事件与全球气候变化.大自然探索,(1):53~58
    44.李吉均,文世宣等.1979.青藏高原隆起的时代、幅度和形式的探讨.中国科学,6:608~616
    45.李玉成,徐永昌,沈平.1990.淡水软体动物化石碳氧同位素组成及其在恢复古气候环境中的应用.沉积学报,8 (2):105~111
    46.李玉成,徐永昌,黄宝玉.1993.淡水软体动物壳质氧同位素组成与气候环境.沉积学
    
    报,11 (3):57~63
    47.梁玉左等.1995.叠层石研究的新进展.中国区域地质,1:57~65
    48.刘椿,刘东生等.1994.北京颐和园昆明湖近代沉积物的环境磁学初步研究及意义.科学通报,39 (21):989~991
    49.刘泽纯,黄巧华等.1992.昆明盆地两孔岩心的沉积特征及环境磁学分析.沉积学报,10:54~61
    50.刘增乾,徐宪,王成善.1990.青藏高原大地构造与形成演化.地质专报 (构造地质,地质力学),第10号.北京:地质出版社,pp158
    51.刘志飞,王成善,伊海生等.2002.青藏高原北部可可西里盆地早新生世沉降史及其高原隆升意义.见:中国地质学会80周年学术文集,北京:地质出版社,111~119
    52.刘志飞,王成善,伊海生,刘顺.2001.可可西里盆地新生代沉积演化历史重建.地质学报,75 (2):250~258
    53.刘志飞,王成善.1998.新生代全球变冷与青藏高原隆升的关系.矿物岩石,18 (增刊):123~127
    54.刘志飞.1999.青藏高原腹地第三纪沉积与高原隆升的关系 (博士学位论文).成都理工学院,未出版
    55.马钦忠,李吉均.2003.晚新生代青藏高原北缘构造变形和剥蚀变化及其与山脉隆升关系.海洋地质与第四纪地质,23 (1):27~34
    56.潘裕生.1990.西昆仑山构造特征与演化.地质科学,3:224~232
    57.潘裕生等.1998.高原岩石圈结构、演化和动力学.见《青藏高原形成演化与发展》,广东科技出版社,1~71
    58.钱方,张金起.1997.昆仑山口羌塘组磁性地层与新构造运动.地质力学学报,3 (1):50~56
    59.青藏项目专家委员会.1995.青藏高原形成演化环境变迁与生态系统研究.科学出版社
    60.青海省地质调查院.2002.1:25万可可西里湖幅区域地质调查.未出版
    61.沙金庚.1995.青海可可西里地区古生物.北京:科学出版社,p177
    62.沈平等.1990.生物壳化石地球化学的研究动态.地球科学进展,(1):12~14
    63.施雅风,李吉均等.1999.青藏高原晚新生代隆升与环境变化.广东科技出版社,p463
    64.舒小辛.1993.环境磁学在古湖泊学研究中的应用——《含油气盆地古湖泊学研究方法》,北京:海洋出版社,59~77
    65.谭富文,王剑等.2002.西藏羌塘盆地——中国油气资源战略选区的首选目标.沉积与特提斯地质,1:16~21
    66.田友萍等.2000.川黔地区地表钙华中发现现代淡水叠层石及其藻席.地质论评,46 (5):540~555
    
    
    67.王成善,刘志飞,李祥辉.2002.特提斯俯冲、大陆碰撞和高原隆升与沉积响应——喜马拉雅和青藏高原.中国地质学会80周年学术文集,地质出版社,162~173
    68.王成善,李祥辉,胡修棉,再论印度—亚洲大陆碰撞的启动时间,地质学报,2003,77 (1):16-24
    69.王郦军.1990.青海唐古拉山地区五道梁群介形类.青海地质,2:1~8
    70.汪品先,陈嘉树等.1991.古湖泊学译文集.北京:海洋出版社,1~14
    71.王士峰,伊海生.1999.可可西里盆地第三纪五道梁组地层及沉积学研究.青海地质,1:12~18
    72.王自强,全秋窍.1982.宜昌峡东地区的现代叠层石.地质科学,(4):403~406
    73.吴一民.1983.西藏的第三系.青藏高原地质文集 (3),地质出版社
    74.西藏自治区地质矿产局.1993.西藏自治区区域地质志.北京:地质出版社,p707
    75.夏代祥,刘世坤主编.1997.西藏自治区岩石地层.武汉:中国地质大学出版社,p302
    76.肖序常,李延栋等.1988.喜马拉雅岩石圈构造演化总论.北京:地质出版社,1~236
    77.新疆维吾尔自治区区域地质志.1993.新疆维吾尔自治区地矿局.北京:地质出版社,p841
    78.杨承运,卡罗兹 A V.1988.碳酸盐岩实用分类及微相分析.北京:北京大学出版社
    79.杨晓强.李华梅.1999.泥河湾盆地典型剖面沉积物磁化率特征及其意义.海洋地质与第四纪地质,39 (1):75~84
    80.伊海生,彭平安等.2002.藏北可可西里地区中新世湖相油页岩的生物分子标识及碳同位素异常.成都理工学院学报,29 (5):473~480
    81.张以弗,郑健康.1994.青海可可西里及邻区地质概况.北京:地质出版社,p177
    82.张以茀.1996.青海可可西里地区地质演化.北京:科学出版社,p202
    83.赵政璋,李永铁等.2001.青藏高原大地构造特征及盆地演化.科学出版社,p437
    84.赵政璋,李永铁等.2001.青藏高原地层.科学出版社,p542
    85.中—英青藏高原综合地质考察队.1990.青藏高原地质演化.科学出版社,p451
    86.周书欣,V.P.赖特等.1991.湖泊沉积体系与油气.科学出版社,p226
    87.周书欣.1992.我国湖相碳酸盐岩研究现状.石油与天然气地质,13 (4):461~462
    88.朱大岗,孟宪刚,赵希涛等.2001.纳木错湖相沉积与藏北高原古人湖.地球学报,22 (2):149~155