溴虫腈的剂型与毒效关系及其在桑叶中降解规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于安全、高效使用杀虫剂溴虫腈防治农业害虫的目的,本文研制了10%溴虫腈水乳剂、微乳剂、悬浮剂和乳油4种剂型;进行了4种剂型的物化特性比较;用气相色谱法检测了溴虫腈不同剂型在桑叶和甘蓝叶片内滞留量和对小菜蛾幼虫的表皮穿透力;比较了溴虫腈不同剂型对桑叶光合特性及叶质的影响;分别用浸叶法和浸虫法测定了溴虫腈不同剂型对家蚕和小菜蛾的毒力;比较了溴虫腈不同剂型处理桑叶后对家蚕生长发育的影响;采用食下毒叶法检测了溴虫腈不同剂型处理桑叶后对家蚕的残留毒性;用气相色谱法检测了喷药后不同时间,溴虫腈不同剂型在桑叶中的降解动态;测定了溴虫腈不同剂型在桑叶上的最终残留量。研究结果如下:
     1.通过对溶剂及表面活性剂等的筛选和配伍,确定了10%溴虫腈水乳剂和10%溴虫腈微乳剂的优化配方;采用湿式超微粉碎法,对润湿分散剂、增稠剂、防冻剂等进行筛选,确定了10%溴虫腈悬浮剂的优化配方;对溶剂、乳化剂进行了筛选和配伍,确定了10%溴虫腈乳油的优化配方。研制出了符合国家同类剂型质量标准的10%溴虫腈悬浮剂、10%溴虫腈微乳剂、10%溴虫腈水乳剂和10%溴虫腈乳油4种剂型。
     2.溴虫腈4种剂型的物化特性比较显示:溴虫腈4种剂型的表面张力具有比较一致的规律,即稀释倍数越低,浓度越大,表面张力越小;反之,稀释倍数越高,浓度越小,表面张力越大。在相同稀释浓度下,溴虫腈4种剂型的表面张力从大到小顺序依次为10%溴虫腈悬浮剂> 10%溴虫腈水乳剂> 10%溴虫腈乳油> 10%溴虫腈微乳剂。稀释倍数越高,4种剂型稀释液之间的表面张力差距越大;溴虫腈4种剂型在甘蓝叶面的接触角具有相同的规律,即稀释倍数越低,浓度越大,接触角越小。4种剂型在相同稀释浓度下,其稀释液的接触角从大到小顺序依次为10%溴虫腈悬浮剂>10%溴虫腈水乳剂> 10%溴虫腈乳油>10%溴虫腈微乳剂;溴虫腈4种剂型在蜡面上的润湿展布能力依次为10%溴虫腈微乳剂>10%溴虫腈乳油>10%溴虫腈水乳剂>10%溴虫腈悬浮剂,润湿展布面积分别是水的3.08倍、2.60倍、2.36倍和1.38倍;在桑叶上润湿展布面积大小依次为10%溴虫腈微乳剂> 10%溴虫腈水乳剂>10%溴虫腈乳油>10%溴虫腈悬浮剂,润湿展布面积分别是水的2.30倍、2.28倍、1.16倍和1.08倍。在甘蓝叶上润湿展布面积大小依次为10%溴虫腈微乳剂> 10%溴虫腈乳油>10%溴虫腈水乳剂>10%溴虫腈悬浮剂,润湿展布面积分别是水的2.49倍、2.25倍、1.39倍和1.36倍。
     3.溴虫腈4种剂型处理桑叶48 h后,在叶片内溴虫腈的滞留量占处理药剂总量的百分率分别为:溴虫腈微乳剂54.6%,溴虫腈乳油47.0%,溴虫腈悬浮剂39.2%,溴虫腈水乳剂37.6%;溴虫腈4种剂型处理甘蓝叶48 h后,在叶片内溴虫腈的滞留量占处理药剂总量的百分率分别为:溴虫腈微乳剂50.2%,溴虫腈乳油44.4%,溴虫腈水乳剂43.2%,溴虫腈悬浮剂34%;溴虫腈4种剂型对小菜蛾表皮穿透能力以溴虫腈微乳剂最高,其次是溴虫腈乳油,再次是溴虫腈悬浮剂,溴虫腈水乳剂的穿透率最低。溴虫腈微乳剂和溴虫腈乳油的穿透率与处理浓度并不表现为倍数关系,而溴虫腈悬浮剂和溴虫腈水乳剂的穿透率与处理浓度的相关性则十分明显。在100 mg·L-1处理浓度下,9h后的穿透率大小依次为:溴虫腈微乳剂88.30%、溴虫腈乳油84.82%、溴虫腈悬浮剂50.76%和溴虫腈水乳剂44.55%。
     4.用4种剂型溴虫腈药液喷施桑树后,桑叶的净光合速率、气孔导度、蒸腾速率、蛋白质含量、可溶性糖含量与对照相比均有不同程度的提高,对桑叶净光合速率的影响为微乳剂>悬浮剂>乳油>水乳剂,微乳剂促进桑叶蛋白质和可溶性糖含量的增加也高于其它处理;4种剂型溴虫腈药液喷施后的桑叶脂肪含量与对照相比略有下降,至施药第6d后脂肪含量逐渐恢复到对照水平;各种剂型溴虫腈药液喷施后的桑叶胞间CO2浓度变化没有明显规律。研究结果表明,溴虫腈的4种剂型对桑叶光合特性及叶质均无不利影响,但不同剂型对叶质的影响有一定的差异。
     5.用食下毒叶法测得溴虫腈乳油、微乳剂、水乳剂和悬浮剂对2龄期家蚕的LC50值分别为286.23、296.25、313.02和329.94 mg·L-1。用浸虫法测得溴虫腈乳油、微乳剂、水乳剂和悬浮剂对3龄期家蚕的LC50值分别为548.77、492.98、589.52和554.47 mg·L-1。用浸虫法测得乳油、微乳剂、水乳剂和悬浮剂对4龄小菜蛾幼虫的LC50值分别为20.958、12.368、29.402和36.773 mg·L-1。用浸叶法测得乳油、微乳剂、水乳剂和悬浮剂对4龄小菜蛾幼虫的LC50值分别为9.0186、8.2699、20.957和10.815 mg·L-1。采用浸叶法和浸虫法测得的不同剂型溴虫腈对小菜蛾的毒力存在显著差异,浸叶法对小菜蛾幼虫的毒力更高,说明溴虫腈杀虫作用是胃毒作用>触杀作用。
     6.100 mg·L-1的溴虫腈悬浮剂、水乳剂、微乳剂、乳油和敌敌畏乳油处理桑树,药后7d起饲喂2龄起蚕,对家蚕幼虫的龄期、眠蚕体重、全茧量(即茧重)、茧层量(茧皮重)、蛹重和化蛹率均没有影响,各处理间均无显著差异。
     7.溴虫腈不同剂型处理桑叶后对家蚕的残留毒性测定结果显示,50 mg·L-1的溴虫腈悬浮剂、水乳剂、微乳剂和乳油处理下,均无家蚕中毒与死亡,对家蚕生长发育的影响与对照相比无显著差异;100 mg·L-1溴虫腈不同剂型处理后24 h,家蚕均有死亡。处理后48 h,只有溴虫腈乳油处理的家蚕有死亡,其余处理均无家蚕中毒与死亡,对家蚕生长发育的影响与对照相比无显著差异。处理后72 h,不同剂型处理均无家蚕中毒与死亡;150 mg·L-1溴虫腈不同剂型处理后96 h,只有溴虫腈乳油处理的家蚕有死亡,其余处理均无家蚕中毒与死亡,对家蚕生长发育的影响与对照相比无显著差异;200 mg·L-1和250 mg/L溴虫腈不同剂型处理后120 h均有家蚕中毒与死亡现象,存活个体的生长发育缓慢,体型较对照显著变小。中毒家蚕的症状主要表现为拒食、不活泼、生长发育受阻,中毒较重者身体严重萎缩、卷曲成“S”型,个别中毒较深者吐水死亡。
     8.溴虫腈不同剂型在桑叶中的降解动态方程及半衰期分别为:溴虫腈悬浮剂在桑叶中的降解动态方程为C =93.466e-0.1677t (R2 = 0.9238),半衰期为4.1 d;溴虫腈水乳剂在桑叶中的降解动态方程为C = 97.65e-0.234t (R2 = 0.8808),半衰期为3.0 d;溴虫腈微乳剂在桑叶中的降解动态方程为C = 97.675e-0.2261t (R2 = 0.855),半衰期为3.1 d;溴虫腈乳油在桑叶中的降解动态方程为C =124.85e-0.2287t (R2 = 0.8781),半衰期为3.0 d。此检测方法的最低检出浓度为3.97×10-4 mg·kg-1。在施药28 d后,100 mg·L-1溴虫腈处理的桑叶中悬浮剂、水乳剂、微乳剂和乳油残留量分别为:0.019、0.017、0.012和0.016 mg·kg-1。
     9.桑园内分别喷施250、200、150、100和50 mg·L-1 4种剂型的溴虫腈,检测到药剂在桑叶的残留毒性期分别为:溴虫腈悬浮剂, >5 d、>5 d、3 d、1 d和0 d;溴虫腈微乳剂,>5 d、>5 d、3 d、1 d和0 d;溴虫腈水乳剂,>5 d、4 d、2d、1 d和0 d;溴虫腈乳油>5 d、>5 d、>5 d、2 d和0 d。
     10.10%溴虫腈4种剂型100 mg·L-1喷施桑树后的安全间隔期为施药后5 d,200mg·L-1处理的安全采收期为施药后14 d。10%溴虫腈4种剂型的药剂在桑树上防治害虫或害螨,建议使用浓度为100 mg·L-1。
     11.综合溴虫腈4种加工剂型的特性与毒效关系,对桑叶的生理效应和对家蚕的残留毒性等,证明溴虫腈微乳剂是适宜在桑园应用的高效、安全、经济和环保剂型。
In order to exploit chlorfenapyr to control pests safely and efficiently in mulberry fields, the four formulations of chlorfenapyr were designed, compared the physicochemical characteristics of the different formulations, detected the residual amount in the mulberry and cabbage leaves and the penetration rate on the epidermis of diamondback moth of different formulations of chlorfenapyr by GC, compared the effect of the different formulations of chlorfenapyr to the photosynthetic characteristics and the leaf qualities. The toxicity of chlorfenapyr with different formulations to the silkworm and diamondback moth were determined by the leaf and pest dipping methods, compared the effect of chlorfenapyr with different formulations to the growth of silkworm and also determined the residual toxicity of the chlorfenapyr with different formulations to the silkworm, detected the degradation dynamics of chlorfenapyr and the final residual amount of chlorfenapyr in the mulberry leaves.
     The results are as follows:
     1. The 10% chlorfenapyr water emulsion and the 10% chlorfenapyr microemulsion were designed successfully by screening and combining the organic solvent and the surface activating agent et al. And also the 10% suspension concentrate was designed by screening the wetting dispersant, thickening agent and antifreeze with the wet superfine grinding method. Simultaneously, 10% chlorfenapyr emulsifiable concentrate was designed by screening the organic solvent and the emulsifier. By determination and comparison with the same kinds of the formulations, the four formulations of chlorfenapyr were accord with the standard of the nation.
     2. The results of the physicochemical characteristics of the four formulations show that the surface tension of the four formulations is of the same regularity. The lower the dilution, the smaller the surface tension. On the contrary, the higher the dilution, the greater the surface tension. In the same dilution ratio, the sequences of the surface tension of the four formulations are as follows: 10% chlorfenapyr suspension concentrate>10% chlorfenapyr water emulsion>10% chlorfenapyr emulsifiable concentrate>10% chlorfenapyr microemulsion. The larger the dilution ratio, the bigger the distance of the surface tension between the four formulations of chlorfenapyr. The contact angles of the four formulations are of the same regularity, namely, the lower the dilution ratio, the smaller the contact angle. At the same dilution ratio of the four formulations, the sequences of the four formulations are as follows: 10% chlorfenapyr suspension concentrate>10% chlorfenapyr water emulsion>10% chlorfenapyr emulsifiable concentrate>10% chlorfenapyr microemulsion. The sequences of the distribution area of the four formulations on the wax surface are as follows: 10% chlorfenapyr microemulsion>10% chlorfenapyr emulsifiable concentrate>10% chlorfenapyr water emulsion>10% chlorfenapyr suspension concentrate, the distribution areas are 3.08, 2.60, 2.36 and 1.38 times of the water’s. The sequence on the mulberry leaf are as follows: 10% chlorfenapyr microemulsion>10% chlorfenapyr water emulsion>10% chlorfenapyr emulsifiable concentrate>10% chlorfenapyr suspension concentrate.The distribution area of the four formulations are 2.30, 2.28,1.16 and 1.08 times of the water’s on the mulberry leaves. And, the distribution areas of the four formulations on the cabbage leaves are as follows: 10% chlorfenapyr microemulsion>10% chlorfenapyr emulsifiable concentrate>10% chlorfenapyr water emulsion>10% chlorfenapyr suspension concentrate and the distribution area are 2.49, 2.25, 1.39, and 1.36 times of the water’s.
     3. After 48h treated with the the four formulations of chlorfenapyr, the residual amount of the pesticides in the mulberry leaves took up 54.6% of the total amount of the chlorfenapyr when treated with the chlorfenapyr microemulsion, and the emulsifiable concentrate, 47.0%, the suspension concentrate, 39.2%, the water emulsion, 37.6%. After 48h treated with the the four formulations of chlorfenapyr, the residual amount of the chlorfenapyr in the cabbage leaves took up 50.2% of the total amont of the chlorfenapyr when treated with the chlorfenapyr microemulsion, and the chlorfenapyr emulsifiable concentrate, 44.4%, the water emulsion, 43.2%, the suspension concentrate, 34%.
     4. The results show that the net photosynthetic rate, stomatal conductance, transpiration rate and the protein and soluble sugar contents increase in various degrees treated by 4 formulations of chlorfenapyr in mulberry leaves compared to the control. The effects on the net photosynthetic rate are microemulsion > suspension concentrate > emulsifiable concentrate > water emulsion, and the effects of microemulsion on the protein and soluble sugar contents are most significant. The contents of fat decrease slightly in the prior period after treating compared to the control and recovered to the level of the control after 6 days. The intercellular concentration changes of CO2 do not have obvious rules. The results also indicate that there are no adverse effects on the photosynthetic characteristics and quality of mulberry leaves among the 4 formulations of chlorfenapyr.
     5. The 2nd instar larvae of silkworm were treaded with chlorfenapyr emulsifiable concentrate, microemulsion, water emulsion, suspension concentrate using food intake method, the LC50 values are 286.23、296.25、313.02 and 329.94 mg·L-1 respectively. The toxicity of the four different chlorfenapyr formulations to 3nd instar larvae of silkworm were determined by pest dipping method, the LC50 values are 548.77、492.98、589.52 and 554.47 mg·L-1 respectively. The 4nd instar larvaes of diamondback moth were treaded with chlorfenapyr suspension concentrate, water emulsion, microemulsion, emulsifiable concentrate using dipping method, the LC50 values are 20.958、12.368、29.402和36.773 mg·L-1 respectively. The LC50 values of the four formulations to the 4nd instar larvaes of diamondback moth are 9.0186、8.2699、20.957 and 10.815 mg·L-1 respectively. The toxicity of different chlorfenapyr formulations to the 4nd instar larvae of diamondback moth determined by leaf dipping method and pests dipping methods have significant difference, and the toxicity that is determined using leaf dipping method is higher, it indicates that the stomach poisoning of chlorfenapyr is more important than contact killing in the aspects of lethal effect of the diamondback moth.
     6. The 2th instar larvae of trimolter and tetramolter were fed with the mulberry leaves which were treated with 100 mg·L-1 chlorfenapyr with the four formulations, the growth and development of the silkworm were observed. The results show that there is no significant effect on the development duration, body weight of molting silkworm, cocoon weight, cocoon shell weight, pupal weight and pupation rate of the silkworm among the four formualatons of the chlorfenapyr.
     7. The residual toxicity of chlorfenapyr with different formulations was determined, the results show that the chlorfenapyr with four formulatons at 50mg·L-1 are not harmful to the silkworm all the time and has no significant difference compared with the control. While, when the concentration was increased to 100 mg·L-1, 24h after treated with the four formulations, the silkworms are poisoning and died occasionally. 24h after treated the pesticide, only the chlorfenapyr EC has lethal effect to the silkworm and the other formulations have no effect on the development of the silkworm compared with the control, and there is no poisoning silkworms after 72h treated with the four formulations. When treated with 150 mg·L-1, only chlorfenapyr EC can result in the death of the silkworm after 96h, the other formulations has no effect on the growth of the silkworms and have no significant difference compared with the control. When the chlorfenapyr concentration increased to 200 and 250 mg·L-1, the high concentration can result in the poisoning and death of the silkworms, and the survival is smaller and grow slowly and has significant difference compared with the control.The main poisoning symptoms of the silkworms are antifeedant, inanimation, and hindered growth and development, some serious poisoning silkworm curled into a "S" type, and the individual who poisoned deeper were died. The penetration ability of the chlorfenapyr microemulsion is the most on the epidermis of diamondback moth, the next is the chlorfenapyr suspension concentrate, and the least one is the chlorfenapyr water emulsion. The penetration rate of the chlorfenapyr microemulsion and emulsifiable concentrate is not correlated with the pesticide concentration; while the penetration ability of the chlorfenapyr suspension concentrate and the water emulsion have high correlation with the concentration. When treated with 100 mg·L-1 chlorfenapyr 9 h, the sequences of the penetration ability are as follows: the penetration rate of chlorfenapyr microemulsion is 88.30%, and the chlorfenapyr emulsifiable concentrate, 84.32%, the chlorfenapyr suspension concentrate, 50.76%, the chlorfenapyr water emulsion, 44.55%.
     8. The degradation kinetics equation and the half life time of different chlorfenapyr formulations in mulberry leaves are as follows: the degradation kinetics equation of chlorfenapyr SC is C = 93.466e-0.1677t (R2 = 0.9238),the half life time is 4.1d. The degradation kinetics equation of chlorfenapyr EW is C = 97.65e-0.234t (R2 = 0.8808), the half life time is 3.0 d, the degradation kinetics equation of chlorfenapyr ME is C = 97.675e-0.2261t (R2 = 0.855), the half life time is 3.1 d. The degradation kinetics equation of chlorfenapyr EC is C =124.85e-0.2287t (R2 = 0.8781), the half life time is 3.0 d. The minimum detectable concentration of this method is 3.97×10-4 mg·kg-1. The mulberry leaves are treated by four different chlorfenapyr formulations at a concentrate of 100 mg·L-1, and the residual levels are detected after 28 d, the results are as follows: the residual levels of chlorfenapyr SC are 0.019 mg·kg-1, the residual levels of chlorfenapyr EW are 0.017 mg·kg-1, the residual levels of chlorfenapyr ME are 0.012 mg·kg-1, the residual levels of chlorfenapyr EC are 0.016 mg·kg-1.
     9. After the mulberry leaves were treated by four chlorfenapyr formulations at concentraton of 250, 200, 150, 100 and 50 mg·L-1, and the period of residual toxicity is detected. The results are as follows: chlorfenapyr SC, > 5 d, > 5 d, 3 d, 1 d and 0 d, chlorfenapyr ME, > 5 d, > 5 d, 3 d, 1 d and 0 d, chlorfenapyr EW, > 5 d, 4 d, 2d, 1 d and 0 d, chlorfenapyr EC> 5 d, > 5 d, > 5 d, 2 d and 0 d.
     10. The safety interval of four kinds of 10% chlorfenapyr formulations is 5 days after spraying the chlorfenapyr at 100 mg·L-1, and the safety interval of four kinds of 10% chlorfenapyr formulations is 14 days at 200 mg·L-1. It is recommended to use four kinds of 10% chlorfenapyr formulations to prevent and control the mulberry pests and pest mites at 100 mg·L-1.
     11. By the comprehensive analysis of the physicochemical characteristics, the poisonous effect , the physiological effect to the mulberry leaves and the residual toxicity of the four formulations of chlorfenapyr, which indicates that chlorfenapyr microemulsion is of high efficiency to pests, high safety to silkworm and could be utilized as the economical and environmental friendly formulation in the mulberry fields.
引文
1.白锡川,吕美坤,张德明.桑螟对桑园常用农药抗性调查[J].植物保护, 2005,31(6):81-83
    2.鲍士旦.土壤农化分析[M].北京:中国农业出版,2000:307-317
    3.毕富春,吴国旭.虫螨腈毛细管柱气相色谱法分析[J].农药科学与管理,2003,24(9):7-8
    4.蔡道基,江希流,蔡玉祺.化学农药对生态环境安全评价研究[J].农村生态环境,1986,(2):12-15
    5.蔡道基,龚瑞忠,陈锐,等.溴氰菊酯混配农药-大地西对稻田-鱼塘水生生态系的安全评价研究[J].环境科学学报,1989,9(2):176-182
    6.曹永松,侯樱,陈莹莹,陆贻通.纳米TiO2光催化降解溴虫腈[J],精细化工,2005,22(9):663-667
    7.陈福良,王仪,郑斐,等.微乳剂低温稳定性的研究[J].物理化学学报,2002,18(7):661-664
    8.陈福良,王仪,郑斐能.微乳剂质量技术指标的确定及测定方法研究[J].农药,2004,43(2):67-69
    9.陈浩,钟宏,黄河等.农药微胶囊技术的研究现状与发展[J].化工时刊,2008,22(3):50-53
    10.陈九星,曹永松,王跃龙,等.溴虫腈在甘蓝及土壤中的残留检测及降解动态[J].环境科学学报,2005,25(10):1373-1377
    11.陈丽萍,赵学平,吴长兴,等. 6种农药对家蚕的毒性与安全性评价研究[J].农药科学与管理,2006,27(3):22-24
    12.陈丽萍,赵学平,吴长兴,等.4种不同作用机制的杀虫剂对家蚕的毒性与安全性评价[J].浙江农业科学,2006,(3):330-332
    13.陈丽萍.溴虫腈在菜用大豆上残留动态及安全使用技术[J].亚热带农业研究,2008,4(4):271-275
    14.陈锐,张爱云,蔡道基,等.化学农药对生态环境安全评价研究[J].农村生态环境,1986,(3):12-15
    15.陈文团,钟国华,施楚新,等.溴虫腈在土壤的残留动态[J],生态环境,2007,16(5): 1441-1445
    16.陈息林,戴璇颖.小蚕期不同叶质饲育对蚕种生产的影响[J].江苏蚕业,2001,(4):58-60
    17.陈贤均,李小燕.溴虫腈对小鼠脾、肝、肾细胞DNA的损伤作用[J].环境与职业医学,2005,22(2):145-148
    18.陈修会,陈振峰,郭存善,等.除尽等农药防治茶树甜菜夜蛾药效试验[J].农药,2001,40(4):27
    19.成家壮.农药水性化剂型的前景[J].广州化工,2001,29(3):1-3
    20.崔正刚,殷福珊.微乳化技术及应用[M].北京:中国轻工业出版社,1999:73-74
    21.崔志新,陈文胜,刘丽屏.锐劲特和除尽防治小菜蛾的研究[J].佛山科学技术学院学报(自然科学版),2004,22(2):60-63
    22.戴春芳,阳鹏,沈德隆,等.15%氟铃脲·毒死蜱微乳剂的研制[J].浙江工业大学学报,2008,36(5):543-545
    23.戴珍科,陈锐.四种新农药对家蚕的毒性与评价研究[J].农业环境保护,1992,11(5):216-219
    24.杜建勋,王照红,马锦军等.33%桑保清乳油的研制[J].北方蚕业,25(3):18-19
    25.付庆,张晓铭,姚巍,等.溴虫腈的合成[J].农药,2006,45(6):385-386
    26.龚瑞忠,陈锐,陈良燕.吡虫啉对环境生物的毒性与安全性评价[J].农药科学与管理,1999,20(3):12-16
    27.顾国达,楼成富,鲁兴盟.简明养蚕手册[M].中国农业大学出版社,2002
    28.顾中言,许小龙,韩丽娟.不同表面张力的杀虫单微乳剂药滴在水稻叶面的行为特性[J].中国水稻科学,2004,18(2):176-180
    29.郭武棣.液体制剂(第三版)[M].北京:化学工业出版社,2004:65-230
    30.郭新东,杜志峰,黄孟基,等.气相色谱法测定食用植物油中的溴虫腈[J].粮油食品科技,2007,15(1):27-28
    31.国家环保局.化学农药环境安全评价试验准则(续)[J].农药科学与管理,1990,(4):1-9
    32.何玉仙,杨秀娟,陈庆河,等.10%除尽防治甜菜夜蛾和小菜蛾[J].农药,1999,38(9):18-19
    33.侯樱,曹永松,刘浩华,等.溴虫腈的光催化降解研究[J].上海交通大学学报(农业科学版),2005,23(3):289-293
    34.何丽华,曾健,骆承军,等.甲基锡对家蚕的毒性试验[J].浙江农业科学,2003,(3):142-144
    35.华乃震,冷阳.农药可溶性浓剂(SL)简介[J].江苏化工,1999,27(1):34-35
    36.华乃震.农药剂型的进展和动向[J].农药,2008,47(2):79-89
    37.华乃震.农药悬浮剂的进展、前景和加工技术[J].现代农药,2007,6(1):1-7
    38.华乃震.水基性农药制剂的开发和前景[J].农药,2006,45(12):805-809
    39.皇甫伟国,陈国,杨挺.蔬菜中溴虫腈残留量检测方法研究[J].浙江农业学报2007,19(2):119-122
    40.黄超艳,李安国,李国刚,等.除尽等几种农药防治小菜蛾田间药效试验[J].广西园艺, 2005,16(2):35-36
    41.黄尔田.实用桑树保学[M].成都:四川科学技术出版社,1991,1-3
    42.黄继承,王支槐,黎植昌,等.增效双效灵对甘薯生理效应的影响[J].西南师范大学学报,1991,16(1):102-107
    43.黄啟良,张文吉,李凤敏,等.毒死蜱在表面活性剂混合体系中的增溶规律及其药效评价[J].农药学学报,2006,8(1):71-76
    44.江坤荣,陈长乐,孙宏伟.稻虱净对家蚕毒性和安全性评估[J].蚕业科学,1994,20(2):86-89
    45.姜兴印,王开运,仪美芹.不同地区小菜蛾对杀虫剂的抗性差异[J].农药学学报,2000,2(4):44-48.
    46.康建宏,吴宏亮,李锋,等.绿颖和敌死虫对枸杞叶片生理特性的影响[J].农业科学研究,2008,29(1):16-18
    47.孔国顺,朱元良,刘天龙,等.九种药剂防治甜菜夜蛾等夜蛾类害虫试验[J].长江蔬菜,2003,(10):35-36
    48.兰亦全,赵士熙.几种杀虫剂对甜菜夜蛾的毒力[J].福建农林大学学报(自然科学版),2003,32(3):301-304
    49.李保同.六种杀虫剂对家蚕的毒性与安全评价研究[J].农药学学报,2001,13(3): 83-85
    50.李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000:186-191
    51.李嘉诚,冯玉红,张德拉,等. 5.2%甲维盐·溴虫腈微乳剂的研究[J],海南大学学报(自然科学版),2005,23(3):224-227
    52.李丽芳,王开运.悬乳剂及其稳定性[J].农药,2000,39(5):14-16
    53.李儒海,褚世海,朱文达.溴虫腈防治花椰菜甜菜夜蛾药效试验[J].湖北农业科学,2004,(4):70-71
    54.李瑞,桑前.家蚕壮蚕期所用桑叶品质与若干经济性状的关系[J].蚕业科学,1984,10(4):197-201
    55.李瑞娟,王开运,夏晓明.二斑叶螨对梅岭霉素和溴虫腈的抗性选育及其解毒酶活力变化[J].植物保护学报,2005,32(3):309-313
    56.李伟雄.农药剂型悬浮剂及其应用前景[J].广东农业科学,2007(6):63-65
    57.李小燕,陈贤均.溴虫腈对小鼠脾细胞和肝细胞DNA损伤作用[J].中国公共卫生,2004,20 (3):320-322
    58.李奕仁.桑叶叶质判断中的层次、方法与问题[J].中国蚕业,1988,(2):7-11
    59.联合国粮食及农业组织和世界卫生组织农药标准联席会议编写.粮农组织和世卫组织农药标准制订和使用手册(第一版)[M].罗马:联合国粮食及农业组织新闻司出版管理处,2005:221-225
    60.梁文平.乳状液科学与技术基础[M].北京:科学教育出版社,2001:85-86
    61.林舜华,雷高明,韩荣庄,等.新农药单甲脒对棉花的生态生理影响[J].环境科学学报,1996,16(3):325-330
    62.凌世海.农药剂型加工工业现状和发展建议[J].安徽化工,2002,(4):2-6
    63.凌世海.农药剂型进展评述[J].农药,1998,38,(8):6-9
    64.凌世海.我国农药加工工业现状和发展建议[J].农药,1999,38,(10):19-24
    65.刘爱芝,武予清,李素娟,等.几种杀虫剂对甜菜夜蛾的防效[J].农药,2001,40(1):16-17
    66.刘步林.农药剂型加工技术(第二版)][M].北京:化学工业出版社,1998:417
    67.刘永杰,沈晋良.甜菜夜蛾对氯氟氰菊酯抗性的表皮穿透机理[J].昆虫学报.2003,46(3):288-291
    68.刘育清.虫螨腈的高效液相色谱分析方法[J].农药科学与管理,2002,23(4):14-15
    69.刘志俊.农药剂型加工新进展[J].农药,1993,32(2):44-46
    70.楼黎静,杨永健,施顺根,等.家蚕吡虫啉中毒症状与防治[J].中国蚕业,1999,78(2):24-25
    71.卢向阳,徐筠,陈莉.几种除草剂药液表面张力、叶面接触角与药效的相关性研究[J].农药学学报,2008,4(3):67-71
    72.鲁剑巍,陈房,廖志文,等.氮钾肥配合施用对桑叶品质及蚕茧质量的影响[J].植物营养与肥料学报,2007,13(4):719-724
    73.鲁兴萌,周勤,周金钱,等.微量氯氰菊酯对家蚕的毒性[J].农药学学报,2003,5(4):42-46
    74.陆阳,陶京朝,张志荣等.新型吡咯类杀虫剂溴虫腈合成研究[J].化工中间体,2007,(6):13-15
    75.慕立义.植物化学保护研究方法[M].中国农业出版社,1994:146-148
    76.马惠,姜辉,陶传江,等.27种农药对家蚕的毒性评价研究[J].农药学学报,2005,7(2):156-159
    77.马惠,王开运,刘亮,等.农药对家蚕的毒性及安全性评价研究进展[J].农药科学与管理,2005,26(5):15-18
    78.马惠,王开运,王红艳,等.溴虫腈对家蚕和桑树害虫的毒力比较[J].昆虫学报,2006,49(4):599-603
    79.马惠,王开运,夏晓明,等.5种新型杀虫剂对甜菜夜蛾幼虫的毒力测定[J].现代农药,2006,5(3):44-46
    80.麦燕玲,刘红梅,刘承兰,等.溴虫腈在黄瓜和苋菜中的残留动态研究[J].华南农业大学学报,2007,28(1):67-69
    81.麦燕玲,钟国华,胡美英,等.溴虫腈土壤和甘蓝微量残留量的气相色谱法测定[J].农药分析,2004,43(5):233-235
    82.毛黎娟,魏方林,朱国念.利用MTT法测定杀虫剂对家蚕细胞的毒力[J].农药学学报,2005,7(1):45-48
    83.慕卫,刘峰,贾忠明,等.八种杀虫剂对韭菜迟眼蕈蚊发育和繁殖的亚致死效应[J].昆虫学报,2005,48(1):147-150
    84.慕卫,王开运,刘峰,等.灭多威在棉花及土壤中降解动态及残留量研究[J].农药,1996,35(3):31-33
    85.倪珏萍.几种高效杀虫杀螨剂的室内毒力测定[J].农药,2002,41(11):21-23
    86.农业部农药检定所.农药残留量实用检测方法手册[M].北京:中国农业出版社,1995:18
    87.欧晓明,黄明智,王晓光,等.昆虫抗性靶标部位及其在杀虫剂创制中的作用[J].现代农药,2003,2(5):11-15
    88.逄森,袁会珠,李永平,等.表面活性剂Sil wet 408提高药液在蔬菜叶片上润湿性能的研究[J].农药科学与管理,2005,26(7):22-25
    89.裴晖,欧晓明,王永江,等.溴虫腈的杀虫活性及作用方式研究[J].现代农药,2006,5(1):33-35
    90.皮素琴,高九思,马爱英,等.大葱田甜菜夜蛾药剂防治效果试验[J].河南科技大学学报(农学版),2003,23(2):65-67
    91.浦冠勤,堵鹤鸣,毛建萍.桑尺蠖性信息素研究[J].蚕业科学,1997,23(2):70-72
    92.任迎虹,易华平,周建华.攀西地区主要桑品种叶质生物鉴定与桑叶粗蛋白含量的相关分析[J].中国蚕业,2002,23(1):22-23
    93.任智,陈志荣,吕德伟.非离子活性剂乳液稳定性HLB规则研究[J].浙江大学学报(工学版),2001,35(5):471-478
    94.阮朗译.吡咯杀虫剂的发现与评论[J].农药译丛,1995,19(2):24-31
    95.沈爱英,陆根明,张琦.叶面消毒对桑叶有机养分的影响[J].蚕业科学,2003,29(2):189-192
    96.沈寅初.农用抗生素研究开发的新进展[J].农药译丛,1997,19(增刊):1-10
    97.司树鼎,王开运,林荣华,等.25种农药对家蚕的毒性评价和中毒症状观察[J].蚕业科学,2007,33(3):422-427
    98.孙国强,陆贻通.溴虫腈农药的作用机理应用及开发前景[J].安徽农学通报,2007,13(7):69-71
    99.孙克坊,周勤,周金钱,等.微量菊酯类农药对家蚕毒性的调查初报[J].蚕桑通报, 2002, 33(3):27-29
    100.谭玉荣,庞民好,张金林,等.10%溴虫腈水乳剂配方研究[J].农药学学报,2007,9(4):423-426
    101.唐除痴,李煜,陈彬,等.农药化学[M].南开大学出版社,1998:619-634
    102.陶贤鉴,谭本祝.新农药AC303630的合成与应用[J].农药译丛,1998,20(5):15-17
    103.田文学,王开运,闫新华.30%毒死蜱微乳剂的研究性状及药效[J].农药科学与管理,2004,25(1):27-29
    104.屠豫钦,王以燕.农药的剂型问题与我国农药工业的发展[J].农药,2005,44(3):97-102
    105.王开运,姜兴印,仪美芹,等.甜菜夜蛾的抗药性变化及治理对策的研究[J].农药,2001,40(6):29-32
    106.王开运,赵卫东,姜兴印,等.十种杀螨剂对二斑叶螨抗性种群不同发育阶段的毒力比较[J].农药,2002,41(3):29-31
    107.王丽英,白景彰,覃雅思,等.40%桑宝乳油防治鳞翅目害虫药效试验[J].广西蚕业,2006,43(1):19-22
    108.王路成,周绍仁.常用有机磷农药防治桑螟虫药效现状和对策[J].江苏蚕业,2004,24(3):21-22
    109.王小艺,黄炳球.茶皂素对农药的增效机理Ⅱ.对接触角的影响[J].茶叶科学,1998,18(2):129-133
    110.王小艺.杀虫剂对昆虫的亚致死效应[J].世界农药,2004,26(3): 24-27
    111.王裕兴,朱越雄,潘新法.叶面消毒对桑叶叶质和蚕体质的影响[J].江苏蚕业,2001,(2):48-51
    112.王泽港,骆剑峰,高红明,等.1,2,4-三氯苯和萘对水稻抽穗期叶片光合特性的影响[J].中国农业科学,2005,38(6):1113-1119
    113.王照红,杜建勋,梁明芝,等.几种桑园常用杀虫剂对家蚕的残毒期试验[J].蚕业科学,2002,28(2):146-150
    114.王照红,于振博,杜建勋,等.桑树保护研究的现状及展望[J].山东农业科学,2005,(1):49-51
    115.王照红,周象海,杜建勋,等.33%桑保清乳油在桑树推广应用中出现的问题[J].广西蚕业,2008,45(1):18-20
    116.王志亭.30%毒死蜱水乳剂的研制[J].河北化工,2007,30(3):24-25
    117.魏方林,朱国念.毒死蜱·阿维菌素复配剂对棉铃虫表皮穿透能力研究[J].上海交通大学学报(农业科学版),2002,20(3):195-198
    118.魏红,钟红舰,汪红.索氏抽提法测定粗脂肪含量的改进[J].中国油脂,2004,29(6):52-54
    119.魏红涛,赵莉.农药微乳剂简述[J].农药科学与管理,2003,24(6):35-37
    120.吴存容.试论蚕茧品质与桑叶饲料的关系[J].蚕学通讯,2005,25(2):37-41
    121.吴福安,程嘉翎.桑园专用杀虫剂桑虫清对桑尺蠖防治效果[J].蚕业科学,2000,26(1):51-52
    122.吴福安,田立道,程嘉翎.防治桑尺蠖新药万杀灵的研究[J].蚕业科学,1998,24(3):131-135
    123.吴福安,余茂德,程嘉翎.桑园治虫新药40%“乐桑”乳油对家蚕的残毒期测定[J].蚕业科学,2005,31(4):471-473
    124.吴青君,张文吉,张友军,等.表皮穿透和GABAA受体不敏感性在小菜蛾对阿维菌素抗性中的作用[J].昆虫学报,2002,45(3):336-340
    125.吴声敢,王强,赵学平,等.毒死蜱和甲氰菊酯对家蚕毒性与安全评价研究[J].农药科学与管理,2003,24(9):11-14
    126.吴秀华,陈蔚林,王飞.农药微乳液物理稳定性的探讨[J].化学通报,1999,(3):36-38
    127.吴益东,沈晋良,谭福杰,等.棉铃虫对氰戊菊酯抗性机理研究[J].南京农业大学学报, 1995,18(2):63-68
    128.夏安扣.杀虫双对桑蚕的微量中毒[J].桑蚕通报,1986,(2):40-42
    129.向山文雄.蚕的营养要求[J].蚕桑通报,1985,(4):1-12
    130.谢毅,吴学民,徐妍,等.10%溴虫腈悬浮剂的研制[J].现代农药,2006,5(3):20-25
    131.谢云南,曹忠宏.家蚕中毒的原因分析和防控措施[J].蚕桑茶叶通讯,2007,(3):21-22
    132.熊彩珍,顾立明.中秋蚕发生大面积农药中毒的思考[J].中国蚕业,2007,28(2):54-55
    133.熊林,廖富蘋,王正勇,等.克孢灵(ClO2)叶面消毒对桑叶的药害及营养成分的影响[J].蚕业科学,2007,33(3):486-488
    134.胥璋.溴菌腈25%微乳剂研制[J].农药科学与管理,2008,29(6):29-31
    135.徐洁莲,韩日畴,刘秀玲,等.应用异小杆线虫防治桑天牛的研究[J].蚕业科学,1997,23(1):5-9
    136.徐尚成,蒋木庚.吡咯类农药活性化合物的研究进展[J].农药学学报,2002,4(2):1-13
    137.徐尚成,蒋木庚.溴虫腈的研究与开发进展[J].农药,2003,42(2):5-8
    138.徐妍,孙宝利,战瑞,等.浅谈农药剂型的新进展[J].现代农药,2008,7(3):10-13
    139.徐亦钢,朱忠林,韩志华,等.10%溴虫腈悬浮剂对野鸭繁殖性能的影响[J].农药学学报,2004,6(4):62-66
    140.徐莹,徐辉.虫螨腈悬浮剂的毛细管气相色谱分析方法[J].农药科学与管理, 2003,24(10):6-7
    141.徐映明,卢允斌.杀虫双水剂湿展性能的测定及改善措施[J].农药,1985,(5):58-59
    142.许小龙,顾中言,韩丽娟,等.溴虫腈对甜菜夜蛾的毒力及应用研究简报[J].农药学学报,2003,5(3):85-88
    143.许小龙,顾中言,韩丽娟.溴虫腈对不同龄期甜菜夜蛾的毒力及田间防效[J].农药,2002,41(12):25-26
    144.薛坤荣,白锡川,沈三毛.桑虫净对桑园主要害虫的防治效果[J].中国蚕业,2005,26(2):19-20
    145.薛勇.农药助剂的应用[J].山西果树,2005,105(3):31-32
    146.阎建辉,黄可龙,王跃龙,刘素琴.环保型溴虫腈纳米农药制剂的应用[J].化工学报,2006,57(1):91-96.
    147.杨今后,何克荣,杨新华.不同品种桑叶若干理化性状与其饲料价值间的相关分析[J].蚕业科学,1986,12(3):139-142
    148.杨今后.桑品种饲料价值叶质鉴定指标的讨论[J].江苏蚕业,1993,(1):20-22
    149.杨靖华,孙凤梅.30%嘧酶胺悬浮剂的研究[J].安徽农业科学,2007,35(1):138-139
    150.杨小林,张宏宇,杨长举,等.苏云金杆菌制剂与化学农药除尽的最佳混配比例[J].湖北农业科学,2003,(4):57-58
    151.杨许召,王军.农药新剂型---微乳剂[J].化工时刊,2006,20(5):43-46
    152.袁会珠.农药雾滴沉积流失规律以及降低容量喷雾技术研究[D].北京:中国农业大学,2000:85-86
    153.曾鑫年,赵善欢.杀虫剂对柑桔叶表皮穿透性的研究[J].华南农业大学学报,1995,16(3): 25-29
    154.张海燕,周勤,潘美良,等.阿维菌素对家蚕毒性的试验[J].蚕桑通报,2006,37(1):18-20
    155.张曼,林安清,许泓,等.气相色谱法测定茶叶中残留的溴虫腈[J].食品研究与开发,2007,28(10):150-151
    156.张照新,魏巧娥,吴智军.桑园微量农药污染影响及其防范对策[J].广西蚕业,2001, 38(2):28-30
    157.张芝平.吡咯类杀虫剂的构效关系和作用机理研究[J].世界农药,1999,21(6):12-16
    158.赵辉,路福绥,李培强.不同因素对高效氯氟氰菊酯微乳液相图的影响[J].物理化学学报,2006,22(4):475-480
    159.赵卫东,王开运,姜兴印,等. 4种杀螨剂对二斑叶螨抗性种群不同发育阶段的致毒作用[J].农药,2002,41(10):25-27
    160.赵正龙,许晓风,宋红生,等.甲醇对桑叶产量及桑蓟马虫口密度的影响[J].蚕业科学,1994,20(2):119-120
    161.郑健壮,陈国钧.茧丝绸行业应对经济全球化的战略分析[J].商业研究,2003,(13): 139-141
    162.郑铁军.农药新剂型的研究[J].黑龙江农业科学2003,(1):35-37
    163.周若梅,谢德松.按家蚕绝食生命时数的叶质鉴定[J].蚕业科学,1982,8(4):186-192
    164.周义奎,谢同建,万成功,等.家蚕农药中毒的原因及对策[J].蚕桑茶叶通讯,2007,2:7-8
    165.朱国念,龚志强,刘乾开.稻瘟灵对家蚕及其生态环境的安全性评价[J].农药科学与管理,1992,(2):18-22
    166.朱恒营,路福绥,高翠丽,等.溶剂对S-氰戊菊酯微乳剂配方筛选的影响[J].山东农业大学学报(自然科学版),2008,39(3):433-435
    167.朱金文,魏方林,朱国念.稻田杀虫剂三唑磷对家蚕的触杀作用与摄入慢性毒性的研究[J].蚕业科学,2006,32(3):368-371
    168.朱九生,王静,乔雄梧,等.农药对家蚕(Bombyx mori L.)的亚致死效应研究进展[J].生态学报,2008,28(7):3334-3343
    169.朱鲁生,崔为正.甲氰菊酯、辛硫磷及其混剂对家蚕的比较毒性[J].农业环境保护,2000,19(1): 35-37
    170.庄占兴,陈强,蒋爱中,等.不同药剂对甜菜夜蛾幼虫毒力和田间应用效果研究[J].农药科学与管理,2002,23(3):21-23
    171.Guglielmone A A, Volpogni M M, Scherling N, et al. Chlorfenapyr ear tags to control Haematobia irritans (L.) (Diptera: Muscidae) on cattle. Veterinary Parasitology,2000, 93: 77-82
    172.Addor R W, Babcock T J, Black B, et al. Insecticidal Pyrroles: Discovery and Overview, Baker DSynthesis and Chemistry of Agrochemicals III, ACS Symp Ser 1504, Washington D C: Amer. Chem. Soc., 1992, 283-297
    173.Addor R W, Furch J A, Kuhn D G. Process for the Preparation of Insecticidal, Acaricidal and Nematicidal 2-Aryl-5-( trifluo2romethyl) pyrrole Compounds, US: 5030735, 1991-07-09
    174.Agbaje Henry E.,Carter Deborah H.,Powers Tracy A.et al.Stable concentrated pesticide suspension.United States Patent:6,451,731.September 17,2002
    175.Agrochem. Service, Agrochem. Product Group, Edinburgh: Wood Mackenzie Consultants Ltd, 1996, part 3
    176.Ahmad M, McCaffery A R,. Elucidation of detoxification mechanismsinvolved in resistance to insecticides in the third instar larvae of a field-selected stain ofHelicoverpa armigerawiththe use of synergists.Pestic.Biochem.Physiol.,1991,41: 41-52
    177.Bateman R P, Douro-kpindou O P, Kooyman C,et al. Some observation on the dose transfer of mycoin-secticide sprays to desert locusts.Crop Protection, 1998, 17: 151-158
    178.Begum A N, Shivanandappa T. Effect of sublethal dosage of insecticides on biological attributes of the silkworm,BombyxmoriL. (Lepidoptera:Bombycidae). Indian J. Seric., 2003, 42(1): 50-56
    179.Brown D G, Siddens J K, Diehl R E, et al. Arylpyrrole Insecticidal,Acaricidal and Nematicidal Agents and Methods for the Preparation Thereof, US: 5010098 ,1988-06-23
    180.Carl C, Raul V, Hugo A, et al. Comparative residual toxicities of pesticides to the predator Agistemus industani (Acari: Stigmaeidae) on citrus in Florida. Experimental and Applied Acarology, 2001,25: 461–474
    181.Delorme R, Fournier D. Esterase metabolism and reduced penetration are cause of resistance to deltamethrin in Spodoptera exigua(Hübner) (Lepidoptera: Noctuoidea).Pestic.Biochem.Physiol., 1988,32: 240-246
    182.De Vries D H, Georghiou G P. Absence of enhanced detoxification ofpermethrin in pyrethroid-resistance house flies.Pestic[J].BiochemPhysiol., 1981,15: 234-241
    183.Delpuech J M, Legallet B, TerrierO,et al.Modifications of the sex pheromonal communication of Trichogramma brassicaeby a sublethal dose of deltamethrin.Chemosphere,1999,38: 729-739
    184.Eiki W, Koji B, Heesoo E, et al. Evaluation of a commercial immunoassay for the detection of chlorfenapyr in agricultural samples by comparison with gas chromatography and mass spectrometric detection. Journal of Chromatography A,2005,1074:145–153
    185.Essinger J,James F.Compositions and suspension containing a low-melting temperature pesticide.United States Patent:5,665,678.September 9,1997
    186.Farquhar G D, Sharkey T D. Stomatal conductance and photosynthesis . Annu Rev Plant Physiol & Plant Mol Biol, 1982, 33: 317-345
    187.Forgash A J, Cook B J, Riley RC. Mechanismsof resistance in diazi-non-selected multi-resistantMusca domestica.J.Econ.Entomol., 1962,60: 1 241-1 247.
    188.Formaini R E.Urea-formaldehyde liquid fertilizer suspension.United States Patent: 4,526,606.July 2,1985
    189.Herron G A, Rophail J,and Wilson L J. Chlorfenapyr resistance in two-spotted spider mite (Acari: Tetranychidae) from Australian cotton. Experimental and Applied Acarology,2004, 34: 315-321
    190.Gary M R. Fate and effects of the insecticide miticide chlorfenapyr in outdoor aquatic microcosms. Ecotoxicology and Environmental Safety ,2004,58: 50–60
    191.Grant A , Tanya M J. Monitoring insecticide resistance in Australian Frankliniella occidentalis Pergande (Thysanoptera:Thripidae) detects fipronil and spinosad resistance. Australian Journal of Entomology ,2005, 44: 299–303
    192.Gunning R V, Easton C S, Balfe M E. Pyrethroid resistance mechanisms in Australian Helicoverpa armigera(Hübner) (Lepidoptera:Noc-tuidae).Pesticide Science, 1991,33: 473-490
    193.Haynes K F. Sublethal effect of neurotoxic insecticides on insect behavior. Ann.Rev. of Entomo.l, 1988,33:149-168
    194.Jalal A J. Biochemical studies on sheep body louse Bovicola ovis(Schrank) (Phthiraptera: Trichodectidae):comparison of pyrethroid and organophosphate resistantand susceptible strains. Pesticide Biochemistry and Physiology, 2004, 80:1-11
    195.Kameswaran V,Barton J M.Process for the Manufacture of Pesticidal 1-(Alkoxymethy) pyrrole Compounds. 1990,515~536
    196.Khan A R, Saha B N. Effect of synthetic pyrethroid on the reproductive potential of the mulberry silkworm,BombyxmoriL. Bangladesh J. Zoo.l,2005, 33(1):117-119
    197.Kisuno A, Ansai T, Aizawa S. Composite particle aqueous suspension and process for producing same. United States Patent:5,889,088. March 30,1999
    198.Kuhn D G, Kamhi V M, Furch J A, et al. Insecticidal Pyrroles: Arylpyrrole carbonitriles incorporating a Trifluoromethyl Group, Baker D. Synthesis and Chemistry of Agrochemicals III , ACSSymp1 Ser1504, Washington D C: Amer. Chem. Soc., 1992, 298-305
    199.Kuhn D G. Structure Activity Relationship for Insecticidal Pyrroles, Hedin P A. Phytochemicals for Pest Control, ACS Symp.Ser.658, Washington D C: Amer.Chem.Soc., 1997,195~205
    200.Leeuwen T V, Pottelberge S V,Tirry L. Biochemical analysis of a chlorfenapyr selected resistant strain of Tetranychus urticae Koch. Pest Manag Sci,2006,62:425-433
    201.Ligon J M, Hill D S, Hammer P E, et al. Natural products with antifungal activity from Pseudomonas biocontrol bacteria. Pest Manag. Sci., 2000, 56: 688-695
    202.Liu L. Study on features of sublethaldamage to Bacillusanth racisspores caused by chemical disinfectants. J. Veter.i Sc.i Techno.l, 1996, 26(6):27-29
    203.Lshikawa S,Nactoko E,Kawamura S,et a1. Investigation of Pesticide Residues in Foods Distributed in Kitakyushu City. Shokuhin Eiseigaku Zasshi,2004,45 (2): 87-94
    204.Lu X M, Zhou Q, Zhou J Q, et al. Toxicity of low dosage cypermethrin to the silkworm, Bombyxmori L. . Chin. J. Pestic. Sci. , 2003, 5 ( 4) :42-46
    205.Seal D R, Ciomperlik M, Richards M L, et al. Comparative effectiveness of chemical insecticides against the chillithrips, Scirtothrips dorsalis Hood (Thysanoptera: Thripidae),on pepper and their compatibility with natural enemies. Crop Protection ,2006,25: 949–955
    206.Prasad M D, Muthulakshmi M, Madhu M, et al. Survey and Analysis of Microsatellites in the Silkworm, Bombyx mori: Frequency, Distribution, Mutations, Marker Potential and Their Conservation in Heterologous Species. Genetics,2005,169: 197–214
    207.Manual on the Development and Use of FAO Specifications for Plant Protection Products .Food and Agriculture Organization of the United Nations,1998:90-91
    208.Melissa C H, Steven A B, Gao J W, et al. Deletion of Cyp6d4 does not alter toxicity of insecticides to Drosophila melanogaster. Pesticide Biochemistry and Physiology,2006, 84:236–242
    209.Miller T P,Treacy M F,Gard I E,et a1.AC303 630,Summary of 1988~89 Field Tria Results,Brighton Crop Prot Conf-Pestsand Diseases.Brighton: British Crop Prot Council , 1990,1:41~45
    210.Muhammad H, Hiroshi A, Liu T X. Effects of selected insecticides on Diadegma semiclausum (Hymenoptera: Ichneumonidae) and Oomyzus sokolowskii (Hymenoptera: Eulophidae), parasitoids of Plutella xylostella (Lepidoptera: Plutellidae). Insect Science,2005, 12:163-170
    211.Nath B S,Raju C S, SureshA,et al.Toxic impactoforganophosphorus insecticides on the growth and economic characters of the silkworm,Bombyxmori L. J. Environ. Bio.l, 1997,18(2): 181-184
    212.Nelson ,Thomas D,Anderson. US:6,153,181.2000-11-28
    213.Noppun V,Saito T,Miyata T,. Cuticular penetration of S-fenvaleratein fenvalerate resistance and susceptible strains of the diamondbackmoth,Plutella ylostella(L). Pestic. Biochem. Physiol., 1989,33: 83-87
    214.Pachlatko J P. Natural Products in Crop Protction, 2nd International Electronic Conference on Synthetic Organic Chemistry [C/OL], 1998
    215.Pedersen A, John D, Gauthier D. Sublethal effects of Bacillus thuringiensison the spruce budworm,Choristoneura fumiferana. Entomo.l Exp.App.l, 1997, 83: 253-262
    216.Buès R, Bouvier J C, Boudinhon L. Insecticide resistance and mechanisms of resistance to selected strains of Helicoverpa armigera (Lepidoptera: Noctuidae) in the south of France. Crop Protection ,2005,24: 814–820
    217.Guessan R N, Bokob P, Odjo A,et al. Chlorfenapyr: A pyrrole insecticide for the control of pyrethroid or DDT resistant Anopheles gambiae (Diptera: Culicidae) mosquitoes. Acta Tropica ,2007,102 : 69–78
    218.Pachlatko J P. Natural Products in Crop Protction,2ndIntermational Electronic Conference on Synthetic Organic Chemistry[C/OL],1998
    219.Radhakrishna P G, DelviM R. Effect of organophosphorous insecticides on food utilization in different races of Bombyx mori(Lepidoptera:Bombycidae). Serico.l, 1992, 32: 71-79
    220.Saha C R, Saha B N, Kuan A R. Effect of insecticide treated mulberry (M orus albal) leaves on the growth and development of Bombyxmori.Bangladesh J. Zool. , 2005, 33 (2) : 155-163
    221.Scott J G, Leichter C A, Rinkevich, F D. Insecticide resistant strains of house flies (Musca domestica) show limited cross resistance to chlorfenapyr. J Pest Sci, 2004, 29: 124-126
    222.Shimura Y,Asano T,Shimono Si,et al.Insecticide composition and production process thereof.United States Patent,5,733,561.March 31,1998
    223.Soojhawon, Lokhande P D, Kodam K M, et al. Biotransformation of nitroaromatics and their effects on mixed function oxidase system. Enzyme and Microbial Technology, 2005,37:527-533
    224.Srinivas P, Rao A P. Studies on some commercial aspects in relation to phosphamidon treatment of Bombyxmori L. larva. Indian J. Comp. Anim.Physiol. , 1992, 10 (1) : 37-41
    225.Sun K F, Zhou Q, Zhou J Q, et al. Investigate on the toxicity of low dosage pyrethroids to the silkworm (Bombyxmori) . Bull. Seric. , 2002, 33 (3) :27-29
    226.Thomas V L, Vincent S,Luc T. Genetic analysis and cross-resistance spectrum of a laboratory-selected chlorfenapyr resistant strain of two-spotted spider mite (Acari: Tetranychidae). Experimental and Applied Acarology,2004, 32: 249-261
    227.Thomaz A A , Marcelo M R,Francisco T R, et al. Comparison of liver mixed-function oxygenase and antioxidant enzymes in vertebrates. Comparative Biochemistry and Physiology Part C, 2004,137 :155-165
    228.Vassarmidaki M E, Harizanis P C, Katsikis S. Effects of app laud on the growth of silkworm (Lepidoptera: Bombycidae) . J. Econ. Entomol. , 2000,93 (2) : 290-292
    229.Vinson S B, Law P K. Cuticular composition and DDT resistance inthe tobacco budworm.J.Econ.Entomol., 1971,64: 1,387
    230.Vyjayanthi N, Subramanyam M V V. Effect of fenvalerate-20EC on sericigenous insects-food utilization in the late-age larva of the silkworm,BombyxmoriL..Ecotoxico.l and Environ. Safety, 2002, 53: 206-211
    231.Wang J, Yin D Q,Lu G F, et al. Effects of dimehypo ( disodium 2-methylaminotri methylene dithiosulfonate) on growth and cocooning of silkworm, Bombyxmori (Lep idop tera: Saturnidae) . Pestic. Sci. , 1999, 55: 1070-1076
    232.Zhang H Y, Zhou Q, PanM L, et al. Toxicity of avermectin to the silkworm, Bombyxmori. Bull Seric. , 2006, 37 (1) : 18-20
    233.Zhu J W,Wei F L, Zhu G N. Contact toxicity and chronic toxicity of triazophos, an insecticide for rice field, to the silkworm, Bombyxmori. Acta Sericol. Sin. , 2006, 32 (3) : 368-371