软木及其产品天然耐腐性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
软木产品的应用中我们知道软木具有非常好的耐腐性,本文主要参考木材天然耐腐性测定标准,对我国栓皮栎软木的耐腐性进行测定,并分析腐朽过程中软木化学成分、微观构造、渗透性、密度等的变化情况,还分析了软木地板的耐腐性以及腐朽过程中材色、压缩回弹性的变化,主要研究的结论如下:
     (1)通过实验可以得知,软木腐朽前后重量变化不明显,仅在1%左右。其中白腐(彩绒革盖菌)的失重率最大(1.249%),褐腐(密粘褶菌)次之(1.045%),霉腐(好食脉孢菌)最低(0.977%),未接种的软木的重量损失率为0.975%,与木材的天然耐腐性相比,软木的耐腐等级为A级,具有非常优异的天然耐腐性。
     (2)三种菌丝的生长经历的延滞期、迅速生长期和衰退期三个阶段。彩绒革盖菌和密粘褶菌的延滞期较长,为2天左右,好食脉孢菌的延滞期为1天。在迅速生长期阶段,彩绒革盖菌和密粘褶菌的菌丝较短,最后生长的菌丝厚度也较薄,为1mm左右。好食脉孢菌生长速度很快,菌丝也较长,菌丝厚度比前两种菌丝厚,最厚时达到8mm,衰退期后的厚度为3mm左右。
     (3)腐朽后提取物总体变化很小,在0.5%以内。软木的主要成分为木栓脂,而腐朽菌对这种成分基本上不降解,这是软木耐腐的主要原因之一。软木中还含有较多的木质素和综纤维素,这些是木材中腐朽菌主要的降解物质,在软木中并无明显变化。软木的渗透性性较差,在压力0.17MPa、温度114℃的条件下,腐朽后的软木与未腐朽的软木相比较,渗透性没有发生变化。软木的耐腐性很好,经过腐朽后软木的密度没有发生改变。
     (4)通过SEM观察腐朽后的软木组织,其内部没有发现菌丝。通过离析的方法得到软木单个细胞,发现软木单个细胞的形状完整,没有变化。
     (5)通过对菌丝的分离方法,得到试验中可能只有霉菌(好食脉孢菌)能够进入到软木内部,而白腐菌(彩绒革盖菌)和褐腐菌(密粘褶菌)只是在软木的表面生长,没有侵入到软木的内部。
     (6)12目软木地板腐朽后质量变化不明显,都在3.5%以内。4目的软木地板质量损失率很小,几乎与软木原材料的相同,重量损失率在1.2%左右。腐朽菌对12目和4目的软木地板没有造成重量上的影响。从材色上来看,腐朽菌虽然在软木地板的表面生长,但是并没有对材色造成影响,腐朽后软木地板与对照软木地板△E*、△L*、△a*、△b*变化规律均一致。从压缩回弹性来看,照样与腐朽后软木地板的变化呈现一致性。也就是说软木地板的压缩回弹性变化不是由腐朽菌引起的,其变化的原因还待于进一步的研究。通过菌丝分离的方法验证,软木地板中菌丝生长与软木中相同,加入胶黏剂后并不影响软木地板的耐腐性。
Cork displays the quality of strong corrosion resistance in the application of its products,the essay provides measurement standards which can be as the main reference to wood natural corrosion resistance, testing the quality of corrosion resistance of cork bark, analyzing the variations of the cork chemical contents, microscopic structure, penetrability, density, the corrosion resistance of cork floor and changes of color and rebound resilience when compressed during the decayed process. The research results are as the follows:
     (1) There is little variation in the weight of cork only within 1 %, of which, the weight loss of white rot accounts for the most ( about 1.294%), next to it is brown rot (accounting for 1.045%), mildew rot accounts for the least(0.977%), Compared with the natural wood’s corrosion resistance, we learn that cork has the extraordinary strong natural corrosion resistance and ranks top among the woods.
     (2) The three hyphae experience three periods, and they are lag phase, fast growing season and recession phase, of whom the lag phase of cotiolus versicolor and Gloeophyllum trabeum lasts longer, about 2 days, while Chrysonilia sitophila lasts for 1 day. During the period of growth, the hyphae of cotiolus versicolor and Gloeophyllum trabeum is shorter with the ply of 1 mm. Chrysonilia sitophila grows very fast with longer hyphae and thicker ply which may be as thick as 8mm and the ply will decrease to 3mm.
     (3) After the decay process, the overall change is little within 0.5%. The main content of cork is suberin, which the fungus can’t degrade, which becomes the main reason of its corrosion resistance. Cork also contains more lignin and ensemble cellulose, which becomes the main degraded substance for the fungus, whose effects is little in cork. According to the poor permeability of cork, we set test conditions as 1.7MPa pressure and 114℃, there is no change between the good cork and decayed one on their permeability. The density of the cork displays no change after the decay process.
     (4) The observation through the SEM shows that no hyphae are found inside the cork. Single cork cell got through the method of cork segregation remains the same as the original with complete shape.
     (5) Trough the segregation of hyphae, we concluded that only the mildew (Chrysonilia sitophila) is able to enter cork inside, while white rot and brown rot can just grow on the surface of the cork without invading into the cork.
     (6) 12 mesh cork floor shows a little variation after decaying, whose range is within 3.5%.The weight loss of 4 mesh cork floor is so little that you will find it to be same as the original cork. And the weight loss after twelve weeks is about 1.2%. Mildew has little effect on the weight of the 12 and 4 mesh cork. Although mildew grows on the surface of the cork, it doesn’t destroy cork color. Cork floor and the contrast cork floor△E*、△L*、△a*、△b* observe the consistent variation rules. It is still in accordance with cork changes after decay with regard to its rebound resilience when compressed, that is to say the changes of cork floor has no relationship with mildew. The reason relating to rebound resilience changes of the cork needs further research. It shows in the experiment of segregation of hyphae that the growth of hyphae in cork is the same as in cork floor, because of which, the quality of corrosion resistance is not destroyed after adding adhesive to the cork floor.
引文
(日)土肥义治, (德) A.斯泰因比歇尔.生物高分子聚酯生物系统和生物工程法生产.北京:化学工业出版社: 52~57
    GB/T 13942.1-92木材天然耐腐性实验室试样方法.中华人民共和国国家标准
    鲍甫成,吕建雄. 1992.木材渗透性可控制原理研究.林业科学, 28(4):336~342
    北京造纸研究所. 1979.造纸工业化学分析.北京:轻工业出版社: 44~52
    陈利芳,苏海涛,刘磊等. 2007. 11种竹材的防腐可处理性能和天然耐腐性能试验.广东林业科技, 23(1):34~36
    陈敏忠,王传槐,甘习华等,1996.白腐菌云芝腐朽杨木的超微光结构研究.南京林业大学学. 20(1): 48~52
    陈业高,2004.植物化学成分.北京:化学工业出版社, 3:41~44
    池玉杰,于钢. 2002. 6种木材白腐菌对山杨材木质素分解能力的研究.林业科学, 38(5):115~120
    池玉杰. 2004.木材腐朽菌培养特性的研究综述.菌物学报, 23(1):158~164
    池玉杰. 2005 . 6种白腐菌腐朽后的山杨木材和木质素官能团变化的红外光谱分析.林业科学, 41(2):136~140
    杜子伟,王域民,王芝兰等. 1999. LY/T.1317-99,栓皮,北京:中华人民共和国林业部
    端木炘.1994.我国栎属资源的综合利用.河北林学院学, 9(2): 177~181
    段新芳,常德龙,李增超. 2002.木材颜色调控技术.北京:中国建材出版社: 23
    高根虎,卢从祥. 2002.陕西省软木工业的优势及对策.陕西林业科技, (1): 63~65
    郭洪武,王金林,李春生,闫昊鹏. 2008.杨木和樟子松单板的光变色规律木材工业, 22(1):191~195
    官湉. 2003.软木(栓皮)材料的漂白和染色技术研究. [硕士学位论文].北京:中国林业科学研究院
    官湉. 2003.软木(栓皮)材料的漂白和染色技术研究. [硕士学位论文].北京:中国林业科学研究院
    胡伟华,常德龙,李福海.真菌侵蚀前后泡桐材化学成分变化剖析.东北林业大学学报, 29(1):7~8
    黄镇亚. 1985.木材微生物及其利用.北京:中国林业出版社: 10~15
    雷亚芳,刘艳贞,周伟等. 2009.栓皮栎软木的微观构造.林业科学,45(1):167~170
    李丹,段舜山,侯红曼,李爱芬. 2002.白腐菌对木质素降解能力的测定.生态科学, 21(4):346~347
    李国成,余晓霞. 2006.香椿树皮的化学成分分析.中国医院药学杂志,26(8):949~952
    李华. 1994.葡萄酒的软木塞封装.酿酒,(6): 1~2
    李惠蓉. 2005.白腐真菌生物学和生物降解技术.北京:化学工业出版社: 12
    李龙,宋蕾.2006.软木复合材料及其应用.纺织科技进展, 4: 36~39
    李永敬,金重为. 1988.白腐菌对杨木腐朽过程的扫面电镜研究.林业科学, 24(2): 241~248
    林云琴,周少奇. 2003.白腐菌降解纤维素和木质素的研究进展.环境技术, 29(4): 29~34
    刘艳贞,雷亚芳,周伟,赵泾峰,史小娟. 2007.欧洲栓皮栎软木构造与物理性质研究进展.西北林学院学报, 22(6):144~147
    刘艳贞. 2008.栓皮栎软木构造及主要化学成分的分析. [硕士学位论文].杨凌:西北农林科技大学
    刘一星,于海鹏,赵荣军. 2007.木质环境学.北京:科学出版社:12~15
    吕建雄,鲍甫成,姜笑梅. 1994.汽蒸处理对木材渗透性的影响.林业科学,30(4):352~361
    吕建雄,鲍甫成,姜笑梅. 2007. 3种不同处理方法对木材渗透性影响的研究.林业科学, (7): 67~70
    罗伟祥,张文辉,黄一钊等. 2009.中国栓皮栎.北京:中国林业出版社: 33~270
    骆士涛. 1996.化学改性杨木的抗白蚁和抗霉耐腐性能研究.林业科技开发,(6):33~34
    苏文强. 2006.槐树提取物对木材防腐性能的研究[硕士学位论文].哈尔滨:东北林业大学
    孙雪梅. 1998.软木塞的特性及其在葡萄酒生产中的应用.葡萄栽培与酿酒,(2):32~33
    汪翔. 2005.豪菊提取物的质量标准研究. [硕士学位论文].安徽:合肥工业大学
    王蔚,高培基. 2002.褐腐真菌木质纤维素降解机制的研究进展.微生物学通报, 29(3):90~93
    王蔚高,培基褐. 2002.腐真菌木质纤维素降解机制的研究进展.微生物学通报, 29(3):90~92
    王晓杰,郑喜群,刘晓兰,李清. 2008.好食脉胞酶发酵玉米酒糟生产新型饲料的工艺研究农产品加工:118~121
    魏新莉,向仕龙,周蔚红. 2007. 3种栓皮化学成分对其性能的影响.木材工业, 21(6): 17~18
    谢君,张义正. 2001.侧耳菌与粗毛栓菌在麦草培养基中产生木质纤维素降解酶的研究.生物工程学报, 17(5): 575~578
    徐绘,雷亚芳. 2009.软木材料吸水性的研究.木材工业,23(5):13~14
    杨清香. 2008.普通微生物学.北京:科学出版社: 117
    尹思慈. 2001.木材学.北京:中国林业出版社: 19
    于文喜. 1993.我国北方主要树种心材天然耐腐性评价,林业科技, 18(6): 22~24
    曾新德. 2001.我国软木工业的现状及发展策略.林业科技管理, 4:46~51
    张丽丛,雷亚芳,常宇婷. 2009.栓皮栎软木化学成分的分析.西北林学院学报, 24(4):163~165
    张亮. 2008.百合不同生育期根际土壤微生物和酶活性的变化. [硕士学位论文].杨凌:西北农林科技大学
    张晓昱,杜甫佑,王宏勋,尹艳丽. 2004.不同木质素基质上白腐菌降解特性的研究.微生物学杂志, 24(6):4~6
    郑志峰. 2005.软木资源及其利用.云南林业, 26(3):23
    钟光华. 2006.软木工业的概况.林业机械与木工设备, 34(3): 6~8
    周明. 1991.木材天然耐腐性室内试验标准方法的研究.木材工业, 5(2): 29~31
    A.M.Gil. 2000. An NMR microscopy study of water absorption in cork . Journal of materials science, 35:1891~1900
    Beate Groh, Carin Hübner, Klaus J. Lendzian . 2002. Water and oxygen permeance of phellems isolated from trees: the role of waxes and lenticels , 215: 794~801
    Blanchette R A. 1995. Degradation of the lignocellulosic complex in wood. Canadian Journal of Botany (Suppl.), 73: 999~1010
    Centeno, S., Calvo, M. . 2001. Enzymatic activity of micro-organisms isolated from cork wine stoppers. Society for industrial Microbiology.106, 69~73
    Conde Elvira . 1998. Chemical characterization of reproduction cork from spanish Quercus Suber. Journal of wood chemistry and technology, 18(4): 447~469
    Cordeiro N., Belgacem M.. Cork suberin as a new source of chemicals. 1. Isolation and chemical characterization of its composition. International Journal of Biological Macromolecules. 1998,22(2): 71~80.
    Corticeira Amorim-Industria. 2001. SA Cork in the construction industry. Internet-E-Journal for Engineers,(3): 17
    C Silva Pereira, A Pires, MJ Valle. 2000. Role of chrysonilia sitophila in the quality of cork stoppers for sealing wine bottles. Society for industrial Microbiology. 24:256~261
    Cristina Silva Pereira ,Giselle A.M. Soares, Ana C. Oliveira. 2006. International Biodeterioration & Biodegradation ,57:244~250
    F. Cumbre, F. Lopes, H.Pereira. 2000. The effect of water boiling. on annual ring width and porosity of cork . Wood Fiber Sci. , 32: 125~133
    Garcia Vallejo M.C., E. Conde ,E. Cadahia . 1997. Suberin composition of reproduction cork from Quercus suber. Holzforschung, 51: 219~224
    Gil LMOC.1996. Densification of black agglomerate cork boards and study of densified agglomerates. Wood Science and Techology, 30(3): 217~223
    H. Pereira.1984. Chemical composition of virgin and reproduction cork of Quercus suber. Boletim Instituto dos Produtos Florestais, Portugal, Cortica, 1984,550: 237~240.
    H. Pereira , Lisboa, Portugal. 1988. Chemical composition and variability of cork from Quercus suber L. Wood Sci. Technol, 22:211-218.
    H. Pereira . 1987. The cellular structure of cork from Quercus suber L . IAWA Buletin ns, 8(3): 213 ~217
    H. Pereira, Meier D, Faix O. 1996. Isolation and characterization of a guaiacyl lignin from saponified cork of Quercus suber L. Holzforschung, 50(5): 393~400
    H. Pereira. 1988. The effect of chemical treatments on the cellular structure of cork. IAWA Bulletin.,9(4): 337~345
    Holloway P.J. 1983. Some variations in the composition of suberin from the cork layers of higher plants. Phytochemistry, 22:495~502
    Holloway P.J. 1982. Suberins of Molus pimila stem and root corks. Phychem.,21: 2517~2525
    Holloway, P. J. 1972. The composition of suberin from the colks of Quercus suber L. and Betulapendula Roth. Chem. Phys. Lipids, 9: 158~170
    JO?OF MANO. 2002. The viscoelastic properties of cork, Journal of materials science, 37: 257~263
    John FSiau1.1995. Wood:Influence of moisture on physical properties M1.NewYork: Spinger-Verlag Berlin Heidelberg:142~146
    Kim Y S, Newman R H. 1995. Solid state 13C NMR study of wood degraded by the brown rot fungus Gloeophyllum trabeum. Holzforschung, 49: 109~114
    L.J.Gibson.2005. Biomechanics of cellular solid, J. biomech. Eng., 38: 377~399
    Liese W., Gunzerodt H. 1981. Charaterisation of wet cork in Qucercus suber L.. Holzforschung,35(4): 195~199
    M. F. Vaz , M. A. Fortes . 1998. Friction properties of cork. J. Mater. Sci , 33: 2087~2093
    Makoto Ohkoshi, Atsushi Kato, Kcntaro Suzuki. 1999. Characterization of acetylated wood decayed by brown-rot and white-rot fungi. wood sci , 45: 69~75
    Pereira, H., Rosa, M.E., Fortes, M., 1987. The cellular structure of cork from Quercus suber L. IAWA Bulletin 8, 213~218
    Peter J. Holloway. 1983. Some variations in the composition of suberin from the cork layers of Higher Plants. Holzforschung, 22:495~502
    R.Hooke,1664. Micrographia . London:The Royal Society ,112~121
    Riu, H., Roig, G., Sancho, J., 1997. Production of carpophores of Lentinus edodes and Ganoderma lucidum grown on cork residues. Microbiologia 13, 185~192
    Worrall J J, Anagnost S E, Zabel R A. 1997. Comparision of wood decay among diverse lignicolous fungi.Mycologia, 89: 199~219
    Zimmermanyij W, H. Nimz , E. Seemuller, 1985. 1H and 13C NMR spectroscopic study of extracts from corks of Quercus suber. Holzforschung, 35: 217~223