长沙市郊枫香人工林水文效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
森林植被对于降雨分配和养分循环具有重要意义。本文从森林结构和水文过程出发,通过对大气降水的观测,分析了枫香人工林降水再分配及对养分循环的作用,为深入了解枫香人工林生态系统的生态水文功能提供科学依据。主要结果如下:
     (1)枫香人工林林冠截留、穿透水和树干茎流,分别占降水总量的29.11%、69.28%、1.62%;月降水条件下,林冠截留量、穿透水量和树干茎流量与大气降水量显著正相关(p<0.01),相关系数分别为0.993、0.925、0.906;随着降水量级的逐渐增大,截留率、穿透率和茎流率相应降低,夏季截留率最大,春季次之,冬季截留率最小;穿透率和茎流率均表现为春季最高、夏季次之,秋季最低。
     (2)大气降水pH值在5.31-7.24范围内变化,大气降水pH值平均值为6.45,基本成呈中性,观测时段出现3次pH值<5.6的酸雨;大气降水经过枫香人工林冠层后,pH值发生变化,穿透水pH值为6.81,树干茎流pH值为5.85,总体表现为穿透水>大气降水>茎流。
     (3)观测期间大气降水NH4+-N、NO3--N、PO3-、K、Ca、Mg元素含量(加权平均值)分别为:0.96 mg.L-1、2.29 mg.L-1、0.23 mg.L-1、4.38 mg.L-1、5.02 mg.L-1、0.41 mg.L-1,大小顺序依次为:Ca>K>NO3--N>NH4+-N>Mg>PO3-;大气降水微量元素含量Zn>Fe>Mn>Pb>Cu,含量分别为:0.134 mg.L-1、0.086 mg.L-1、0.038 mg. L-1、0.023 mg. L-1、0.021 mg.L-1,并表现明显的月际和季节变化;大量元素月平均含量与月降水量显著相关(p<0.05),微量元素含量则主要与降水频率有关;大气降水经过枫香人工林冠层后,穿透水、树干茎流大量元素含量增减不一,但总的趋势是大气降水经过枫香人工林林冠层后化学元素含量呈增加趋势,即:树干茎流>穿透水>大气降水。
     (4)大气降水经过枫香人工林林冠后,穿透水、树干茎流表现明显的养分富集现象,养分淋溶作用明显,并具有不同程度季节变化。穿透水中NH4+-N、N03--N、PO3-年均淋溶系数小于1,呈现负淋溶;K、Ca、Mg年均淋溶系数分别为1.08、3.35、3.29,表现为明显的养分富集作用。树干茎流大量元素中除P03-元素表现为负淋溶外,其它五项元素淋溶系数均大于1,养分富集作用显著。枫香人工林林冠、树干对微量元素具有显著的净化作用,除Mn元素外,枫香人工林穿透水、树干茎流Zn、Cu、Fe、Pb淋溶系数均小于1,表现为负淋溶。
Rainfall distribution of forest vegetation and nutrient cycling is important. Enter the forest after rainfall, canopy interception, throughfall and stem-flow water form a new distribution pattern, reflecting the forest canopy on rainfall storing function. Meanwhile, rainfall redistribution, due to trees on chemical precipitation with physical, chemical and biological adsorption, absorption and leaching effects, changed the chemical properties of precipitation, reflecting the trees on the water quality regulation. In this study, forest structure and hydrological process, through an observation of atmospheric precipitation, the nutrient analysis of the precipitation distribution and nutrient cycling, To better understand the nutrient ecosystems to provide the scientific basis for ecological and hydrological functions. The main results are as follows:
     (1) Liquidambar formosana Plantation canopy interception, throughfall and stem-flow, accounting for the total precipitation 29.11%、69.28%、1.62%; monthly precipitation, canopy interception, throughfall and stem-flow of water and atmospheric precipitation was significantly positive correlated (p<0.01), correlation coefficients were0.993、0.925 and 0.906; With the precipitation level increases, the rate of canopy interception、penetration and stem-flow reduced accordingly; for canopy interception, autumn crown retention largest, followed in spring, winter rate of the minimum; Penetration rate of water flow rate and stem the performance of the highest in spring, summer, second, and lowest in autumn.
     (2) Precipitation pH value changed in the range of 5.31~7.24, the average precipitation pH value is 6.45, basically as neutral; during observed periods, there was three times acid rain, which pH values is below 5.6; the pH values was changed after through the canopy of Liquidambar formosana Plantation; the throughfall pH value was 6.81 and stem-flow was 5.85, which tendency is:stem-flow> precipitation> throughfall.
     (3) During observed periods, the mean concentrations (weighted average)of elements of NH4+-N、NO3--N、PO3-、K、Ca、Mg were:0.96 mg. L-1、2.29 mg.L-1、0.23 mg. L-1、4.38 mg. L-1、5.02 mg. L-1、0.41 mg. L-1, The sequence of Ca>K > NO3--N> NH4+-N> Mg> PO3-; sequence of microelements in precipitation was Zn>Fe>Mn>Pb>Cu, concentrations were::0.134 mg. L-1、0.086 mg. L-1、0.038 mg. L-1、0.023 mg. L-1、0.021 mg. L-1, showed obviously seasonal variation; there was significantly correlation between macro-elements concentrations and monthly precipitation (p<0.05), microelements are mainly related with the precipitation frequency; the concentrations of Canopy interception、throughfall and stem flow are changed largely after through the canopy of Liquidambar formosana, but the overall trend is through the canopy of Liquidambar artificial the concentrations of precipitation was increased, which is stem flow> throughfall> precipitation.
     (4) After through the canopy of Liquidambar formosana Plantation the concentrations chemical element were increased. Throughfall and stem-flow performed significant nutrient enrichment, nutrient leaching significantly, with seasonal variation.the Average coefficient of macro-elements of throughfallless than 1,showed negative eluviate, which were NH4+-N、NO3--N、PO3-; K、Ca、Mg Elements of annual eluviate coefficients were1.08、3.35、3.29, showed significant nutrient enrichment; the macro-elements of stem-flow showed negative eluviate in addition to the PO3- element,which were eluviate coefficient large than 1, stem-flow nutrient enrichment significantly. For microelements,Liquidambar artificial canopy showed significant purification,except Mn element, the elements of Zn, Cu, Fe, Pb of stem-flow which eluviate coefficients were less than 1, showing a negative cream dissolve.
引文
[1]王淑元,林升寿.中国森林生态系统定位研究进展.见周晓峰主编.中国森林生态系统定位研究[M].哈尔滨:东北林业大学出版社,1994:1-30.
    [2]刘世荣主编,中国森林生态系统水文生态功能规律[M].北京:中国林业出版社,1996.1
    [3]盛后财.原始红松林降雨截留再分配及其影响因子研究[D].哈尔滨:东北林业大学.2009.
    [4]谢春华,关文彬,吴建安,等.贡嘎山暗针叶林生态系统林冠截留特征研究[J].北京林业大学学报,2002,24(4):69-71.
    [5]裴铁播,郑远长.林冠分配降雨过程模拟与模型,Ⅰ常雨强下穿透降雨、树干径流和林冠截留模型[J].林业科学,1996,32(1):1-10.
    [6]中野秀章著,李云森译.森林水文学[M].北京:中国林业出版社,1983.58-72.
    [7]周跃,李宏伟,徐强.云南松林的林冠对土壤侵蚀的影响[J].山地学报,1999,17(4):324-328.
    [8]张志强,王礼先,王盛萍.中国森林水文研究进展[J].中国水土保持科学,2004,2(2):69-73.
    [9]卫正新,李树怀.不同林地林冠截留降雨特征的研究[J].中国水土保持,1997,(5):19-21.
    [10]Dunne T. Field studies of hills lope flow processes. In:Kirkby (editor). Hills lope hydrology[M]. John Wiley & Sons,1978.227-294.
    [11]S. C. Potter, L. H. Ragsdale, T. W. Swank. Atmospheric deposition and foliar leaching in a regenerating southern Appalachian forest canopy[J].Ecology,1991,79:97-115.
    [12]周梅.大兴安岭落叶松林生态系统水文过程与规律研究[D].北京:北京林业大学.2003.
    [13]刘世荣,王兵,光益,等.中国森林生态系统水文生态功能规律[M].北京:中国林业出版社,1996.
    [14]文娟.枫香人工林林冠层淋溶作用对重金属污染迁移规律影响[D].长沙:中南林业科技大学,2009.
    [15]佘新松,方乐金.枫香树幼林生长节律的观察研究[J].江苏林业科技,2001,28(2):13-14.
    [16]Kittrege J.Forest Influenee [M]. Graw-Hill Book Co,1948.838.
    [17]马雪华.森林水文学[M].北京:中国林业出版社,1993,398.
    [18]Tansly S A. The use and abuse of vegetational concepts and terms[J]. Ecology,1935, 16:284-307.
    [19]Lindeman R. The trophic dynamic aspect of ecology[J]. Ecology,1942,23:399-418.
    [20]Odum E P. The strategy of ecosystem development [J]. Science,1969,164:262-270.
    [21]Rieklefs R E. Ecology[M]. Newton:Chiron Press,1973,966.
    [22]Kalinin G P. Global Hydrology. New York:John Wdey Press,1971,327.
    [23]Budyko. The water balance of the ocean. World Water Balance by IASH-UNESCO-WMO, 1972,1:24-33.
    [24]Baumgartner A, Reichel E. The World Water Balance-Mean Annual Global, Contimental and Martime Precipitation,Evaporation, and Runoff. Elsevier Amsterdam, 1975,179.
    [25]刘世荣,温远光,王兵等.中国森林生态系统水文生态功能规律[M].北京:中国林业出版社.1996:229-244.
    [26]于志民,王礼先.水源涵养林效益研究[M].北京:中国林业出版社,1999.1-34.
    [27]MeCulloehJQRobinson M.History of forest hydrology [J],Joumal of Hydrology,1993 (150):189-216.
    [28]Bormann F H, Likens G E. Pattern and processes in a forest 2ed system [M].New York: Springer Verleg,1979.12-20.
    [29]范世香,蒋德明.论森林在水源涵养中的作用[J].辽宁林业科技,2001,5:22-25.
    [30]周晓峰,李庆夏,金永岩.帽儿山、凉水森林水分循环的研究[A].见:周晓峰主编.中国森林生态系统定位研究[M].哈尔滨:东北林业大学出版社,1994.213-222.
    [31]刘永宏,梁海荣,张文才.森林水文研究综述[J].内蒙古林业科技,2000:67-73.
    [32]高成德,余新晓.水源涵养林研究综述[J].北京林业大学学报,2000,22(5):78-82.
    [33]王永安.论我国水源涵养林建设中的几个问题[J].水土保持学报,1989,3(4):74-82.
    [34]中野秀章著,李云森译.森林水文学[M].北京:中国林业出版社,1983.
    [35]刘世荣,温远光.中国森林生态系统水文生态功能规律[M].北京:中国林业出版社,1996.
    [36]杨茂瑞.亚热带杉木、马尾松人工林的林内降雨、林冠截留和树干流[J].林业科学研究,1992,5(2):158-162.
    [37]Nortcliff S, Ross S M. Thornes J B. Soil moisture, runoff and sediment yield from differentially cleared tropical rainforest plots [A]. In:Thornes J B. Vegetation and [38] Erosion[C]. New York:Wiley.1990.419-437.
    [39]石培礼,李文华.森林植被变化对水文过程和径流的影响效应[J].自然资源学报,2001,16(5):481-487.
    [40]王鸣远,王礼先.鄂西长江三峡库区森林集水区拦洪作用分析[J].长江流域资源与环境.1995,4(3):271-276.
    [41]Gomez J A, Vanderlinden K, Giraldez J V, et al. Rainfall concentration under olive trees[J]. Agricultural water Management,2002,55:53-70.
    [42]王青春,邓红兵,王庆礼,等.三峡库区柏木林降雨的再分配及养分循环研究[J].长江流域资源与环境.2000,9(4):451-457.
    [43]李土生,姜志林.苏南丘陵主要森林类型保持水土效益的研究[J].长江流域资源与环境,1994,3(1):55-59.
    [44]谢春华,关文彬,吴建安,等.贡嘎山暗针叶林生态系统林冠截留特征研究[J].北京林业大学学报,2002,24(4):69-71.
    [45]裴铁璠,郑远长.林冠分配降雨过程模拟与模型,Ⅰ常雨强下穿透降雨、树干径流和林冠截留模型[J].林业科学,1996,32(1):1-10.
    [46]郑远长,裴铁.林冠分配降雨过程的模拟与模型,Ⅱ模型扩展与参数确定[J].林业科学,1996,32(2):97-102.
    [47]Llorens P. and Gallart. F. A simplified method for forest water storage capacity measure-ment[J]. Journal of Hydrology,2000,240:131-144.
    [48]刘蕾,刘家冈.非均匀林冠降雨截留模型[J].林业科学,2007,43(3):8-10.
    [49]Eriksson, E. and Grip, H. Comparison of interception models. S. Hallin(Editor), comparison of Water and Enger Exchange Models [J]. International Society for Ecologycal Modelling. 1979, Copenhagen, pp.213-224.
    [50]Jackson, I. J. Relationships between rainfall parameters and interception by tropycal plant forest[J]. J. Hydrol.1975,24:215-238.
    [51]Kohler, M. A. Discussion of paper by Robert A. Merriam,"A note on the interception loss equation"[J]. Geophys. Res.1961,66:1994.
    [52]Liu Shuguang. A new modle for the prediction of rainfall interception in forest canpies.Ecologycal Modle,1997,99:151-159.
    [53]张光灿,刘霞,赵玫.树冠截留降雨模型研究进展及其述评[J].南京林业大学学报,2000,24(1):64-68.
    [54]Valente F. Modelling interception loss for two sparse eucalypt and pine forests in central Portugal using reformulated Rutter and Gash analytical models [J]. Journal of Hydrology,1997,190:141-162.
    [55]张光灿,刘霞,赵玫.树冠截留降雨模型研究进展及其述评[J].南京林业大学学报,2000,24(1):64-68.
    [56]温远光,刘世荣.我国主要森林生态类型降水截持规律的数量分析[J].林业科学,1995,3(4):289-298.
    [57]张光灿.树冠截留降雨模型研究进展及其述评[J].南京林业大学学报,2000,24(1):64-68.
    [58]孙阁.林地地表径流的研究[J].水土保持学报,1989,3(2):52-56.
    [59]张志强.森林植被影响径流形成机制研究进展[J].自然资源学报,2001,16(1):79-84.
    [60]殷有,周永斌,崔建国,等.林冠截留模型[J].辽宁林业科技,2001,(5):10-12.
    [61]刘向东,吴钦孝,苏宁虎.六盘山林区森林树冠截留、枯枝落叶层和土壤水稳性质的研究[J].林业科学,1989,25(3):220-227.
    [62]曹成有,郭荫槐,刘玉学,等.辽宁东部山区主要森林类型林冠截留降水的研究[J].林业科技通讯,1997,(4):19-20.
    [63]谢春华,关文彬,吴建安,等.贡嘎山暗针叶林生态系统林冠截留特征研究[J].北京林业大学学报,2002,24(4):69-70.
    [64]范世香,裴铁,蒋德明,等.两种不同林分截留能力的比较研究[J].应用生态学报,2000,11(5):671-674.
    [65]Gomez J A, Giraldez J V, Fereres E.Rainfall interception by olive trees in relation to leaf area[J]. Agricultural Water Management.2001,49:65-76.
    [66]郭忠升,邵明安.雨水资源、土壤水资源与土壤水分植被承载力[J].自然资源学报.2003,18(5):522-528.
    [67]Taniguchi M, Tsujimura M, TanakaT.Significance of stemflow in groundwater recharge.I:evaluation of the stemflow contribution to recharge using a mass balance approach[J]. Hydrological Processes.1996,10:71-88.
    [69]Tobon-Marin C, Bouten W, Sevink J.Gross rainfall and its partitioning into throughfall, stemflow and evaporation of intercepted water in four forest ecosystems in western AmaZonia[J]. Hydrology.2000,237:40-57.
    [70]Herwitz S. R. Interception storage capacities of tropical rainforest canopy trees[J]. Journal of Hydrology,1985,77:237-252.
    [71]Jetten V. G.Interception of tropical rain forest:performance of a canopy water balance model[J]. Hydrological.1996,10:671-685.
    [72]Dunkerley D.Measuring interceeption loss and canopy storage in dryland vegetation-a brief review and evaluation of available research strategies.Hydrological Process.2000,14:669-678.
    [73]Van Dijk A I J M, Bruijnzeel L A.Modeling rainfall interception by vegetation of variable density using an adapted analytical model.Partl.Model description[J].Hydrology.2001, 247:230-238.
    [75]Amezaga I, Arias A G, Domingo M, et al.Atmospheric deposition and canopy interactions for conifer and deciduous forests in norchern Spain[J]. Water Air Soil Pollution.1997, 97:303-313.
    [76]Fenn M E, Kiefer J W.Throughfall deposition of nitrogen and sulfui in a Jeffrey pine forest in the San Gabriel Mountains, Siuthern California[J].Environmental Pollution.1999,104: 179-187.
    [77]Parker G G.Throughfall and stemflow in the forest mutrient cycle[J]. Advances in ecological research,1983,13:57-113.
    [78]韩兴国,李凌浩,黄建辉.生物地球化学概论[M].北京:高等教育出版社,1999.
    [79]Draaijers G P. Impact of canopy exchange on differences observed between atmospheric deposition and throughfall fluxes[J].Atmospheric Environment,1997,31(3):387-397.
    [80]鲁如坤,史陶钧.金华地区降雨中养分含量的初步研究[J].土壤学报,1979,16(1):81-84.
    [81]李凌浩,林鹏,何建源,等.森林降水化学研究综述[J].水土保持学报,1994,8(1):84-95.
    [82]Potter C S,Ragsdale H L,Swank W T. Atmospheric deposition and foliar leaching in a regenerating southern ap-palachian forest canopy[J]. Ecology,1991,79:97-115.
    [84]Lovett G M, Lindberg S E. Dry deposition and canopy exchange in a mixed oak forest as determined by analysis of throughfall[J].Jour.of Appl.Ecol.1984,21:1013-1027.
    [85]佐久间敏雄,等.干性沉降的测定——苗木洗净法[J].日本土壤肥料学会志,1994,65:378-384.
    [83]Lindberg S E,Lovett G M,Richter D D,Johnson D W. Atmospheric deposition and canopy interactions of major ions in a forest[J]. Science,1986,231:141-145.
    [86]PARKER G G. Through-fall and stem-fall in the forest nutrient cycle [J].Advance in Ecological Research,1983,13:57-113.
    [87]Brechtel HM.1989. Monitoring wet deposition in forests:quantiative and qualitative aspects.Report No.21 in the Air Pollution Report Series of the Environmental Research Programme of Commission of theEuropean Communities[A].Brussels:39-63.
    [88]黄乐艳,闫文德,田大伦.长沙市城市森林中湿地松的降水化学性质[J].中南林业科技大学,2007,(2):22-26.
    [88]陈书军,田大伦,康文星,等.樟树人工林降水化学性质[J].中南林学院学报,2004,(4):6-10.
    [89]Brechtel HM, Fuhrer HW.1994 Importance of forest hydrologic "albenchmrkcatchments" in connection with the forest decline problem in Europe[A].Agri For Meter,72:81-89.
    [90]刘世海,余新晓,于志民.密云水库集水区人工油松水源保护林降水化学性质研究[J].应用生态学报,2001,(5):697-700.
    [91]樊后保,马壮,梁一池.福建南平杉木人工林截留降水化学性质的变化[J].福建林学院学报,1996,(2):101-104.
    [92]田平.北京密云油松人工林降水化学性质研究[D].北京:北京林业大学,2007.
    [93]卢俊培.海南岛尖峰岭半落叶季雨林生态效应的研究Ⅰ——冠层淋溶[J].热带林业, 1986,(1):1-6.
    [94]韦先明.杉木人工林生态系统磷钾钙镁的流分析,《森林生态系统定位研究》刘煊章主编[M].中国林业出版社,1993年,130-139.
    [95]甘健民,薛敬意,谢寿昌.云南中山湿性常绿阔叶林中降雨对养分淋溶的影响[J].植物生态学报.1996,20(3):279-284.
    [96]Fahey T J,Yavitt J B, Joyce G. Precipitation and throughfall chemistry in pinus contorta ssp. Latifolia ecosystems,southeastern W yoming[J].Can.J.For.Res.1988,18:337-345.
    [97]Foster N W, Morrison I K, Nicolson J A. Acid deposition and ion leaching from a podzolic soil under hardwood forest[J].Water, Air, Soil Pollution 1986.31:879-889.
    [98]时忠杰,王彦辉,于澎涛.宁夏六盘山林区几种主要森林植被生态水文功能研究[J].水土保持学报,2005,19(3):134-138.
    [99]Liu Zhijun, Carpenter S B, Bourgeo isW J, et a.l Variations in the secondary metabolite cam ptothecin in relation to tissue age and season in Camp totheca acuminata[J].Tree Physiology,1998,18:265-270.
    [100]冯建灿,张玉洁,张秋娟,等.干旱胁迫与抗蒸腾剂对喜树几项生理指标及喜树碱含量的影响[J].河南农业大学学报,2002,36(2):138-154.
    [101]阎秀峰,王洋,于涛,等.喜树叶中喜树碱含量的高效液相色谱分析[J].分析测试学报,2002,21:15-18.
    [102]章家恩.生态学常用实验研究方法与技术[M].北京:化学工业出版社,2006.
    [103]姚丽华.气象学[M].北京:中国林业出版社,1957.47-49.
    [104]赵鸿雁,吴钦孝,陈云明.人工油松林系统水土保持功能的叠加效应[J].水土保持学报,2001,(4):41-43.
    [105]佘新松,方乐金.枫香树幼林生长节律的观察研究[J].江苏林业科技,2001,28(2):13-14.
    [106]刘菊秀,张德强,周国逸.鼎湖山酸沉降背景下主要森林类型水化学特征初步研究[J].应用生态学报.2003,1(8):1223-1228.
    [107]王珍珍.枫香人工林养分季节动态研究[D].长沙:中南林业科技大学.2007.
    [108]罗天祥.龙胜里骆杉木人工林群落的降水截留和养分淋溶归还[J].资源科学,1995,(6):44-50.
    [110]Nu R-K(鲁如坤),Shi T-J(史陶钧).1979.The content of plant nutrients of precipitation in Jinhua District of Zhejiang Province.Acta Pedol Sin,16(3):81-84.
    [111]王静.天童常绿阔叶林大气降雨再分配及降雨分量的化学特征[D].上海:华东师范大学,2008.
    [112]Kimmins JP. Forest ecology[M].New York:Macmillan Publishing Company,1987.23-26.
    [113]Potter CS, Ragsdale HL, Swank WT. Atmospheric deposition and foliar leaching in a regenerating southern Appalachian forest canopy[J]. Ecol.1991,79:97-115.
    [114]Lovett GM, Lindberg SE. Dry deposition and canopy exchange in a mixed oak forest as determined by analysis of throughfall[J]. ApplEcol.1984,21:1013-1028.
    [115]Lindberg SE,Lovett GM, Richter D D, Johnson DW.Atmospheric deposition and canopy interactions of ions in a forest[J].Science.1986,231:141-145.
    [116]卢俊培.海南岛尖峰岭热带林生态系统的水化学特征[J].林业科学研究,1991,4(3):231-237.