儿童急性淋巴细胞性白血病的预后及Aven基因表达的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分:儿童急性淋巴细胞性白血病的预后与MICM分型及临床表现的关系
     目的:探讨儿童急性淋巴细胞性白血病的预后与MICM分型、临床表现及主要化疗药物的关系,为确定个体化治疗方案以进一步提高患者的生存质量提供理论依据。
     方法:回顾分析过去10年在我科首诊且全程依从ALL-XH-99方案化疗的115例儿童急性淋巴细胞性白血病患者的临床资料,采用Kaplan-Meier方法评估患儿的EFS,组间患儿EFS差异用Log-rank检验,全部数据均通过SPSS13.0软件处理。
     结果115例ALL完全缓解率(CR)为90.4%,缓解中位时间为34天。5例死于诱导缓解之后(2例死于真菌败血症,3例死于细菌性败血症继发的弥漫性血管内凝血)。总的5年EFS率为(69.0±5.0)%,低危、中危、高危组5年的EFS率分别为(82.0±6.0)%、(77.0±15.0)%和(43.0±11.0)%,14例(12.2%)复发,复发的中位时间为17个月。单纯骨髓复发11例,中枢神经系统复发1例,睾丸白血病合并第二肿瘤(急性髓细胞性白血病)1例,骨髓复发合并中枢神经系统白血病1例,异基因造血干细胞移植术后继发淋巴瘤1例。所有病例均未采取颅脑放疗,中枢神经系统复发率并未高于既往报道。独立的不利预后因素包括:危险分度、t(9;22)/bcr/abl融合基因和初诊时白细胞计数。
     结论我院儿童ALL的EFS率和发达国家类似;t(9;22)/bcr/abl融合基因为最重要的不利预后因素;在强有力的系统化疗和鞘内注射条件下,对所有患儿可取消颅脑放疗以减少副作用。
     第二部分:抗凋亡基因Ayen在儿童急性淋巴细胞性白血病中的表达及其临床意义
     目的探讨抗凋亡基因Aven在儿童急性淋巴细胞性白血病中的表达及其与临床分型的关系。
     方法应用RT-PCR检测55例儿童急性淋巴细胞性白血病患者Aven基因mRNA的表达水平,11例非恶性血液病患儿为对照组。
     结果年龄大于10岁的ALL患者,Aven的表达明显高于年龄小于10岁的ALL患者,对于复发患者,Aven的表达亦明显高于未复发者。单因素和多因素分析结果均显示Aven的高表达为儿童ALL不利的预后因素。
     结论Aven在儿童急性淋巴细胞性白血病中异常表达,且为不良的独立预后因素。
     第三部分自体DC-CIK治疗化疗后儿童急性白血病的临床观察
     目的采用体外培养的树突状细胞(DC)致敏、细胞因子诱导激活的杀伤细胞(CIK)治疗化疗后的儿童急性白血病患者,探讨该方法降低化疗后复发的作用及其临床应用的安全性。
     方法将体外培养、扩增的DC-CIK细胞分两次回输给患者。随后给予胸腺肽皮下注射,10mg/天,隔日一次,连用10次。观察用药期间的不良反应,治疗结束后定期复查患者血液学及遗传学缓解情况。
     结果1.安全性:5例患者(其中3例为急性髓细胞性白血病,2例为急性淋巴细胞性白血病)9例次治疗均能顺利进行。DC-CIK细胞回输过程中有6例次出现寒战、发热,经对症处理能迅速缓解。治疗过程中未见其它不适反应,心电图、肝肾功能和心肌酶谱检查结果无明显变化;2.疗效观察:1例患者在治疗前存在染色体异常t(8;21),一个疗程后染色体检查正常。随访至今,4例患者治疗结束后处于持续血液学及遗传学缓解状态,已分别无病生存3年半、2年、2年、1年,1例未完成全程化疗的急性髓细胞性白血病患者2年后复发。
     结论DC-CIK细胞治疗全程化疗后的儿童急性白血病安全性较好,不良反应轻微,短期具有一定疗效。是否能有效降低全程化疗后儿童急性白血病的复发尚需进一步观察和大规模的临床病例对照研究。
Part 1 The relationship among the prognosis and MICM subtypes,clinical features of childhood acute lymphoblastic leukemia
     Objective To obtain theoretical evidence for individual therapy and further improving thequality of life of long-term survivors, we explore the relationship among the prognosis andMICM subtypes, clinical features and main chemotherapeutics.
     Methods A retrospective analysis was carried out on the childhood ALL treated in ourinstitute from January 1998 to April 2007. EFS curves were calculated by using theKaplan-Meier method and were compared with the log-rank test, Statistics was done bySPSS 13.0.
     Results Out of the 115 patients, 90.4% attained complete remission (CR) in a median timeof 34 days. 5 died after induction remission (2 from fungal sepsis, 3 from bacterial sepsis leading to disseminated intravascular coagulation). The overall EFS rate at 5 years was(69.0±5.0) % with median observation duration of 21 months. The EFS rates at 5 years inlow-risk (LR), median-risk (MR) and high-risk (HR) groups were (82.0±6.0) %, (77.0±15.0) % and (43.0±11.0) %, respectively (P<0.05). Relapse occurred in 14 patients(12.2%)in a median time of 17 months, including 11 hematological relapses, 1 isolated centralnervous system (CNS) relapse, 1 testicular leukemia combined with second malignancy(acute myeloid leukemia),1 bone marrow combined with CNS relapse, 1 second lymphomaafter allogeneic transplantation. Eliminating cranial irradiation in all the patients, theoccurrence rate of CNS relapse was not higher than previously reported. Independentadverse prognostic factors included risk group, t (9; 22)/bcr-abl and leukocyte count ofdiagnosis.
     Conclusions The EFS rate in our institute was similar to those in developed countries, t (9;22)/bcr/abl was the most important adverse independent prognostic factor. In the context ofeffective systemic and intrathecal chemotherapy, cranial irradiation can be eliminated in allpatients.
     Part 2 Expression and clinical significance of antiapoptotic geneAven in childhood acute lymphoblastic leukemia
     Objective To explore the expression of antiapoptotic gene Aven in childhood ALL and itsrelationship with clinical features of ALL.
     Methods RT-PCR was used to detect the expression of Aven mRNA in 55 cases ofchildhood ALL. The control group included 11 childhood patients with no malignanthematological diseases.
     Results Aven mRNA expression was found to be higher in patients =10 years old and wasalso significantly higher in relapsed patients. Univariate and multivariate analysis indicatedthat Aven overexpression was an independent poor prognostic factor.
     Conclusions Aven mRNA expression is abnormal in childhood ALL and is associated withthe clinical classification of childhood ALL. It is suggested that Aven gene expression maypredict prognosis in childhood ALL.
     Part 3 Autogeneic dendritic-cell-activated and cytokine induced killercells therapy for the treatment of childhood acute leukemia previouslygiven chemotherapy
     Objective To investigate the effect and safety of the therapy of autogeneicdendritic-cell-activated and cytokine induced killer cells (DC-C1K) cultured in vitro for thetreatment of childhood acute leukemia previously given chemotherapy.
     Methods Autogeneic DC-CIK were transfused to the patients twice after cultivation andamplification in vitro, then thymic peptide were injected subcutaneously at 10mg/d, everyother day for ten times. The side effects were observed during the treatment andhematological and genetic changes were monitored regularly after treatment.
     Results 5 patients (3 AML and 2 ALL) were treated with DC-CIK therapy and 9case-times were conducted successfully. Chill and fever appeared in 6 case-times duringthe transfusion and disappeared immediately after non-specific treatment. During thetreatment, no other side effects appeared and no changes of ECG and liver-renal functiontook place. Abnormal chromosome t (8; 21) disappeared in 1 case after one course oftherapy and all of the patients remain hematological and chromosomal remission. 4 patientsremained event-free-survival for half and three years, two years, two years and one yearrespectively since last follow-up. 1 AML patient relapsed two years later who did notundergo total course of chemotherapy.
     Conclusions It seems safe to treat childhood AL by autogeneic DC-CIK therapy previouslygiven chemotherapy with mild side effects and short-term therapeutic effect. Furtherlarge-scale clinical randomized comparison needs to be carried out to investigate whetherautogeneic DC-CIK could efficiently reduce the relapse risk of childhood AL after totalcourse of chemotherapy.
引文
(1) 廖清奎主编.小儿血液病基础与临床.北京.人民卫生出版社.2001年:496.
    (2) Schrappe M, Reiter A, Zimmermann M, et al. Long-term results of four consecutive trials in childhood ALL performed by the ALL-BFM study group from 1981 to 1995. Berlin- Frankfurt-M(u|¨)nster. Leukemia 2000; 14: 2205-2222.
    (3) Gaynon PS, Trigg ME, Heerema NA, et al. Children's Cancer Group trials in childhood acute lymphoblastic leukemia: 1983-1995. Leukemia 2000; 14: 2223-2233.
    (4) Carroll WL, Bhojwani D, Min DJ et al. Pediatric acute lymphoblastic leukemia. Haematology Am Soc Hematol Educ Program. 2003; 102-131.
    (5) Pinkel D. Selecting treatment for children with acute lymphoblastic leukemia. J Clin Oncol.1996; 14: 4-6.
    (6) Donadieu J,Auclerc MF, Baruchel A. Critical study of prognostic factors in childhood acute lymphoblastic leukemia:differences in outcome are poorly explained by the most significant prognostic variables. Fralle group,French Acute Lymphoblastic Leukaemia Study Group. Br J Haematol. 1998; 102: 729-739.
    (7) Donadieu J, Hill C. Clinical trials in childhood acute lymphoblastic leukemia: a common prognostic classification and a common induction therapy are now warranted. J Pediatr Hematol Oncol. 2002,24:424-425.
    (8) Ozisik K, Ozisik P, Yildirim E, et al. Expression of antiapoptotic survivin and aven genes in rat heart tissue after traumatic brain injury. Transplant Proc. 2006; 38:2784-2787.
    (9) Figueroa B Jr, Chen S, Oyler GA, et al. Aven and Bcl-xL enhance protection against apoptosis for mammalian cells exposed to various culture conditions. Biotechnol Bioeng. 2004; 85:589-600.
    (10) Paydas S, Tanriverdi K, Yavuz S, et al. Survivin and aven: two distinct antiapoptotic signals in acute leukemias. Ann Oncol. 2003;14: 1045-1050.
    (1) 廖清奎主编.小儿血液病基础与临床.北京:人民卫生出版社.2001年.
    (2) J.G. Gurney, R.K. Severson, S. Davis, L.L. Robison, Incidence of cancer in children in the United States: sex-, race-, and 1-year age-specific rates by histologic type.Cancer. 1995; 75: 2186-2195.
    (3) Harms DO, Janka-Schaub GE: Co-operative study group for childhood acute lymphoblastic leukemia (COALL): Long-term follow-up of trials 82, 85, 89 and 92. Leukemia. 2000; 14:2234-2239.
    (4) Schrappe M, Reiter A, Zimmermann M, et al: Long-term results of four consecutive trials in childhood ALL performed by the ALL-BFM study group from 1981 to 1995. Berlin- Frankfurt-Munster. Leukemia. 2000; 14: 2205-2222.
    (5) Pui CH, Sandlund JT, Pei D, et al: Improved outcome for children with acute lymphoblastic leukemia: Results of Total Therapy Study ⅩⅢB at St Jude Children's Research Hospital.Blood. 2004; 104:2690-2696.
    (6) Silverman LB, Gelber RD, Dalton VK, et al:Improved outcome for children with acute lymphoblasticleukemia: Results of Dana-Farber Consortium Protocol 91-01.Blood. 2001; 97:1211-1218.
    (7) WANG Yan-rong, JIN Run-ming, XU Jia-wei, et al. Outcome for childhood acute lymphoblastic leukemia: a report of 115 patients treated at Wuhan Union Hospital of China.CMJ.2008; 121:469-472.
    (8) Schrappe M, Reiter A, Ludwig WD, et al. Improved outcome in childhood acute lymphoblastic leukemia despite reduced use of anthracyclines and cranial radiotherapy: results of trial ALL-BFM 90: German- Austrian-Swiss ALL-BFM Study Group. Blood. 2000; 95:3310-3322.
    (9) Pui CH, Mahmoud HH, Rivera GK, et al. Early intensification of intrathecal chemotherapy virtually eliminates central nervous system relapse in children with acute lymphoblastic leukemia.Blood. 1998; 92:411-415.
    (10) Bostrom BC, Sensel MR, Sather HN, et al. Dexamethasone versus prednisone and daily oral versus weekly intravenous mercaptopurine for patients with standard-risk acute lymphoblastic leukemia: a report from the Children's Cancer Group. Blood. 2003; 101: 3809-3817.
    (11) D. Poplack, P. Brouwers, Adverse sequelae of central nervous system therapy. Clin. Oncol. 1985; 4:263-285.
    (12) J. Fisher, R. Aur. Endocrine assessment in childhood acute lymphocytic leukemia. Cancer. 1982; 49:145-151.
    (13) T. Pasqualini, M.E. Escobar, H. Domene, F.S. Muriel, S. Pavlovsky, M.A. Rivarola, Evaluation of gonadal function following long-term treatment for acute lymphoblastic leukemia in girls,Am. J. Pediatr. Hematol. Oncol. 1987; 9:15-22.
    (14) J. Blatt, D.J. Poplack, R.S. Sherins, Testicular function in boys after chemotherapy for acute lymphoblastic leukemia, N. Engl. J. Med. 1981;304:1121-1124.
    (15) C. Quigley, C. Cowell, M. Jimenez, et al., Normal or early development of puberty despite gonadal damage in children treated for acute lymphoblastic leukemia, N. Engl. J. Med. 1989;321:143-151.
    (16) M.R. Hamre, L.L. Robison, M.E. Nesbit, et al. Effects of radiation on ovarian function in long-term survivors of childhood acute lymphoblastic leukemia: a report from the Childrens Cancer Study Group. J Clin Oncol. 1987;5:1759-1765.
    (17) S.E. Lipshultz, S.D. Colan, R.D. Gelber, A.R. Perez-Atayde, S.E. Sallan, S.P. Sanders, Late cardiac effects of doxorubicin therapy for acute lymphoblastic leukemia in childhood. N Engl J Med. 1991; 324:808-815.
    (18) L. Loning, M. Zimmermann, A. Reiter, et al.Secondary neoplasms subsequent to Berlin-Frankfurt-Munster therapy of acute lymphoblastic leukemia in childhood: significantly lower risk without cranial radiotherapy.Blood. 2000; 95:2770-2775.
    (19) J.P. Neglia, A.T. Meadows, L.L. Robison, et al. Second neoplasms after acute lymphoblastic leukemia in childhood. N Engl J Med. 1991; 325: 1330-1336.
    (20) R. Nygaard, S. Garwicz, T. Haldorsen, et al., Second malignant neoplasms in patients treated for childhood leukemia. Acta Paediatr.Scand. 1991; 80:1220-1228.
    (21) C.H. Pui, F.G. Behm, S.C. Raimondi, et al. Secondary acute myeloid leukemia in children treated for acute lymphoid leukemia. N. Engl. J. Med. 1989; 321:136-142.
    (22) V.M.K. Dalton, R.D. Gelber, F. Li, M.J. Donnelly, N.J. Tarbell, S.E. Sallan. Second malignancies in patients treated for childhood acute lymphoblastic leukemia. J. Clin. Oncol. 1998; 16:2848-2853.
    (23) M.H. Zarrabi, F. Rosner, H.W. Grunwald. Second neoplasms in acute lymphoblastic leukemia. Cancer. 1983;52:1712-1719.
    (24) A.W. Walter, M.L. Hancock, C-H Pui, et al. Secondary brain tumors in children treated for acute lymphoblastic leukemia at St.Jude Children's Research Hospital. J. Clin. Oncol. 1998; 16:3761-3767.
    (25) S. Shapiro, J. Mealey. Late anaplastic gliomas in children previously treated for acute lymphoblastic leukemia. Pediatr. Neurosci. 1989; 15: 176-180.
    (26) S. Bhatia, H.R. Sather, O.B. Pabustan, M.E. Trigg, P.S. Gaynon, L.L. Robison. Low incidence of second neoplasms among children diagnosed with acute lymphoblastic leukemia after 1983.Blood. 2002; 99: 4257-4264.
    (27) J.P. Neglia, D.L. Friedman, Y. Yasui, A.C. Mertens, S.Hammond, M. Stovail, S.S. Donaldson, A.T. Meadows, L.L. Robison. Second malignant neoplasms in five-year survivors of childhood cancer: childhood cancer survivor study. J. Natl.Cancer.Inst. 2001; 93:618-629.
    (28) Steele JP, Rudd RM. Malignant mesothelioma: predictors of prognosis and clinical trials. Thorax.2000, 55:725-726.
    (29) Michael N. Dworzak, Gertraud Fr(o|") schl, Dieter Printz, Georg Mann, Ulrike Potschger, Nora Muhlegger, Gerhard Fritsch,and Helmut Gadner.Prognostic significance and modalities of flow cytometric minimal residual disease detection in childhood acute lymphoblastic leukemia. Blood.2002; 99:1952-1958.
    (30) Pui CH, Relling MV, Downing JR. Acute lymphoblastic leukemia. N Engl J Med. 2004;350:1535-1548.
    (31) 张志泉,金润铭,费洪宝.儿童急性淋巴细胞性白血病长期无病生存若干因素分析.白血病.淋巴瘤.2002,11:268-269.
    (32) Pui CH, Evans WE. Acute lymphoblastic leukemia. N Engl J Med, 1998; 339: 605-610.
    (33) Donadieu J, Auclerc MF, Baruchel A. Critical study of prognostic factors in childhood acute lymphoblastic leukemia: differences in outcome are poorly explained by the most significant prognostic variables. Fralle group, French Acute Lymphoblastic Leukaemia Study Group. Br J Haematol.1998; 102: 729-739.
    (34) Rubnitz JE, Behm RG, Pui CH, et al.Genetic studies of childhood acute lymphoblastic leukemia with emphasis on p16, MLL, ETV6 gene abnormalities: result of St Jude Total Therapy Study Ⅻ.LEUKEMIA. 1997,11:1201-1206.
    (35) Ma SK,Wan TS,Chan LC.Cytogenetics and molecular genetics of childhood leukemia.Hematol Oncol.1999;17:91-105.
    (36) Uckun FM,Herman Hatten K, Crotty ML,et al.Clinical significance of a cytogenetically detectable t(4;11)(q21;q23) chromosomal translocation. Blood. 1998; 92:810-821.
    (37) FG Behm,SC Raiomondi,JL Frestedt et al.Rearrangement of the MLL gene confers a poor prognosis in childhood acute lymphoblastic leukemia, regardless of presenting age.Blood. 1996;87:2870-2877.
    (38) 王彬,吴敏媛,李志刚等.bcr/abl融合基因阳性急性淋巴细胞白血病的临床特点.实用儿科临床杂志.2006;26:977-978.
    (39) Gu LJ, Li J, Xue HL, Tang JY, Chen J, Zhao HJ, et al. Analysis of therapeutic effectiveness in 158 childhood acute lymphoblastic leukemia patients treated with ALL-XH-99 protocol.Zhonghua Xue Ye Xue Za Zhi.2004;25:1-4.
    (40) Burger B, Zimmermann M, Mann G, Kuhl J, Loning L, Riehm H, et al. Diagnostic cerebrospinal fluid examination in children with acute lymphoblastic leukemia: significance of low leukocyte counts with blasts or traumatic lumbar puncture. J Clin Oncol.2003; 21: 184-188.
    (41) Gaynon PS, Lustig RH. The use of glucocorticoids in acute lymphoblastic leukemia of childhood: molecular, cellular, and clinical considerations.J Pediatr Hematol Oncol. 1995; 17:1-12.
    (42) Gaynon PS, Carrel AL. Glucocorticosteroid therapy in childhood acute lymphoblastic leukemia.Adv Exp Med Biol. 1999; 457:593-605.
    (43) Ekert H, Waters KD, Matthews RN, et al. A randomized study of corticosteroid and non-corticosteroid containing regimens in induction therapy of childhood ALL. Cancer Therapy and Control.1990; 1:87-95.
    (44) Henze G, Langermann HJ, Fengler R, et al. Acute lymphoblastic leukemia therapy study BFM 79/81 in children and adolescents: intensified reinduction therapy for patients with different risks for relapse. Klin Padiatr. 1982; 194:195-203.
    (45) Henze G, Fengler R, Reiter A, Ritter J, Riehm H. Impact of early intensive reinduction therapy on event-free survival in children with low-risk acute lymphoblastic leukemia. Hamatol Bluttransfus.1990; 33:483-438.
    (46) Gaynon PS, Bostrom BC, Reaman GH, et al.Children's Cancer Group (CCG) initiatives in childhood acute lymphoblastic leukemia. Int J Pediatr Hematol Oncol. 1998;5:99-114.
    (47) Hann I, Vora A, Richards S, et al. Benefit of intensified treatment for all children with acute lymphoblastic leukaemia, results from MRC UKALL XI and MRC ALL97 randomised trials: UK Medical Research Council's Working Party on Childhood Leukaemia. Leukemia. 2000; 14:356-363.
    (48) Neglia JP, Meadows AT, Robison LL, et al. Second neoplasms after acute lymphoblastic leukemia in childhood. N Engl J Med. 1991;325:1330-1336.
    (49) Dalton VMK, Gelber RD, Li F, et al. Second malignancies in patients treated for childhood acute lymphoblastic leukemia. J Clin Oncol. 1998; 16:2848-2853.
    (50) Nygaard R, Garwicz S, Haldorsen T, et al. Second malignant neoplasms in patients treated for childhood leukemia. Acta Paediatr Scand. 1991; 80:1220-1228.
    (51) Pratt CB, George SL, Hannock ML, Hustu HO, Kun LE, Ochs JS. Second malignant neoplasms in survivors of childhood acute lymphocytic leukemia [abstract]. Pediatr Res. 1988; 23(suppl):345a.
    (52) Pui CH, Ribeiro RC, Hancock ML, et al. Acute myeloid leukemia in children treated with epipodophyllotoxins for acute lymphoid leukemia. N Engl J Med. 1991; 325:1682.
    (53) Pinkel D. Selecting treatments for children with acute lymphoblastic leukemia.J Clin Oncol. 1996; 14:4-6.
    (1) Thompson CB. Apoptosis in the pathogenesis and treatment of disease.Science 1995; 267: 1456-1462.
    (2) Deveraux QL, Stennicke HR, Salvesen GS, Reed JC. Endogenous inhibitors of caspases. J Clin Immunol. 1999; 19:388-398.
    (3) Fridman JS, Lowe SW. Control of apoptosis by p53. Oncogene. 2003; 22:9030-9040.
    (4) Clem RJ, Sheu TT, Richter BW, He WW, Thornberry NA, Duckett CS, et al. c-IAP 1 is cleaved by caspases to produce a pro-apoptotic C terminal fragment. J Biol Chem. 2001; 276:7602-7608.
    (5) Nachmias B, Ashhab Y, Bucholtz V, Drize O, Kadouri L, Lotem M, et al. Caspase- mediated cleavage converts livin from an antiapoptotic to a pro-apoptotic factor: implications for drug-resistant melanoma. Cancer Res. 2003; 63:6340-6349.
    (6) Strasser A, Harris AW, Cory S. Bcl-2 transgene inhibits T cell death and perturbs thymic self-censorship. Cell. 1991; 67: 889-899.
    (7) Cross M, Dexter TM. Growth factors in development, transformation, and tumorigenesis. Cell 1991; 64: 271-280.
    (8) Reed CJ. Apoptosis and cancer: strategies for integrating programmed cell death. Semin Hematol. 2000; 37:9-16.
    (9) Herr I, Debatin KM. Cellular stress response and apoptosis in cancer therapy. Blood. 2001; 98:2603-2614.
    (10) Kawasaki H, Altieri DC, Lu CD, Toyoda M, Tenjo T, Tanigawa N. Inhibition of apoptosis by Survivin predicts shorter survival rates in colorectal cancer. Cancer Res. 1998; 58:5071-5074.
    (11) Kawasaki H, Toyoda M, Shinohara H, Okuda J, Watanabe I, Yamamoto T, et al. Expression of Survivin correlates with apoptosis, proliferation, and angiogenesis during human colorectal tumorigenesis. Cancer. 2001; 91:2026-2032.
    (12) Wurl P, Kappler M, Meye A, Bartel F, Kohler T, Lautenschlager C, et al. Co-expression of Survivin and TERT and risk of tumourrelated death in patients with soft-tissue sarcoma. Lancet. 2002; 359: 943-945.
    (13) Lu CD, Altieri DC, Tanigawa N. Expression of a novel anti-apoptosis gene, Survivin, correlated with tumor cell apoptosis and p53 accumulation in gastric carcinomas. Cancer Res. 1998; 58:1808-1812.
    (14) Satoh K, Kaneko K, Hirota M, Masamune A, Satoh A, Shimosegawa T. Expression of Survivin is correlated with cancer cell apoptosis and is involved in the development of human pancreatic duct cell tumors. Cancer. 2001; 92:271-278.
    (15) Sasaki H, Sheng Y, Kotsuji F, Tsang BK. Down-regulation of Xlinked inhibitor of apoptosis protein induces apoptosis in chemoresistant human ovarian cancer cells. Cancer Res. 2000; 60:5659-5666.
    (16) Chau BN, Cheng EH, Kerr DA, Hardwick JM. Aven, a novel inhibitor of caspase activation, binds Bcl-xL and Apaf-1. Mol Cell. 2000; 6:31-40.
    (17) Harms DO, Janka-Schaub GE: Co-operative study group for childhood acute lymphoblastic leukemia (COALL): Long-term follow-up of trials 82, 85, 89 and 92. Leukemia. 2000; 14:2234-2239.
    (18) Schrappe M, Reiter A, Zimmermann M, et al: Long-term results of four consecutive trials in childhood ALL performed by the ALL-BFM study group from 1981 to 1995. Berlin-Frankfurt-Munster. Leukemia. 2000; 14: 2205-2222.
    (19) Pui CH, Sandlund JT, Pei D, et al: Improved outcome for children with acute lymphoblastic leukemia: Results of Total Therapy Study ⅩⅢB at St Jude Children's Research Hospital.Blood. 2004; 104:2690-2696.
    (20) Silverman LB, Gelber RD, Dalton VK, et al: Improved outcome for children with acute lymphoblasticleukemia: Results of Dana-Farber Consortium Protocol 91-01.Blood. 2001; 7:1211-1218.
    (21) 张艳萍,石太新,张慧平,李树军,孙艳丽.凋亡抑制蛋白XIAP与Survivin在儿童急性白血病中的表达.中国小儿血液与肿瘤杂志.2007;12:153-156.
    (22) Paydas S, Tanriverdi K, Yavuz S, Disel U, Sahin B, Burgut R. Survivin and aven: two distinct anti-apoptotic signals in acute leukemias.Ann Oncol. 2003; 14: 1045-1050.
    (23) Jaewon Choi, Yu Kyeong Hwang, Ki Woong Sung, et al. Aven overexpression: Association with poor prognosis in childhood acute lymphoblastic leukemia. Leukemia Research. 2006: 30: 1019-1025.
    (24) 中华医学会儿科学分会血液学组,中华儿科杂志编辑委员会.儿童急性淋巴细胞白血病诊疗建议(第三次修订草案).中华儿科杂志.2006;44:392-395.
    (25) T Lindsten, C B Thompson. Cell death in the absence of Bax and Bak. Cell Death and Differentiation. 2006; 13: 1272-1276.
    (26) Fisher DE. Pathways of apoptosis and the modulation of cell death in cancer. Hematol Oncol Clin North Am, 2001; 15: 931-956.
    (27) Fulda S, Debatin KM. Apoptosis signaling in tumor therapy. Ann N Y Acad Sci, 2004; 1028:150-156.
    (28) Nowell PC. Molecular monitoring of pre-B acute lymphocytic leukemia. J Clin Oncol. 1987; 5:692-693.
    (29) Arico M, Valsecchi MG, Camitta B, Schrappe M, Chessells J, Baruchel A, et al. Outcome of treatment in children with Philadelphia chromosome-positive acute lymphoblastic leukemia. N Engl J Med. 2000; 342: 998-1006.
    (30) Pui CH, Behm FG, Downing JR, Hancock ML, Shurtleff SA, Ribeiro RC, et al. 11q23/MLL rearrangement confers a poor prognosis in infants with acute lymphoblastic leukemia. J Clin Oncol. 1994; 12:909-915.
    (31) Chen CS, Sorensen PH, Domer PH, Reaman GH, Korsmeyer SJ, Heerema NA, et al. Molecular rearrangements on chromosome 11q23 predominate in infant acute lymphoblastic leukemia and are associated with specific biologic variables and poor outcome. Blood. 1993; 81:2386-2393.
    (32) van der Plas DC, Dekker I, Hagemeijer A, Hooijkaas H, Hahlen K. 12p Chromosomal aberrations in precursor B childhood acute lymphoblastic leukemia predict an increased risk of relapse in the central nervous system and are associated with typical blast cell morphology. Leukemia. 1994; 8:2041-2046.
    (33) Shurtleff SA, Buijs A, Behm FG, Rubnitz JE, Raimondi SC, Hancock ML, et al. TEL/AML1 fusion resulting from a cryptic /(12; 21) is the most common genetic lesion in pediatric ALL and defines a subgroup of patients with an excellent prognosis. Leukemia. 1995; 9:1985-1989.
    (34) Trueworthy R, Shuster J, Look T, Crist W, Borowitz M, Carroll A, et al. Ploidy of lymphoblasts is the strongest predictor of treatment outcome in B-progenitor cell acute lymphoblastic leukemia of childhood: a Pediatric Oncology Group study. J Clin Oncol. 1992; 10:606-613.
    (35) Heerema NA, Nachman JB, Sather HN, Sensel MG, Lee MK, Hutchinson R, et al. Hypodiploidy with less than 45 chromosomes confers adverse risk in childhood acute lymphoblastic leukemia: a report from the Children's Cancer Group. Blood. 1999; 94: 4036-4045.
    (36) Pui CH, Carroll AJ, Raimondi SC, Land VJ, Crist WM, Shuster JJ, et al. Clinical presentation, karyotypic characterization, and treatment outcome of childhood acute lymphoblastic leukemia with a nearhaploid or hypodiploid less than 45 line. Blood. 1990; 75:1170-1177.
    (37) Rubin CM, Le Beau MM. Cytogenetic abnormalities in childhood acute lymphoblastic leukemia. Am J Pediatr Hematol Oncol. 1991; 13:202-216.
    (38) Heerema NA, Sather HN, Sensel MG, Zhang T, Hutchinson RJ, Nachman JB, et al. Prognostic impact of trisomies of chromosomes 10, 17 and 5 among children with acute lymphoblastic leukemia and high hyperdiploidy (>50 chromosomes). J Clin Oncol. 2000; 18:1876-1887.
    (39) Pui CH, Carroll AJ, Head D, Raimondi SC, Shuster JJ, Crist WM,et al.Near-triploid and near tetraploid acute lymphoblastic leukemia of childhood. Blood.l990;76:590-596.
    (1) Alvarnas JC, Linn YC, Hope EG, Negrin RS. Expansion of cytotoxic CD3~+CD56~+ cells from peripheral blood progenitor cells of patients undergoing autologous haematopoietic cell transplantation. Biol Blood Marrow Transplant. 2001; 7:216-222.
    (2) Lu PH, Negrin RS. A novel population of expanded human CD3~+CD56~+cells derived from T cells with potent in vivo antitumor activity against leukemia and lymphoma cells by reverse antibody-dependent cellular Cytotoxicity. J Immunol. 1994; 153:1687-1696.
    (3) Hoyle C, Bangs CD, Chang P, Kamel O, Mehta B, Negrin RS. Expansion of Philadelphia chromosome-negative CD3~+CD56~+ cytotoxic cells from chronic myeloid leukemia patients: in vitro and in vivo efficacy in severe combined immunodeficiency disease mice. Blood.1998; 92:3318-3327.
    (4) Schmidt J, Eisold S, B(u|")chler MW, M(a|")rten A. Dendritic cells reduce number and function of CD4~+CD25~+ cells in cytokine-induced killer cells derived from patients with pancreatic carcinoma. Cancer Immunol Immunother. 2004; 53:1018-1026.
    (5) Linn YC, Lau LC, Hui KM. Generation of cytokine-induced killer cells from leukemic samples with in vitro cytotoxicity against autologous and allogeneic leukaemic blasts. Br J Haematol. 2002; 116:78-86.
    (6) Schmidt-Wolf IGH, Lefterova P, Mehta BA, et al. Phenotypic characterization and identification of effector cells involved in tumor cell recognition of cytokine- induced killer cells. Exp Hematol. 1993; 21:1673-1679.
    (7) Verneris MR, Ito M, Baker J, Arshi A, Negrin RS, Shizuru JA. Engineering hematopoietic grafts: purified allogeneic haematopoietic stem cells plus expanded CD8~+ NKT cells in the treatment of lymphoma. Biol Blood Marrow Transpl. 2001; 7:532-542.
    (8) 葛薇,李长虹,张伟,等.树突细胞与细胞因子诱导的杀伤细胞共培养增强其体内外抗肿瘤活性.中华血液学杂志,2004,25:277-280.
    (9) Choudhury A, Toubert A, Sutaria S, et al. Human leukemia-derived dendritic cells: ex-vivo development of specific antileukemia cytotoxicity. Crit Rev Immunol.1998; 18:121-131.
    (10) Carroll WL, Bhojwani D, Min DJ et al. Pediatric acute lymphoblastic leukemia. Haematology.2003; 1: 102-131.
    (11) 秘营昌,卞寿庚,薛艳萍,等.急性髓系白血病完全缓解后周期的初步探讨.中华血液学杂志,2001,22:520-523.
    (12) 赵宇辉.脑损伤的修复与神经干细胞的研究进展.陕西医学杂志.2005;34:86-88.
    (13) 金元哲.干细胞移植治疗心肌梗死的研究进展.中国实用内科杂志.2005;25:97-99.
    (14) 蒋业贵,李兆申.胰腺干细胞的研究进展.中华内科杂志.2003;42:665-667.
    (15) 马俊勋.肝脏干细胞及其在肝脏损伤修复作用的研究进展.中国急救学.2005;25: 57-59.
    (16) 王其玲.干细胞移植治疗动脉闭塞成功.心脑血管病的预防和治疗.2004;14:6.
    (17) Nagler A, Ackerstein A, Or R, Naparstek E, Slavin S. Immunotherapy with recombinant human interleukin-2 and recombinant interferon-alpha in lymphoma patients postautologous marrow or stem cell transplantation. Blood. 1997; 89:3951-3959.
    (18) Benyunes MC, Massumoto C, York A, et al. Interleukin-2 with or without lymphokine-activated killer cells as consolidative immunotherapy after autologous bone marrow transplantation for acute myelogenous leukemia. Bone Marrow Transplant. 1993; 12:159-163.
    (19) Horwitz SM, Negrin RS, Blume KG, et al. Rituximab as adjuvant to high-dose therapy and autologous hematopoietic cell transplantation for aggressive non-Hodgkin lymphoma. Blood. 2004;103:777-783.
    (20) Alvarnas JC, Linn Y-C, Hope EG, Negrin RS. Expansion of cytotoxic CD3~+CD56~+ cells from peripheral blood progenitor cells of patients undergoing autologous hematopoietic cell transplantation. Biol Blood Marrow Transplant. 2001; 7:216-222.
    (21) Schmidt-Wolf IG, Negrin RS, Kiem HP, Blume KG, Weissman IL. Use of a SCID mouse/human lymphoma model to evaluate cytokine-induced killer cells with potent antitumor cell activity. J Exp Med. 1991;174:139-149.
    (22) Baker J, Verneris MR, Ito M, Shizuru JA, Negrin RS. Expansion of cytolytic CD8~+ natural killer T cells with limited capacity for graft-versus-host disease induction due to interferon gamma production. Blood. 2001; 97:2923-2931.
    (23) Verneris M, Ito M, Baker J, Arshi A, Negrin RS, Shizuru JA. Engineering hematopoietic grafts: purified allogeneic hematopoietic stem cells plus expanded CD8~+NK-T cells in the treatment of lymphoma. Biol Blood Marrow Transplant. 2001; 7:532-542.
    (24) Thomas Leemhuis, Sandra Wells, Christian Scheffold, Matthias Edinger, Robert S. Negrin. A Phase I Trial of Autologous Cytokine-Induced Killer Cells for the Treatment of Relapsed Hodgkin Disease and Non-Hodgkin Lymphoma. Biology of Blood and Marrow Transplantation, 2005, 11:181-187.
    (25) 章春容,耿彦彪,陆道培.自体细胞因子诱导的杀伤细胞治疗急性白血病的临床研究.北京医科大学学报,2000;32:473-477.
    (26) 陈智超,李哥媛,姚军霞等.DC-CIK细胞治疗自体外周血造血干细胞移植后急性髓性白血病的临床研究.临床内科杂志,2007,24:596-598.
    (27.) Thomas Leemhuis, Sandra Wells, Christian Scheffold, Matthias Edinger, Robert S. Negrin. A Phase I Trial of Autologous Cytokine-Induced Killer Cells for the Treatment of Relapsed Hodgkin Disease and Non-Hodgkin Lymphoma.Biology of Blood and Marrow Transplantation. 2005;11:181-187.
    (1) Pui CH, Relling MV, Downing JR. Acute lymphoblastic leukemia. N Engl J Med.2004; 350:1535-1548.
    (2) Pui CH, Sandlund JT, Pei D, et al. Results of therapy for acute lymphoblastic leukemia in black and white children. JAMA.2003; 290:2001-2007.
    (3) Silverman LB, Gelber RD, Dalton VK, et al. Improved outcome for children with acute lymphoblastic leukemia: results of Dana-Farber Consortium Protocol 91-01. Blood.2001; 97:1211-1218.
    (4) Schrappe M, Reiter A, Ludwig W-D, et al. Improved outcome in childhood acute lymphoblastic leukemia despite reduced use of anthracyclines and cranial radiotherapy: results of trial ALL-BFM90.Blood.2000; 95: 3310-3322.
    (5) Gaynon PS, Trigg ME, Heerema NA, et al. Children's Cancer Group trials in childhood acute lymphoblastic leukemia: 1983-1995. Leukemia.2000; 14: 2223-2233.
    (6) Donadieu J, Auclerc MF, Baruchel A. Critical study of prognostic factors in childhood acute lymphoblastic leukemia: differences in outcome are poorly explained by the most significant prognostic variables. Fralle group, French Acute Lymphoblastic Leukaemia Study Group. Br J Haematol.1998; 102:729-739.
    (7) Schuster JJ, Wacker P, Pullen J, et al. Prognostic significance of sex in childhood B-precursor acute lymphoblastic leukemia: a Pediatric Oncology Group Study. J Clin Oncol.1998; 16:2854-2863.
    (8) Pui CH, Boyett JM. Reilling MV, et al. Sex difference in prognosis for children with acute lymphoblastic leukemia. Clin Oncol.1999; 17: 818-824.
    (9) Ching-Hon Pui, John T. Sandlund, Deqing Pei, et al.Improved outcome for children with acute lymphoblastic leukemia: results of Total Therapy Study ⅩⅢB at St Jude Children's Research Hospital.Blood. 2004; 104: 2690-2696.
    (10) Bhatia S, Sather H, Zhang J, et al. Ethnicity and survival following childhood acute lymphoblastic leukemia (ALL):Follow-up of the Children's Cancer Group(CCG)Cohort. Proc Amer Assoc Clin Oncol. 1999;18: 568a.
    (11) Putti MC, Rondelli R, Cocito MG. et al.Expression of myeloid markers locks prognostic impact in children treated for acute lymphoblastic leukemia: Italian experience in AIEOP ALLd8-91 Studies. Blood.1998; 92: 795-801.
    (12) Smita Bhatia, Harland N. Sather, Nyla A. Heerema, et al. Racial and ethnic differences in survival of children with acute lymphoblastic leukemia. Blood.2002; 100: 1957-1964.
    (13) Ng SM, Ariffin WA, Lin Hp, et al. Clinical feature and treatment outcome of children with myeloid antigen coexpression in B-lineage acute lymphoblastic leukemia. J Trop pediatr.2000; 46:73-78.
    (14) Russo C, Carroll A, Kohler S, et al. Philadelphia chromosome and monosomy7 in childhood acute lymphoblastic leukemia: a Pediatric Oncology Group Study. Blood.1991; 77:1050-1056.
    (15) Frost BM, Forestier E, Gustafsson G, et al. Translocation t(12; 21) is related to in vitro cellular drug sensitivity to doxorubicin and etoposide in childhood acute lymphoblastic leukemia.Blood.2004; 104: 2452-2457.
    (16) Lal A, Kwan E, Haber M, et al. Detection of minimal residual disease in peripheral blood prior to clinical relapse of childhood acute lymphoblastic leukemia using PCR. Molecular and Cellular Probes.2001; 15:99-103.
    (17) Maja Krajinovic, Stephanie Lamothe, Damian Labuda, et al. Role of MTHFR genetic polymorphisms in the susceptibility to childhood acute lymphoblastic leukemia. Blood. 2004; 103:252-257.
    (18) Robert de Jonge, Jan Hendrik Hooijberg, Bertrand D. van Zelst, et al. Effect of polymorphisms in folate-related genes on in vitro methotrexate sensitivity in pediatric acute lymphoblastic leukemia. Blood.2005; 106:717-720.
    (19) Richard Aplenc, Jennifer Thompson, Peggy Han, Mei La, et al. Methylenetetrahydrofolate Reductase Polymorphisms and Therapy Response in Pediatric Acute Lymphoblastic Leukemia. Cancer Res.2005; 65:2482-2487.
    (20) Krynet ski EY, Tai HL, Yates CR, et al. Genetic polymorphism of thiopurine S-metyltransferase: Clinical importance and molecular mechanisms. Pharmacogenetics.1996; 6:279-290.
    (21) Mcleod HL, Relling MV, Liu Q, et al. Polymorphic thiopurine methyltransferase in erythrocytes is indicative of activity in leukemic blasts from children with acute lymphoblastic leukemia. Blood.1995; 85:1897-1902.
    (22) Lilleyman J S, Lennard L. Mercaptopurine metabolism and risk of relapse in childhood acute lymphoblastic leukemia. Lancet.1994; 343:1188-1190.
    (23) Irino T, Kitoh T, Koami K, et al. Establishment of real-time polymerase chain reaction method for quantitative analysis of Asparagines synthetase expression. Mol Diagn. 2004; 6:217-224.
    (24) Stams AG, Boer MI, Holleman A, et al. Asparagine synthetase expression is linked with L-Asparaginase resistance in TEL-AMLI negative, but not in TEL-AML1 positive pediatric acute lymphoblastic leukemia. Blood.2005; 105:4223-4225.
    (25) Fine BM, Kaspers GJ, Ho M ,et al. A genome-wide view of the in vitro response to L-asparaginase in acute lymphoblastic leukemia.Cancer Res.2005; 65: 291-299.
    (26) Krejci O, Starkova J, Otova B, et al. Upregulation of asparagines synthetase fails to avert cell cycle arrest induced by L-asparaginase in TEL/AML-1 positive leukemic cells. Leukemia.2004; 18:434-441.
    (27) Moalli PA, Rosen ST.Glucocorticoid receptors and resistance to glucocorticoid in hematological malignancies. Leuk Lymphoma.1994; 15:363.
    (28) Schwartz CI, Thompson EB, Gelber RD, et al. Improved response with higher corticosteroid dose in children with acute lymphoblastic leukemia. J Clin Oncol. 2001; 19:1040-1046.
    (29) Kofler R, Schmidt S, Kofler A et al. Resistance to glucocorticoid- induced apoptosis in lymphoblastic leukemia. J Endocrinol.2003; 178: 19.
    (30) Bamberger CM, Bamberger AM, de Castro M et al. Glucocorticoid receptor beta, a potential endogenous inhibitor of glucocorticoid action in humans. J Clin Invest. 1995; 95:2435.
    (31) Matloub Y, Lindemulder S, Gaynon PS,et al. Intrathecal triple therapy decreases central nervous system relapse but fails to improve event-free survival when compared with intrathecal methotrexate: results of the Children's Cancer Group (CCG) 1952 study for standard-risk acute lymphoblastic leukemia, reported by the Children's Oncology Group.Blood.2006; 108: 1165-1173.
    (32) Dhooge C, De Moerloose B. Clinical significance of P-glycoprotein (P-gp) expression in children: acute lymphoblastic leukemia. Adv Exp Med Biol. 1999; 457:11-19.
    (33) Flotho C,Coustan-Smith E, Pei D,et al. Genes contributing to minimal residual disease in childhood acute lymphoblastic leukemia: prognostic significance of CASP8AP2. Blood.2006;108:10.
    (34) Meyer LH, Karawajew L, Schrappe M, et al. Cytochrome c-related caspase-3 activation determines treatment response and relapse in childhood precursor B-cell ALL. Blood. 2006; 107:4524-4231.
    (35) Annels NE, Willemze AJ, van der Velden VH, et al. Possible link between unique chemokine and homing receptor expression at diagnosis and relapse location in a patient with childhood T-ALL.Blood. 2004; 103:2806-2808.
    (36) Holleman A, den Boer ML, Cheok MH,et al. Expression of the outcome predictor in acute leukemia 1(OPAL1) gene is not an independent prognostic factor in patients treated according to COALL or St Jude protocols. Blood.2006; 108: 1984-1990.
    (37) Astrom M, Bodin L, Nilsson I, et al. Treatment Long-term outcome and prognostic variable in 214 unselected AML patients in Sweden.Br J Cancer.2000;82: 1387-1392.
    (38) Dawson ST. Long-term risk of malignant neoplasm associated with gestational glucose intolerance. Cancer.2004; 100: 1549-1551.
    (39) Ambrosini G, Adida C, Altieri DC. A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma. Nature Med.1997; 3:917-921.
    (40) Sarela AI, Macadam RCA, Farmery SM, et al. Expression of the antiapoptosis gene, surviving, predicts death from recurrent colorectal carcinoma. Gut.2000; 46: 645-650.
    (41) Mariano M, Rafael R, Enriqueta F, et al. A novel anti-apoptosis, re-expression of survivin messenger RNA as a prognosis marker in non-smallcell lung cancers. J Clin Oncol.1999; 17:2100-2104.
    (42) Tanaka K, Iwamoto S, Gon G, et al. Expression of survivin and its relationship to loss of apoptosis in breast carcinomas. Clin Cancer Res.2000; 6:127-134.
    (43) Adida C,Haioun C,Salles G,et al. Prognostic significance of surviving expression in diffuse B cell lymphomas. Blood.2000; 96:1921-1925.
    (44) Jaewon Choi, Yu Kyeong Hwang, Ki Woong Sung, et al. Aven over expression: Association with poor prognosis in childhood acute lymphoblastic leukemia. Leukemia Research. 2006; 30:1019-1025.
    (45) Yuan XL, Zhao HJ, Jiang LM,et al. Expression of retinoblastoma protein in child acute leukemia cells and its clinical significance. Journal of Experimental Hematology. 2006; 14:913-918.
    (1) H M Heath-Engel, G C Shore. Regulated targeting of Bax and Bak to intracellular membranes during apoptosis. Cell Death and Differentiation. 2006; 13:1277-1280.
    (2) Thornberry NA,LazebnikY. Caspases: enemies within. Science. 1998; 281(5381): 1312-1316.
    (3) Devrim Acehan,Xuejun Jiang,David Gene Morgan,Three-Dimensional Structure of the Apoptosome: Implications for Assembly,Procaspase-9 Binding, and Activation. Molecular Cell. 2002; 9: 423-432.
    (4) Green DR. Apoptotic pathways: the roads to ruin. Cell. 1998; 94:695-698.
    (5) Bergmann A,Agapite J,Steller H. Mechanisms and control of programmed cell death in invertebrates.Oncogene. 1998. 24; 17:3215-3223.
    (6) Yan N,Shi Y. Mechanisms of apoptosis through structural biology.Annu Rev Cell Dev Biol. 2005; 21:35-56.
    (7) Chang HY,Yang. Proteases for cell suicide: functions and regulation of caspases. Microbiol Mol Biol Rev. 2000; 64:821-846.
    (8) Reed JC. Mechanisms of apoptosis.Am J Pathol. 2000; 157:1415-1430.
    (9) Shi Y.Caspase activation, inhibition, and reactivation: a mechanistic view.Protein Sci. 2004; 13:1979-1987.
    (10) Hasenjager A,Gillissen B,etal.Smac induces cytochromec release and apoptosis independently from Bax/Bcl-x(L) in a strictly caspase-3-dependent manner in human carcinoma cells.Oncogene. 2004;23:4523-4535.
    (11) Cong X L, Han ZC .Survivin and leukemia.Int J Hematol 2004; 80:232-238.
    (12) P S Schwartz, D M Hockenbery. Bcl-2 related survival proteins. Cell Death and Differentiation. 2006; 13: 1250-1255.
    (13) T Lindsten, C B Thompson. Cell death in the absence of Bax and Bak. Cell Death and Differentiation. 2006; 13: 1272-1276.
    (14) KonishiI, KurodaH, MandaiM. Review: gonadotropins and development of ovarian cancer. Oncology. 1999; 57(Supple2):45-48.
    (15) Carter B Z, Milella M, Tsao T ,et al .Regulation and targeting of anti-apoptotic XIAP in acute myeloid leukemia. Leukemia.2003; 17:2081-2089.
    (16) Kwon KB,Yoo SJ,Ryu DG, etal.Induction of apoptosis by diallyl disulfide through activation of caspase-3 in human leukemia HL-60.cells.Biochem Pharmacol. 2002; 63:412-447.
    (17) Park EK, Kwon KB, Park KI, et al. Role of Candidly disulfide-induced apoptotic cell death of HCT-15 cells.Exp Mol Med.2002; 34:250-257.
    (18) 叶宝东,朱宁希等.青蒿素诱导人K562细胞凋亡的实验研究.浙江医学.2005;27:899-936.
    (19) 刘培民,蔡宝昌,解锡军等.阿胶含药血清对白血病K562细胞P53基因表达的影响.中药药理与临床.2005;21:33-35.
    (20) 王妍,胡俊斌,陈燕,崔国惠.姜黄素诱导Raji,HL-60和K562细胞组蛋白乙酰化的研究.中国药理学通报.2006;26:164-167.
    (21) Ruan WJ, Lai MD, Zhou JG. Anticancer effects of Chinese herbal medicine,science or myth? Zhejiang Univ Sci B. 2006; 7:1006-1014.
    (22) Arceci RJ.Clinical Significance of p-glycoprotein in multidrug resistance malignancies. Blood.1993; 81:2215-2222.
    (23) Seedhouse.DNA repair contributes to the drug-resistant phenotype of primary acute myeloid leukemia cells with FLT3 internal tandem duplications and is reversed by the FLT3 inhibitor PKC412.Leukemia. 2006; 26:409-415.
    (24) Niklinski W, Burzykowski T, Chyczewski L, Niklinski J. Expression of vascular endothelial growth factor (VEGF) in non-small cell lung cancer (NSCLC): association with p53 gene mutation and prognosis. Lung Cancer. 2001; 34 Suppl 2:S59-64.
    (25) HanH, LandreneauRJ, SantucciTS, et al.Prognostic value of immuno histochemical expression of p53, HER-2 Pneu and bcl-2 in stage Non-small-cell lung cancer.Hum Pathol.2002; 33:105-110.
    (26) Cox G, Louise Jones J, Andi A,et al.Bcl-2 is an independent prognostic factor and adds to a biological model for predicting outcome in operable non-small cell lung cancer. Lung Cancer. 2001; 34: 417-426.
    (27) GessnerC,LiebersU,KuhnH,et al.BAX and pl6 INK4A are independent positive prognostic markers for advanced tumour stage of no Small cell lung cancer.Eur RespirJ.2002;19:134-140.