磁处理水的物理特性及其生物效应的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水是我们最为熟悉的物质之一,是生命存在的基础,在人和生物体中约占70~80%的比重。可以说,没有水就没有生命。但水到底具有什么样的分子结构?它具有什么特性?都是值得我们全面深入研究的问题。在磁场作用后水的特性变化多年来一直受到关注。同时,磁处理水对生物或人体有没有影响?有什么样的影响?它的生物效应是什么?等问题也一直令研究人员感兴趣。因此,很有必要对磁场对水的物理性质的影响做较全面的研究。在这篇论文中,我们用红外光谱等技术研究了磁场对水的物理特性、水和乙醇等有机分子相互作用的特性的影响和产生的一些现象,并探讨出现这些现象的原因。最后利用傅立叶变换红外光谱等方法对磁处理水的一些生物效应做了初步研究。本论文的主要工作概括为以下几部分:
     1.利用半导体测试仪、接触角仪、红外光谱、紫外光谱和X射线衍射仪等研究了磁场对水的物理性质的影响。实验发现:磁场能够使水的电导增大,且磁处理时间越长,电导增加的越大。通过水的接触角的测量,发现水在疏水性的铜和石墨表面的接触角在磁场作用后略为减小,说明水经磁场处理后表面张力减小,从而在这些固体表面上更容易浸润。同时磁场能够显著改变水的光谱特性。水经磁场处理后紫外光谱吸收强度增强,并随着时间的增加而增强,也随着波长的减小而指数式增加。X射线衍射实验证实磁场能使水具有磁性,磁处理水能和具有磁性的纳米Fe_3O_4相互作用,从而证实水中确实存在能被磁化的分子集团。磁处理水和纯水在远、中和近红外区的红外吸收光谱和拉曼散射谱有明显不同,不但强度增加,而且发生了吸收峰的频移乃至出现一些新的吸收峰,在2800~5500cm~(-1)的红外吸收峰的强度变化具有明显的饱和效应和驰豫效应,在8050cm~(-1)处有一新的强吸收峰出现。总之,实验结果证明,磁场确实能改变水的一些特性,这些都是过去未曾观察到的新现象。
     2.用红外光谱研究了静磁场对水与乙醇、甲醇和丙酮等有机分子的混合物的影响。和未加磁场于混合物的结果比较发现,水和乙醇、甲醇以及丙酮混合溶液的红外吸收光谱有明显改变,同时它也不同于乙醇、甲醇和丙酮的红外吸收光谱,这表明磁场改变了乙醇、甲醇和丙酮自身的分子结构和它们与水分子间的相互作用,形成了酮-水缔合物和醇-水缔合物的结构,从而导致了上述红外吸收光谱的变化。
     3.利用庞小峰教授提出的水的磁化机理理论,分析得到了磁处理水的实验结果的本质和产生的根本原因,并说明了产生这些特性变化的机理。
     4.对磁处理水的生物效应进行了研究,结果表明磁处理水具有明显的生物效应。在磁处理水对免疫低下小鼠的生物效应的研究中发现,磁处理水对免疫低下小鼠的免疫功能和消化功能的一些指标有明显的提高和促进作用。通过红外光谱实验,发现大鼠长期饮用磁处理水不会对其肝肺脾组织的结构产生影响。
As is known, water is one of most important material on the earth and it isnecessary to life. It is value of systemically studying the problem what structure andwhat character water has, and researchers are interesting in the variation of properties ofwater processed by magnetic field. So in this paper, the effect of magnetic field on theproperties of water and the interaction between water molecules and organic moleculessuch as ethanol is studied, the mechanism of effect of magnetic field on water isdiscussed and studied accordingly, the bioeffects of magnetized water and theapplication of infrared spectroscopy in biomedical science is also studied primarily. Themain work of the paper is described as follows.
     1. With the methods of infrared spectroscopy, Raman spectroscopy, X-ray, andcontact angel et.al,, the influence of magnetic field on the properties of water is studied.According to experiments, it is found that: the conductance of water is increasing withthe processed time. Because the contact angels of magnetized water on surface ofcopper and graphite is smaller than that of pure water, that, it is indicated that thewetting capability of magnetized water is stronger and the surface tension is smallerthan pure water. The characters of spectra of water can also changed by magnetic field.The UV absorbing intensity is increasing with processed time. The existing of magneticwater clusters are proved by X-ray experiment. In far, near and mid infrared regions, theinfrared absorbing character and Raman diffraction character of magnetized water isobviously different from that of pure water, not only the intensity is stronger andfrequency is shift, but a new absorbance band appears at 8050 cm~(-1). Besides, thevariation of intensity of water in 2800~5500cm(-1) shows the saturation and memoryeffect of magnetized water. In general,. the magnetic field can affect the properties ofwater.
     2. The effect of magnetic field on interaction of water and organic molecules isinvestigated by infrared spectroscopy. It is found under action of magnetic field, thespectra of mixture of water and ethanol, methanol and acetone are changed obviously,it shows magnetic field can effect the interaction of water and ethanol, methanol and acetone and influence the structure and conformation of combined clusters of water andethanol, methanol and acetone.
     3. According to the theory of magnetization mechanism of water proposed by Pang,the essence and the essential reason of the occurring of above experiment phenomena isanalyzed and the mechanism of the variation of properties of water under action ofmagnetic field is also found.
     4. About the bioeffects of magnetized water, three part work are done. The initialresult shows the biological effect of magnetized water increases, which may improveimmunity ability, reduce the free radical in body, increase the function of stomach andbe anti-aging. Finally, with using infrared spectroscopy, it is found even the rats drinkthe magnetized water for a long time, the structure of liver, lung and spleen are notchanged.
引文
[1] M. Mitsuhiko. Infrared spectroscopic evidence for protonated water clusters forming Nanoscale cages. Science, 2004, 304(21): 1134-1137
    [2] Y. Katsumoto, D. Adachi, H. Sato. NIR spectra of water. Near infrared spectroscopy. 2002, 10: 85-87
    [3] V. Zubov, K. Masakazu. Cluster structure of liquid alconhols, water and n-Hexane. Journal of Applied Spectroscopy, 2005, 2:73-76
    [4] D. Eisenberg, W. Kauzmann. The structure and properties of water. New York: Oxford University Press, 1969:241
    [5] F. Franks. Water: A comprehensive treatise. New York; Plenum Press, 1973, 3:212-250
    [6] [苏].克拉辛著.毛钜凡译.水的磁处理.北京:计量出版社,1982
    [7] 朱元保,颜流水,曹祉祥.磁化水的物理化学性能.湖南大学学报(自然科学版),1999,26(1):21-26
    [8] 刘芳玲,蒋佩琳.磁场处理条什与水的表面张力关系的研究.四川师范大学学报(自然科学版),1997,20:127-131
    [9] 罗漫,陆柱.磁化水的研究现状及进展.水处理技术,1999,25(6):340-343
    [10] 谢盛发.磁场对水性质的影响.大连海运学院院报,1992,18(3):320-322
    [11] 朱永辉,成善生,吕其生.磁化水的检测及评价.理化检验-化学分册.2001,37(6):279-279
    [12] 杨达起,杨丽莉.水的磁化和磁化水.生物磁学,2000(3):20-25
    [13] Masakazu. Effect of Gradient Magnetic Field on Diffusions Process of Glycine in Water. Transactions on Magnetics. 1997, 33(5): 4254-4256
    [14] K. Kitazawa. Magnetic Field Effect on Water. Air and Powders. Physica B, 2001:709-714
    [15] J. Nakagawa. Magnetic Field Enhancement of Water Vaporization. Journal of Applied Physics, 1996, 86(5): 2923-2925
    [16] O. kiyazaOi. Infrared Spectroscopic evidence for protonated water clusters forming nanoscale clusters. Science, 2005, 324(21): 1334-1338
    [17] M. Amiri, A. Dadkhah. On reduction in the surface tension of water due to magnetic treatment. Colloids and Surfaces, 2006, 278: 252-256
    [18] A. Kneya, S. Parsons. A spectrophotometer based study of magnetic water treatment: Assessment of ionic vs. surface mechanisms. Water Research, 2006, 40:517-524
    [19] 计晶晶,阎秀英,韩丽莎.三种磁水机处理对自来水粘度影响的比较.生物磁学,2003,11(6):6-7
    [20] 许艳,马波,陈丽娜.磁化水的荧光光谱研究.哈尔滨医科大学学报,1995,29(3):207-208
    [21] K. Higashitani. Effect of magnetic field on water investigated by fluorescent probes. Colloids and Surfaces, 1996, 109: 167-173
    [22] I. Hideaki, S. Tetsuya, T. Ken-ichi. Effect of the magnetic field on the melting transition of H_2O and D_2O measured by a high resolution and supersensitive differential scanning calorimeter. Water Research, 2004, 96(11): 6127-6132
    [23] C.Mogi, K.Umeki, Takahashi. Heat transfer in water under strong gradient magnetic fields. transactions on. Applied Superconductivity, 2004, 14(2): 1682-1684
    [24] 郭应焕,杨巨华.磁场对水作用机理的正电子湮没研究.核技术,1999,22:713-716
    [25] 卢贵武.用蒙特卡罗方法计算恒磁场中流体的粘度.石油大学学报,1999,23(1):105-107
    [26] 袁波,窦晓呜.近红外光谱研究水与甲醇混合溶液的氢键作用.光谱学与光谱分析.2004,(11):1319-1322
    [27] Y. Katsumoto, D. Adachi, H. Sato. NIR spectra of water. Near Infrared Spectroscopy. 2002, 10: 85-86
    [28] K. Zubova, A. Zubov, V. Zubov. Cluester structure of liquid alcohols, water and n-hexane. Journal of Applied Spectroscopy, 2005, 2:73-76
    [29] H. Marcel, V. Langoor, H. John. Conformational analysis of alcohols with competitive intramolecular hydrogen bond interactions part Ⅱ. Vibrational Spectroscopy. 1997, 14:261-274
    [30] M. Kazuko, M. Yasue, S. Yohji. NMR and FT-IR Studies of hydrogen bonds in ethanol and water mixtures. J. Phys. Chem., 1995, 99:3225-3228
    [31] 李丽琳,肖少蒙.磁场作用下乙醇分子间氢键的变化初探.广西化工.1993,(3):18-19
    [32] M. Alam, J. Callls. Elucidation of species in alcohol-water mixtures using near-IR Spectroscopy and multivariate statistics. Ana.Chem., 1994, 66:2293
    [33] A. Jerzy, Matecki. Study of self-association of 2-methyl-2-butanol based on non-linear dielectric effect. Chemical Physics Letters. 1998,297(20): 29-37
    [34] V. Margarita. Photodegradation of Nabumetone in n-butanol solutions. Journal of Photochemistry and Photobiology A: Chemistry., 2004, 163: 159-164
    [35] A. Buckingham. Vibrational spectroscopic studies and density functional theory calculations of speciation in the CO_2-water system. J. Mol. Struct., 1991, 250: 111
    [36] P. Luck, H. Borgholte, T. Habermehl. Enthalpies of solution of urea in water-methanol mixtures at 298.15 K. J. Mol. Struct.,1988, 177:523
    [37] 林家齐,孙晶华,付荔韬.磁场对水结构的影响.哈尔滨电工学院院报,1996,19:470-472
    [38] V.柯斯莫尔斯基.水磁场处理的可能机理和应用条件.国外金属选矿,1998,20(10):30-39
    [39] K.T. Changa, C.I. Weng. The effect of an external magnetic field on the structure of liquid water using molecular dynamics simulation. Journal of Applied Physics, 2006, 100:1-6
    [40] M. Iwasakaa, S. Ueno. Structure of water molecules under 14 T magnetic field. Journal of Applied Physics, 1998, 83:6459-6462
    [41] S. Ghauria, M. Ansari. Increase of water viscosity under the influence of magnetic field. Journal of Applied Physics, 2006, 100:457-461
    [42] 张军,刘冰.用MD方法计算磁场条件下水的表面张力系数.青岛大学学报,2003,15(1):46-51
    [43] 张军,张立红.磁场对水扩散系数影响的分子动力学模拟研究.曲帛师范大学学报,2003,29:64-67
    [44] 张军,胡松青.磁场作用下水溶液结晶过程的分子动力学模拟.石油大学学报,2007,17(1):119-122
    [45] K. X. Zhou, G. W. Lu, Q. C. Zhou, et al,. Monte Carlo simulation of liquid water in a magnetic field. Journal of Applied Physics, 2000, 88(4): 1802-1805
    [46] T. Toshio. Numerical computation for Rayleigh-Benard convection of water in a magnetic field. International Journal of Heat and Mass Transfer, 2004, 46:4097-4104
    [47] J. Joseph, M, Camille. Water treatment. Journal of Chemical Physics. 2004, 14:6626-6643
    [48] 汤永新,李寒旭,郝勇,等.水与煤的磁化对水煤浆性能的影响.选煤技术,2006,(1):17-21
    [49] 徐中德,刘翠兰,赵军,等.强磁磁化水防垢的原理及相关效应概述.稀土,2006,27(6):99-101
    [50] 刘有昌,蔡伟民.磁化水抑垢的研究.化工环保,2000,20(5):6-11
    [51] 曹刚.高频电磁场无菌磁化水设备在空压机冷却水防垢中的应用.山东冶金,2000,(22):165-66
    [52] 刘有昌,孙晓君.磁化水抑垢机理的研究.哈尔滨工业大学学报,2000,32(1):86-91
    [53] 屈志中.前苏联利用磁化水拌制混凝土技术的现状和问题.建筑技术,1996,(1):50-53
    [54] 李贵民,崔诗才,蒲锡鹏.磁化水对水泥石强度的影响初探.混凝土,2005,(9):30-32
    [55] 吴忠,秦本东,罗运军.磁化水对混凝土强度的影响及其作用机理试验研究.建井技术,2004,25(1):28-32
    [56] 李志鹏.磁化水提高混凝土强度的研究.煤炭工程,2005,3:72-73
    [57] 熊瑞生,姚庆钊.磁化水对水泥活性影响的实验研究.哈尔滨工业大学学报,2006,38(2):307-309
    [58] N. Su, C. F.Wu. Effect of magnetic field treated water on mortar and concrete containing fly ash. Cement & Concrete Composites, 2003, 25: 681-688
    [59] S. Tomohei, S. Akira. Convective corrosion pattern of steel in water under gradientmagnetic fields. Physics letters A, 2000, 266: 350-358
    [60] 朱巨建,李晓安,陈炳辰,等,水的磁化处理对赤铁矿可浮性影响的正交实验研究.中国矿业,1998,7(6):69-71
    [61] V. Natalia, W.S. Lisitza, M. Warren. Study of diffusion in erythrocyte suspension using internal magnetic field inhomogeneity. Journal of Magnetic Resonance, 2007, 187(146): 154-0.
    [62] F. Alimi, M, Tlili, C. Gabrielli, et al,. Effect of a magnetic water treatment on homogeneous andheterogeneous precipitation of calcium carbonate. Water Research, 2006, 40: 1941-1950
    [63] S. Kobea, G. Drazica, P.Guiness, et al,. The influence of the magnetic field on the crystallisation form of calcium carbonate and the testing of a magnetic water-treatment device. Journal of Magnetism and Magnetic Materials, 2001, 236: 71-76
    [64] M. Tagami, M. Hamai, I. Mogi. Solidifcation of levitating water in a gradient strong magnetic field. Journal of Crystal Growth, 1999, 203: 594-598
    [65] Y.T Zhao, S.L. Zhang, G. Chen, et al,. Dynamics responses of the in situ magnetochemistry reaction for Al-Zr(CO_3)_2 system. Journal of Alloys and Compounds, 2007, 23: 47-50
    [66] S. Aoyagi, A.Yano, Y. Yanagida, et al,. Control of chemical reaction involving dissolved oxygen using magnetic field gradient. Chemical Physics, 2006, 331: 137-141
    [67] B. Yonit, M. Shlomo. Synthesis and characterization of poly-divinylbenzene coated magnetic iron oxide nanoparticles as precursor for the formation of air-stable carbon-coated iron crystalline nanoparticles. Colloids and Surfaces Science, 2007, 31: 1-14
    [68] Y. Fujiwaraa, N. Shibatab, Y. Matsumoto, et al,. Effect of hypergravity created by strong magnetic force on orientation of porphyrin nanorods. Journal of Magnetism and Magnetic Materials, 2007, 310: 2859-2861
    [69] L.Tavano, Muzzalupo, S. Trombino, et al,. N, N'-Hexadecanoyl, 1-2-diaminomethy 1-18-crown surfactant: Synthesis and aggregation features in aqueous solution. Colloids and Surfaces Science, 2003, 32:487-488
    [70] R.Y. Hong, T.T. Pana, Y.P. Han, et al,. Magnetic field synthesis of Fe_3O_4 nanoparticles used as a precursor of ferrofluids. Journal of Magnetism and Magnetic Materials, 2007, 490: 37-47.
    [71] R.Y. Honga, Z.Q. Rena, Y.P. Hana, et al, . Rheological properties of water-based Fe_3O_4 ferrofluids. Chemical Engineering Science, 2007, 62: 5912-5924
    [72] 郝宗康.关于磁处理水作用机理的探索.净水技术,2000,45:13-14
    [73] 毛宁,黄谤谚.生物磁技术在工农业的应用及其机理探讨.激光生物学报,1998,7(4):306-309
    [74] 肖望,王玉玲,关志琼,等.磁处理水漫种对苦瓜种子萌发夏对幼苗生理指标的影响.生物磁学.2004.4(2):7-10
    [75] 刘娜娜,雒秋江,杨开伦等.磁化水和磁化缓冲液对胰蛋白酶、胃蛋自酶活性及人工瘤胃产气量的影响.新疆农业大学学报,2006,29(4):81-84
    [76] 宁广,蒋知俭,王连明.磁化水对农药生产工人血中胆碱酯酶活性影响的研究.生物磁学,2004,12(2):14-17
    [77] Goldsworthy, H. Whitney, E. Morris, et al,. Biological effects of physically conditioned water. Water Research, 1999, 33(7): 1618-1626
    [78] 杨芸,陆静芬,王信良,等.磁处理水对家兔生殖的影响研究.生物磁学,2004,4:21-22
    [79] 宋吉德.磁处理水对皱纹盘鲍生长影响的研究.海洋渔业,2004,26(2):116-121
    [80] 杨芸,李静,万荣强,等.磁处理水对家免血脂影响的实验研究.生物磁学,2006,6(1):26-27
    [81] 费庆志.磁化对水性能的影响.大连铁道学院学报,1998,19(1):86-90
    [82] 何士敏,昊旭红,姜彦,等.磁处理水对夫白幕和甘蓝抗溴氰菊酯污染的生理效应.高师理科学刊,2000,20(2):48-51
    [83] 史燕.磁处理水在医学中的应用.生物磁学,2004,4(2):32-33
    [84] 高丽松,曾凡潘,黄舒微,等.磁处理白术药液对消化功能影响的药效研究.生物磁学,2004,44(2):4-6.
    [85] 高丽松,曾凡潘,宁榴贤,等.磁处理党参约液对小鼠血液生理功能影响的研究.生物磁学,2004,4(11):14-16
    [86] 高丽松,曾凡潘,宁榴贤,等.磁处理党参药液对小白鼠碳粒廓清功能影响的研究.生物磁学,2004,4(4):1-4
    [87] 高丽松,宁榴贤,曾凡潘,等.磁处理党参、白术药液对胃蛋白酶活性影响的研究.生物磁学,2004,4(3):3-5
    [88] 杨玉山,董发勤,冯建军,等.恒定强磁场对大鼠血液流变特性的影响.中国生物医学工程学报,2006,25(4):503-506
    [89] 赵大源,梁路光,张均一,等.磁化水对大鼠血液流变学的影响及动脉硬化抑制作用观察.生物磁学,2003,7(77):16-18
    [90] 严艳林.磁处理水对细菌生长的影响.长江职工大学学报,2003,20(2):43-44
    [91] 李波,扬玉馥,刘廷范,等.酵母细胞在磁处理水中生存能力的实验研究.生物医学工程与临床,2000,4(2):91-93
    [92] 艾燕.磁处理水在生物学中的应用.生物磁学,2000,4:37
    [93] 代群成,董发勤.静磁场对单体人体体表正常菌生长影响的研究,生物磁学,2006,6(11):14-15
    [94] N. Jan, S. Ludk, F. Lukas, et al,. Effects of low-frequency magnetic fields on the viability of yeast Saccharomyces cerevisiae. Bioelectrochemistry, 2007, 70, (1): 115-121
    [95] P. Tatyana, Z. Vitalii. Magnetization processes in magnetotactic bacteria systems. Journal of Magnetism and Magnetic Materials, 2005, 293, (1): 365-370
    [96] 瑾光.近代傅里叶变换红外光谱技术及应用.科学文献出版社,1994:2-34
    [97] S. Woutersen, U.H. Emmerichs, H.N. Bakker, et al,. Femtosecond Mid-IR pump-probe spectroscopy of liquid water: evidence for a two-component structure. Science. 1997, 278 (24): 658-661.
    [98] Y. Marechal. Observing the water molecule in macromolecules using infrared spectrometry: structure of the hydrogen bond network and hydration mechanism. Journal of Molecular Structure, 2004, 700: 217-213
    [99] 缪征明.仪器分析.机械工业出版社,1982:54-53
    [100] 樊康旗,贾建援.经典分子动力学模拟的基本技术.磁性器件与技术,2005,3:132-138
    [101] 孙樯,郑海飞,谢鸿森.290K下11-600 MPa水的Raman光谱原位研究.光谱学与光谱分析,2004,24:963-965
    [102] 周健,陆小华,王延儒,等.液体水的分子动力学模拟.南京化工大学学报,1998,20(3):1-5
    [103] H. Bakker, M. Gibson. Delocalization of protons in liquid water. Science, 2002, 297(26):587-590
    [104] 陈卫东,柴诚敬.磁场处理乙醇-水二元物系精馏分离研究.化学工程,2001,29:7-12.
    [105] 胡晖,宋海华,贾绍义,等.磁场对乙醇-水、正丙醇一水体系汽液平衡的影响.磁性器件与技术,2002,33:12-14
    [106] 仝建渡,刘淑玲,芦飞,等.醇.水缔合光谱行为的研究.酿酒科技,2004,123:82-83
    [107] P. Bour. A cluster model of liquid water and its IR spectroscopic response. Chemical Physics Letters, 2002, 365:82-88
    [108] T. Steinel, B. John, S. Asbury. Corcelli et al,. Water dynamics: dependence on local structure probed with vibrational echo correlation spectroscopy. Chemical Physics Letters, 2004, 386: 295-300.
    [109] R. Nomen, J. Sempere, K. Avill es. Detection andcharacterisation of water alcohol hydrates by on-line FTIR using multivariate data analysis. Chemical Engineering Science, 2002, 56: 6577-6588
    [110] N, Frank, Keutsch. Far-infrared laser vibration-rotation-tunneling spectroscopy of water clusters in the librational band region of liquid water. Journal of Chemical Physics, 2001, 114(9): 4005-4015
    [111] L. Rene, Corrales. Dissociative model of water clusters. Journal of Chemical Physics, 1999, 110(18): 9071-9080
    [112] L. Phillip, W. Geissler, C. Dellagn. Autoionization in liquid water. Science, 2001, 16(291): 2121-2124
    [113] L.H. Zhang. Molecular dynamics simulation of mechanism of increasing vegetable yield by irrigated magnetization water. Journal of Qingdao University, 2005, 18 (1): 58-62
    [114] 陈本,胡小慧,李俊亨.电磁场处理水电导率提高的机理.生物磁学,(2003)9:69-72
    [115] X.F. Pang. The conductivity properties of protons in ice and mechanism of magnetization of liquid water. European Phys. Journal B, 2006, 49(5): 3-23
    [116] X.F. Pang, G. Zundel. Theory of non-linear excitation and proton transfer in hydrogen-bonded systems. Acta Phys. Sin., 1997, 46(4): 625
    [117] X.F. Pang. Nonlinear excitation and properties of proton transfer in hydrogen-bonded systems. Advan. Phy. sin., 2002,22(2): 214
    [118] S.H. Li, K.C. Chow. Magnetic field exposure induces DNA degradation. Biochemical and Biophysical Research Communications, 2001, 280: 1385-1388
    [119] 张桂莲,王登奎,郭梅凤.磁场对高锰酸钾溶液吸收光谱的影响.中国医学物理学杂志,2004.21:56-57
    [120] 徐同广,陈亚妍,赵月朝,等.水分子簇的红外光谱研究进展.卫生研究,2003,32(3):287-281
    [121] P. Bour. A cluster model of liquid water and its IR spectroscopic response. Chemical Physics Letters, 2002, 365: 82-88
    [122] D. Russell, S. Brian, A. Perry, et al, . A time correlation function theory of two-dimensional infrared spectroscopy with applications to liquid water. Journal of Chemical Physics, 2004,121: 3688-3702.
    [123] M. Riccit, G. Signorelli and V. Mazzacuratit, et al,. Raman spectra of water in the translational and librational regions. J. Phys.: Condens. Matter, 1990, (2): 183-187
    [124] T. Steinel, B. John, S. Corcelli, et al,. Water dynamics: dependence on local structure probed with vibrational echo correlation spectroscopy. Chemical Physics Letters, 2004, 386: 295-300
    [125] Boguslawa, M. Czarnik. Temperature-dependent water structural transitions examined by near-IR and mid-IR spectra analyzed by multivariate curve resolution and two-dimensional correlation spectroscopy. Analytica Chimica Acta., 2005,554:15-25
    [126] D. Russell, S. Brian, M. Angela, et al, . A time correlation function theory of time-resolved Raman spectroscopy with applications to liquid water. Journal of Chemical Physics, 2006,134:4182-4185
    [127] K. Hiromi, I. Makoto, G. Makoto, et al,. Raman spectroscopic study on the structure of water in aqueous solution of zwitterionic surfactants. Journal of Colloid and Interface Science, 2004, 269, (2): 459-465
    [128] M. Misao, Y. Shoichi, T. Tahei, et al,. Femtosecond dynamics of the solvated electron in water studied by time-resolved Raman spectroscopy. Femtochemistry and Femtobiology, 2004: 225-228
    [129] W. Eisenberg, D. Kauzmann. The Structure and properties of water. New York: Oxford University Press, 1969: 241
    [130] S. Takayuki. Hydrogen-bond studies of thin film water using near-infrared spectroscopy in the 970 nm spectral region. Applied Surface Science, 2002, 187: 261-265
    [131] A.Vegiri and S. C. Farantos. Classical dynamics of hydrogen bonded systems: Water clusters. Journal of Chemical Physics, 1993,5(98): 40594076
    [132] X.F. Pang, M. Kirsten, J. W. He. Dynamic properties of proton transfer in the hydrogen bonded molecular systems Journal of Phys.: Conden. Matter, 2000, 12: 885
    [133] X.F. Pang, Y.P. Feng. Mobility and conductivity of the proton transfer in hyarogen bonded molecular systems. Chem. Phys. Lett., 2003, 373: 392
    [134] X.F. Pang. Quantum and thermodynamic properties of proton transfer in hydrogen bonded Systems. Phys. Stat. Sol. B., 2003, 236:34
    [135] X.F.Pang, A. Jalbout. Conductivity properties of the proton transfer exposed in externally applied fields in hydrogen-bonded systems. Phy. Lett. A., 2004,330:245
    [136] X.F.Pang. Proton conductivity and thermodynamic features in hydrogen bonded molecular systems. Int. J. Mod. Phys. B., 2005, 19:3835
    [137] X.F.Pang, Y.P. Feng. Quantum mechanics in nonlinear systems. Singapore: world Scientific Publishing Co, 2005
    [138] 庞小峰.非线性量子力学.重庆出版社,1994
    [139] 庞小峰.孤子物理学.四川科技出版社.2003
    [140] 庞小峰.在水中的纳米分子的发现和它的特点及实验证实.原子与分子物理学报(suppl.),2006,(4):1-3
    [141] 寇俊萍.当归芍药散对小鼠免疫功能的影响.中国现代应用药学,2003,20(3):170
    [142] 李海涛,孙远岭,周纬,等.运脾方对小鼠吞噬指数作用的研究.浙江中医药大学学报,2008,32(3):323-324
    [143] 刘秉文,陈俊杰.医学分子生物学.中国协和医科大学出版社,2000
    [144] 王燕,赵毅.左归饮对老年小鼠抗氧化作用及胸腺脾脏指数的影响.中国实验方剂学杂志,2007,13(3):67-69
    [145] 宋洁,胡金兰,柯道平,等.银杏叶总黄酮对糖尿病大鼠心肌损伤的保护作用.安徽医科大学学报,2006,41(2):153-156
    [146] 张安英,周玉荣,邓波,等.红外光谱法研究极低频电磁场暴露对大鼠肺组织二级结构的影响.中国生物医学工程学报,2009,28(1):65-69
    [147] 张丹英,许正平,姜槐,等.1800MHz射频电磁场对中国仓鼠肺成纤维细胞DNA损伤的影响.中华预防医学杂志,2006,40(5):149-154
    [148] 张安英,张文燕,袁平,等.低频电磁场对大鼠肺组织红外谱影响研究.电子科技大学学报,2006,35(3):415-418
    [149] 谭永红,王东,肖桃元,等.大鼠半胸照射致肺纤维化模型的病理学观察.第三军医大学学报,2006,28(2):104-106
    [150] J.A. Cooper. Pulmonary fibrosis: pathways are slowly coming intolight. Cell Mol Biol., 2000,22(5): 520-523
    [151] 张军,陈德万,孙凡,等.稳恒磁场对两种不同构象状态的离体牛肝过氧化氢酶的生物学效应研究.激光生物学报,2002,11(2):98-104
    [152] N. From, B.E. Bowler. Urea denaturation of staphylococcal nuclease monitored by Fourier transform infrared spectroscopy. Biochemistry, 1998, 37: 1623-1631
    [153] H. Fabian, H.H. Mantsch. Ribonuclease A revisited: Infrared spectroscopic evidence for lack of native-like secondary structures in the thermally denatured state. Biochemistry, 1995, 34:13651-13655
    [154] T.R. Sosnick, J. Trewhella. Denatured states of ribonuclease A have compact dimensions and residual secondary structure. Biochemistry, 1992,31: 8329-8335
    [155] A. Dong, T.W. Randolph, J. Carpenter. Entrapping intermediates of thermal aggregation in a-helical proteins with low concentration of guanidine hydrochloride. J. Biol. Chem. , 2000,275: 27689-27693