基于信息纤维的柔性传感器理论与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
智能服装系统的信息感知功能离不开柔性传感器。本研究通过探讨基于信息纤维的柔性传感器的感知机理、输入输出关系和传感器参数取值范围,为面向智能服装的心电、呼吸、体温和压力等个人生理信息与状态的检测提供理论与物质基础。
     首先,汇总了纤维形成模型、信息纤维和柔性传感器设计等相关领域的理论、技术和应用现状。
     根据物理学定律,建立了时域纤维形成模型,分析了时域纤维形成模型与空间域纤维形成模型的关系。
     设计了由导电弹性纤维组成的柔性机织电阻式应变传感器。建立了并联式应变传感器(PSS)和串联式应变传感器(SSS)的等效电路模型。在等效电路模型和物理学定律基础上推导了PSS和SSS的应变电阻关系和输入输出特性。分析了PSS和SSS的尺寸、纤维半径和电阻率等的参数域(有效取值范围)。结果表明,PSS和SSS的参数域为由一个曲面和五个平面所包围的三维空间;PSS可选用电阻率适中或较低的导电弹性纤维,理论上可适用于任意尺寸的应变检测;SSS只能选用电阻率较低的导电弹性纤维,仅适用于较小尺寸的应变检测。
     设计了由导电纤维组成的柔性机织电阻式温度传感器。建立了并联式温度传感器(PTS)和串联式温度传感器(STS)的等效电路模型。在等效电路模型和物理学定律基础上推导了PTS和STS的温度电阻关系和输入输出特性。分析了PTS和STS的尺寸、纤维半径和电阻率等的参数域(有效取值范围)。结果表明,PTS和STS的参数域为由一个曲面和五个平面所包围的三维空间;PTS可选用电阻率适中或较低的导电纤维,理论上可适用于任意尺寸的温度检测;STS只能选用电阻率较低的导电纤维,仅适用于较小尺寸的温度检测。
     设计了由导电纤维组成的柔性机织电阻式压力传感器。建立了并联式压力传感器(PPS)和串联式压力传感器(SPS)的等效电路模型。在等效电路模型和物理学定律基础上推导了PPS和SPS的压力电阻关系和输入输出特性。对压力随机分布条件下PPS和SPS的输出特性进行仿真;分析了压力检测范围;分析了PPS和SPS的尺寸、纤维半径和纤维电阻率等的参数域(有效取值范围)。仿真结果表明,可以忽略压力随机分布的影响作用;PPS比SPS具有更高的精确度。分析结果表明,PPS和SPS都适合工作于一个较小“压力范围”内,以及一个“较小压力”范围内;PPS和SPS的参数域为由一个曲线和三个直线所包围的二维区域;PPS的纬线可选用电阻率适中的导电纤维;SPS的纬线只能选用电阻率较低的导电纤维。
     设计了由导电纤维组成的柔性机织电阻式穿透传感器及其信号转换电路。建立了穿透传感器的输入输出模型。分析了穿透传感器输入输出特性讨论了典型应用下由穿透传感器的输出状态来判断可能的输入状态的准则。
     设计了由导电纤维组成的柔性机织电极。分别建立了机织电极的分布式等效电路模型和基于机织电极的心电信号检测模型。对心电信号检测模型的影响因素进行仿真;分析了机织电极的尺寸、纤维半径和电阻率等的参数域(有效取值范围)。仿真结果表明,机织电极电阻适中且接触电阻较小,或机织电极电阻和接触电阻都较小时,最有利于心电信号检测;存在
     一个最佳位置使得心电信号最强,且该最佳位置和心电信号最大值都随着机织电极尺寸增大而变化。分析结果表明,机织电极的参数域为由一个曲面和五个平面所包围的三维空间;机织电极可选用电阻率适中或较低的导电纤维。
     探讨了智能服装系统的组成,提出了柔性传感器在智能服装系统中应用的总体框架。从应用角度探讨了柔性机织电极、柔性电阻式应变传感器、柔性电阻式压力传感器、柔性电阻式温度传感器和柔性穿透传感器的技术方案。分别探讨了应用柔性机织电极、柔性电阻式应变传感器和柔性电阻式温度传感器的健康监护服装的技术方案;应用柔性电阻式温度传感器的电热服装的技术方案;应用柔性电阻式压力传感器的睡姿监护服装的技术方案;应用柔性穿透传感器的监护军服的技术方案。
     最后,总结全文,从深度和广度两个方面展望下一步的研究工作
Flexible sensors are necessary to information sensing of intelligent clothes system. This research will investigate sensing mechanism, input-output relationship and parameters ranges of information fiber-based flexible sensors, which is benefit to ECG, respiration, temperature and pressure measurements for the intelligent clothes system.
     Theory and technology of mathematical model of fiber formation, information fiber and flexible sensor design have been summarized.
     Time-domain mathematical model of fiber formation has been fabricated based on physical laws. The relationship of time-domain mathematical model and frequency-domain mathematical model has been induced.
     Flexible woven resistive strain sensors made of electrical conductive elastic fibers have been designed. The electrical equivalent circuit model of both parallel strain sensor (PSS) and series strain sensor (SSS) have been fabricated, where the weft of PSS are in parallel connection and that of SSS are in series connection. The strain-resistance relation and input-output properties of both PSS and SSS are deduced based on the electrical equivalent circuit model and physical laws. Parameters domains (sets of effective value) of size, fiber radius and resistivity have been investigated. Results indicate that the parameters domains of both PSS and SSS are of three-dimensional space limited by one surface and five planes. PSS is desired to be made of electrical conductive elastic fibers with a moderate or low resistivity and be applied to strain measurement for any scale objects theoretically, while SSS is desired to be made of electrical conductive elastic fibers with a low resistivity and be applied to strain measurement for small-scale objects only.
     Flexible woven resistive temperature sensors made of electrical conductive fibers have been designed. The electrical equivalent circuit model of both parallel temperature sensor (PTS) and series temperature sensor (STS) have been fabricated, where the weft of PTS are in parallel connection and that of STS are in series connection. The temperature -resistance relation and input-output properties of both PTS and STS are deduced based on the electrical equivalent circuit model and physical laws. Parameters domains (sets of effective value) of size, fiber radius and resistivity have been investigated. Results indicate that the parameters domains of both PTS and STS are of three-dimensional space limited by one surface and five planes. PTS is desired to be made of electrical conductive fibers with a moderate or low resistivity and be applied to temperature measurement for any scale objects theoretically, while STS is desired to be made of electrical conductive fibers with a low resistivity and be applied to temperature measurement for small-scale objects only.
     Flexible woven resistive pressure sensors made of electrical conductive fibers have been designed. The electrical equivalent circuit model of both parallel pressure sensor (PPS) and series pressure sensor (SPS) have been fabricated, where the weft of PPS are in parallel connection and that of SPS are in series connection. The pressure-resistance relation and input-output properties of both PPS and SPS are deduced based on the electrical equivalent circuit model and physical laws. The outputs of both PPS and SPS with random pressure distribution have been simulated. The range of pressure has been investigated; and parameters domains (sets of effective value) of size, fiber radius and resistivity have also been investigated. Results indicate that the effects of random pressure distribution can be neglected, and PPS has a better accuracy than SPS. Both PPS and SPS are desired to work in a relative 'small range'of pressure, and a range of relative'small pressure'. The parameters domains of both PPS and SPS are of two-dimensional plane limited by one curve and three lines. The weft of PPS is desired to be made of electrical conductive fibers with a moderate resistivity, while that of SPS is desired to be made of electrical conductive fibers with a low resistivity only.
     Flexible woven resistive penetration sensor made of electrical conductive fibers and its signal conversion circuit has been designed. The input-output model of the penetration sensor has been fabricated. The input-output properties of the penetration sensor have been investigated. The general rules of input status determination based on output status in typical applications have also been investigated.
     Flexible woven electrodes made of electrical conductive fibers have been designed. The distributive electrical equivalent circuit model of the woven electrodes and theirs mathematical model of ECG measurement have been fabricated, respectively. Effects of factors on ECG intensity have been simulated, and the parameters domains (sets of effective value) of size, fiber radius and resistivity have been investigated. Results indicate that it is more help to ECG measurement that the resistance of the woven electrodes is of moderate and that the contact resistance is of low, or both the resistance of the woven electrodes and the contact resistance are of low. There exists a best position where ECG intensity gets its maximum, while both the position and the maximum vary with the size of the woven electrodes. The design domain of the woven electrodes is of three-dimensional space limited by one surface and five planes. The woven electrodes are desired to be made of electrical conductive fibers with a moderate or low resistivity.
     Configuration of intelligent clothes system has been discussed. The model of intelligent clothes system incorporated in flexible sensors has been fabricated. Technical solutions of flexible woven electrode, flexible resistive strain sensor, flexible resistive pressure sensor, flexible resistive temperature sensor and flexible resistive penetration sensor have been designed from application point of view. Furthermore, technical solution of health monitoring clothes with flexible woven electrode, flexible resistive strain sensor and flexible resistive temperature sensor, and technical solution of electric heating clothes with flexible resistive temperature sensor, and technical solution of sleep positions monitoring clothes with flexible resistive pressure sensor, and technical solution of health monitoring military uniform with flexible resistive penetration sensor have also been designed, respectively.
     Finally, the conclusions are summarized and the next work of the research is prospected from great scope and depth point of view.
引文
[1]Lind, E.J., A sensate liner for personnel monitoring applications[J]. Acta Astronautica,1998.42:3-9.
    [2]Wilhelm, F.H., Physiologic instability in panic disorder and generalized anxiety disorder[J]. Biol Psychiatry,2001.49:596-605.
    [3]Keenan, D.B., Adaptive filtering of heart rate signals for an improved measure of cardiac autonomic control[J]. International Journal of Signal Processing, 2005.2(1):52-8.
    [4]Ziabicki, A., Mechanical aspects of fibre spinning process in molten polymers Ⅰ[J]. Colloid & Polymer Science,1960.171:51.
    [5]Ziabicki, A., Mechanical aspects of fibre spinning process in molten polymers Ⅲ[J]. Colloid & Polymer Science,1961.175:14.
    [6]Ziabicki, A., Differential equations for velocity components in fibre spinning process[J]. Colloid & Polymer Science,1961.179:116.
    [7]Ziabicki, A., Man-Made Fibres:Science and Technology, Mark, H., Editor.1967, Interscience:New York.56.
    [8]Andrews, E.H., Cooling of a spinning thread-line [J]. British Journal of Applied Physics,1959.10:39.
    [9]Kase, S., Studies on Melt Spinning Ⅰ Fundamental Equations on the Dynamics of Melt Spinning[J]. Journal of Polymer Science A,1965.3:2541-54.
    [10]Kase, S., Studies on Melt Spinning Ⅱ Steady-State and Transient Solutions of Fundamental Equations Compared with Experimental Results[J]. Journal of Applied Polymer Science,1967.11:251-87.
    [11]Kase, S., Studies on melt spinning Ⅲ Velocity field within the thread[J]. Journal of Applied Polymer Science,1974.18:3267-78.
    [12]George, H.H., Model of Steady-State Melt Spinning at Intermediate Take-Up Speeds[J]. Polymer Engineering and Science,1982.22(5):292-9.
    [13]Kase, S., High Speed Fibre Spinning, Ziabicki, A., Editor.1985, Wiley:New York.67.
    [14]Katayama, K., Polymer Crystallization in Melt Spinning:Mathematical Simulation[M], High speed Fiber Spinning, Ziabicki, A., Editor.1985, Wiley: New York.207.
    [15]Matsui, M., High Speed Fibre Spinning, Ziabicki, A., Editor.1985, Wiley:New York.137.
    [16]Shimizu, J., Simulation of Dynamics and Structure Formation in High-Speed Melt Spinning[M], High speed Fiber Spinning, Ziabicki, A., Editor.1985, Wiley: New York.173.
    [17]Yasuda, H., High Speed Fibre Spinning, Ziabicki, A., Editor.1985, Wiley:New York.363.
    [18]Dutta, A., Textile Research Journal,1987.57:13.
    [19]Ishihara, H., Int. Polymer Processing,1989.4:91.
    [20]Ziabicki, A., Dynamic modelling of melt spinning[J]. Computational and Theoretical Polymer Science,1998.8:143-57.
    [21]Jarecki, L., Dynamics of hot-tube spinning from crystallizing polymer melts[J]. Computational and Theoretical Polymer Science,2000.10:63-72.
    [22]Shimizu, J., Dynamics and Evolution of Structure in Fiber Extrusion[J]. Journal of Applied Polymer Science,2002.83:539-58.
    [23]Petrie, C.J.S., Elongational Flows[M].1979, London:Pitman.
    [24]Acierno, D., J. Appl. Polymer Sci.,1971. 15:2395.
    [25]Chen, I.J., Trans. Sot. Rheo.,1972.16:473.
    [26]Spearot, J.A., Trans. Sot. Rheo.,1972.16:495.
    [27]Denn, M.M., AIChE J.,1975.21:791.
    [28]Ziabicki, A., Fundamentals of Fibre Formation[M].1976, London:Wiley.63.
    [29]Pearson, J.R.A., Mechanics of Polymer Processing[M].1985, London:Elsevier. 424.
    [30]Ziabicki, A., High Speed Fibre Spinning, Ziabicki, A., Editor.1985, Wiley:New York.21.
    [31]Ziabicki, A., J. Non-Newtonian Fluid Mech.,1993.47:57.
    [32]Avrami, M., Kinetics of phase change Ⅰ general theory[J]. J. Chem. Phys.,1939. 7:1103-12.
    [33]Avrami, M., Kinetics of phase change Ⅱ transformation-time relations for random distribution of nuclei[J]. J. Chem. Phys.,1940.8:212-24.
    [34]Avrami, M., Kinetics of phase change III granulation phase change, and microstructure[J]. J. Chem. Phys.,1941.9:177-84.
    [35]Ziabicki, A., Theoretical Analysis of Oriented and non isothermal crystallization I[J]. Colloid & Polymer Science,1974.252:207-21.
    [36]Ziabicki, A., Colloid & Polymer Science,1996.274:209.
    [37]师昌绪,跨世纪材料科学技术的若干热点问题[J].自然科学进展,1999.9(1):2-]3.
    [38]师昌绪,二十一世纪初的材料科学技术[J].中国科学院院刊,2001(2):93-100.
    [39]王占国,信息功能材料产业发展热点和难点[J].新材料产业,2003(1):12-7.
    [40]王占国,半导体信息功能材料与器件的研究新进展[J].中国材料进展,2009.28(1):26-30.
    [41]周廉,周廉院士谈新材料研究及产业发展状况[J].新材料产业,2001(6):16-20.
    [42]干福熹,信息材料的跨世纪展望[J].世界科技研究与发晨.22(1):9-16.
    [43]王惠文,光纤传感器技术与应用[M].2001,北京:国防工业出版社.
    [44]王雪亮,导电纤维的合成[J].合成纤维工业,1998.27(2):43.
    [45]潘玮,聚苯胺/涤纶导电复合纤维的制备[J].东华大学学报(自然科学版),2000(2).
    [46]张清华,聚苯胺/PA11共混导电纤维的研制[J].合成纤维工业,2001.30(3):22.
    [47]张慧勤,聚苯胺导电纤维的制备[J].中原工学院学报,2005.16(5):.38.
    [48]赵家祥,磁性纤维[J].北京化纤,1995(3):12-3.
    [49]齐鲁,磁性纤维力学性能探讨[J].合成纤维工业,2001.24(4):9-11.
    [50]齐鲁,远红外磁性纤维的研究[J].高分子材料科学与工程,2004.20(1):198-201.
    [51]刘兴访,多功能生物磁性纤维[P].中国:
    [52]马建华,一种聚丙烯纳米磁性纤维的制备方法[P].中国:200810040659.4.
    [53]齐鲁,一种远红外磁性纤维及其制造方法[P].中国:02125206.8.
    [54]齐鲁,一种磁性纤维及其制造方法[P].中国:03144309.5.
    [55]齐鲁,一种磁性纤维及其制造方法[P].中国:200910070413.6.
    [56]Wijesiriwardana, R. Resistive fibre-meshed transducers[C].7th IEEE International Symposium on Wearable Computers.2003. New York.
    [57]Wijesiriwardana, R. Fibre-meshed transducers based real time wearable physiological information monitoring system[C].8th IEEE International Symposium on Wearable Computers.2004. Arlington, VA.
    [58]Zhang, H., Conductive knitted fabric as large-strain gauge under high temperature[J]. Sensors and Actuators A,2006.126:129-40.
    [59]迪亚斯,蒂.,针织传感器设备[P].中国:200480015372.6.
    [60]Banaszczyk, J. Current Distribution Modelling in Electroconductive Textiles[C]. 14th IEEE International Conference on Mixed Design of Integrated Circuits and Systems.2007. Ciechocinek.
    [61]Huang, C.T., A wearable yarn-based piezo-resistive sensor[J]. Sensors and Actuators A,2008.141:396-403.
    [62]Sergio, M., A dynamically reconfigurable monolithic CMOS pressure sensor for smart fabric[J]. IEEE Journal of Solid-State Circuits,2003.38(6):966-75.
    [63]Hasegawa, Y. Novel type of fabric tactile sensor made from artificial hollow fiber[C].20th IEEE International Conference on Micro Electro Mechanical Systems.2007. Kobe, Japan.
    [64]Richer, A. Eddy Current Based Flexible Sensor for Contactless Measurement of Breathing[C]. IEEE Instrumentation and Measurement Technology Conference. 2005. Ottawa.
    [65]Wijesiriwardana, R., Inductive fiber-meshed strain and displacement transducers for respiratory measuring systems and motion capturing systems[J]. IEEE Sensors Journal,2006.6(3):571-9.
    [66]Pan, N., Analysis of woven fabric strengths Prediction of fabric strength under uniaxial and biaxial extensions[J]. Composites Science and Technology,1996. 56:311-27.
    [67]HUYSMANS, G., A poly-inclusion approach for the elastic modeling of knitted fabric composites[J]. Acta mater. Vol.46, No.9, pp.3003-3013,1998,1998. 46(9):3003-13.
    [68]Huang, Z.M., Modeling the stress strain behavior of a knitted fabric-reinforced elastomer composite[J]. Composites Science and Technology,2000.60:671-91.
    [69]Esumi, K., Chemical treatment of carbon nanotubes[J]. C arbon,1996.34(2): 279-81.
    [70]Saito, T., Chemical treatment and modification of multi-walled carbon nanotubes[J]. Physica B,2002.323:280-3.
    [71]秦宗益,具有高导电率高弹性及应力传感性能的复合纤维及其制备[P].中国:200910046590.0.
    [72]Sandler, J., Development of a dispersion process for carbon n anotubes in an epoxy matrix and the resulting electrical properties[J]. Polymer,1999.40(21): 5967-71.
    [73]Sandler, J.K.W., Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites[J]. Polymer,2003.44(19):5893-9.
    [74]Zhang, Q.H., Low percolation threshold in single-walled carbon nanotube/high density polyethylene composites prepared by melt processing technique[J]. Carbon,2006.44(4):778-85.
    [75]Alig, I., Conductivity spectroscopy on melt processed polypropylene-multiwalled carbon nanotube composites:Recovery after shear and crystallization[J]. Polymer,2007.48(4):1020-9.
    [76]Holm, R., Electrical Contacts[M].4 ed.1979, New York:Springer.
    [77]堵永国,电接触与电接触材料(二)[J].电工材料,2005(3):42-6.
    [78]Catrysse, M., Towards the integration of textile sensors in a wireless monitoring suit[J]. Sensors and Actuators A,2004.114:302-11.
    [79]Scilingo, E.P., Performance evaluation of sensing fabrics for monitoring physiological and biomechanical variables[J]. IEEE Transactions on Information Technology in Biomedicine,2005.9(3):345-52.
    [80]Wijesiriwardana, R., Capacitive fiber-meshed transducers for touch and proximity-sensing applications[J]. IEEE Sensors Journal,2005.5(5):989-94.
    [81]张诚,心电原理[M].1976,哈尔滨:黑龙江人民出版社,3-11.
    [82]黄宝晨,心电图基本知识[J].中国乡村医药杂志,2004.11(6):66-7.
    [83]丁永生,计算智能:理论、技术与应用[M].2004,北京:科学出版社
    [84]亚亚拉曼,S.,具有整体式柔性信息结构的织物或服装[P].中国:99801099.5.
    [85]亚亚拉曼,S.,用以监控婴儿生命征兆的织物和衣件[P].中国:00811968.6.
    [86]亚亚拉曼,S.,监视生命特征的新式的基于织物的传感器[P].中国: 01821924.1.
    [87]马马罗波洛斯,G.,选择性实用的可穿着的医疗传感器[P].中国:02821194.4.
    [88]珀库恩,M.,集成电导传感器的编织物[P].中国:200380106689.6.
    [89]范布吕根,M.P.B.,允许无源和有源矩阵寻址的全织物电极布局[P].中国:200680018882.8.
    [90]蒂尔博里,N.A.,带有可取下电子部件的服装[P].中国:01801690.1.
    [91]蒂尔博里,N.A.,携带电子装置的服装[P].中国:01801693.6.
    [92]Halleck, M.D., Apparatus and method for detecting a rotational movement of a body[P]. U.S.:09/717,425.
    [93]宋维金,人体睡眠姿势监测装置[P].中国:200520017443.8.