CTGF基因RNA干扰干细胞对大鼠肝纤维化的治疗作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分
     不同病理分期大鼠肝纤维化模型的建立
     目的:
     建立稳定的不同病理分期的大鼠肝纤维化动物模型,一方面为后期评估不同病变程度的干细胞治疗效果提供相对客观的受试对象,另一方面也可使目前国内外众多肝纤维化动物模型建立方法的标准化提供前期研究参考。
     材料和方法:
     以Sprague-Dawley (SD)大鼠为实验动物,以腹腔注射小剂量四氯化碳(CC14)+饮用乙醇溶液缓慢建立标准化大鼠肝纤维化动物模型。分别于建模后第2-15周时观察大鼠的血清透明质酸(Hyaluronic Acid, HA)、层粘连蛋白(Laminin, LN)、Ⅲ型前胶原氨端肽(Procollagen Ⅲ N-terminal Peptide, PⅢNP)、Ⅳ型胶原(Collagen Type Ⅳ,CⅣ)及结缔组织生长因子(Conective Tissue Growth Factor, CTGF)水平及肝脏病理活组织检查,按照肝纤维化病理分级标准对这些动物的肝纤维化程度进行评定。
     结果:
     通过小剂量、缓慢、个体化、联合给药法建模,可以观察到造模不同周次与其相对应的血清学指标和不同的病理学分期存在明确的对应规律。
     结论:
     该方法可标准化地建立S0-S4共5个肝纤维化病理分期的大鼠模型,且由于采用多种低毒性化学药物联合造模,在建模的较高成功率(89.33%)的同时保证了较低死亡率(17.3%)。
     第二部分骨髓间充质干细胞体外扩增及鉴定
     目的:
     在体外成功地分离、培养和纯化Sprague—Dawley(SD)大鼠来源骨髓间充质干细胞(BMSCs)。
     方法:
     单纯贴壁法分离培养SD大鼠骨髓间充质干细胞,倒置显微镜观察细胞生长形态,流式细胞学检查骨髓间充质干细胞标志抗原的表达情况。
     结果:
     培养的BMSCs为多角形或梭形,人小形态相对均一,呈漩涡状排列生长。流式细胞学检查细胞表面标志抗原CD29、CD71、CD90高表达,而CD11b和CD45低表达情况。
     结论:
     采用单纯贴壁法可在体外成功地分离、培养和纯化大鼠BMSCs,为后续实验研究奠定了一部分实验基础。
     第三部分CTGF基因RNA干扰慢病毒载体的构建与功能鉴定
     目的:
     通过相关检测确定可以采用RNA干扰对大鼠BMSCs进行基因修饰后,构建CTGF基因RNA干扰慢病毒载体感染大鼠BMSCs并获得较为稳定的细胞株,实验过程中逐步进行鉴定。
     方法:
     首先通过qPCR方法检测大鼠骨髓间充质干细胞(BMSCs)CTGF基因表达是否为高水平,以确定下调CTGF基因的操作方法是否可行。然后用“不同MOI值(Multiplicity of Infection)感染细胞测试(将病毒液按MOI=0,2,5,10,20,50,100,200,300加入培养的细胞,以确定合适的MOI值)”的方法确定慢病毒感染大鼠BMSCs细胞株最为适合的MOI值;构建针对靶基因的四个干扰质粒(pcDNATM6.2-X147-1、pcDNATM6.2-X147-2, pcDNATM6.2-X147-3、pcDN ATM6.2-X147-4),把这四个都有特定抗性表达序列的干扰质粒分别与高表达干扰序列--CTGF的载体(pCDNA3.1(+)-CTGF)共转染HEK293细胞,选择出干扰效果最佳的质粒,利用BP重组及LR重组的gateway技术,构建慢病毒表达载体;用构建的慢病毒表达载体和包装质粒(packaging mix)共转染293T细胞,包装病毒,收集病毒原液,超速离心浓缩,并测定滴度;将得到的同时有CTGF基因RNA干扰序列、GFP表达序列及氨苄青霉素抗性表达序列的慢病毒感染靶细胞,采用氨苄青霉素等抗性筛选法去除未经感染的阴性细胞。
     结果:
     靶基因CTGF有较高的表达;不同MOI值感染细胞测试证实MOI=200有较好的效果;干扰载体测序结果证实miRNA干扰载体的四个干扰质粒pcDNATM6.2-X147-1、pcDNATM6.2-X147-2、pcDNATM6.2-X147-3、 pcDNATM6.2-X147-4,高表达载体pCDNA3.1(+)-CTGF,'慢病毒载体pLenti6.3-X147-2,均构建成功;干扰载体在HEK293细胞中的干扰结果提示pcDNATM6.2-X147-2干扰效果最佳——干扰效率为81%。通过氨苄青霉素抗性筛选法去除了未经感染的细胞得到经CTGF基因RNA干扰慢病毒感染的大鼠BMSCs细胞株。
     结论:
     成功构建了大鼠BMSCs细胞株CTGF基因RNA干扰慢病毒载体Lenti6.3-X147-2,通过CTGF基因RNA干扰病毒载体感染大鼠BMSCs,得到了稳定的靶基因下调大鼠BMSCs细胞株。
     第四部分CTGF基因RNA干扰慢病毒感染骨髓间充质干细胞对大鼠肝纤维化的治疗作用
     目的:
     观察CTGF基因RNA干扰慢病毒感染骨髓间充质干细胞对大鼠肝纤维化的治疗作用以及在不同肝纤维化程度下的治疗作用的差异。
     方法:
     选用健康雄性SD大鼠95只,按照论文第一部分“不同病理分期大鼠肝纤维化模型的构建”方法构建好动物模型,把得到的与时间依赖的规律性肝纤维化按照肝纤维化程度进行分级,在各级的大鼠中随机抽取实验对象组成:(1)空白对照组(A组):接受开腹及肝尾叶切除、关腹手术,盲肠静脉注射1mlPBS溶液;(2)传统BMSCs治疗组(B组):接受开腹及肝尾叶切除、关腹手术,盲肠静脉注射未经病毒感染的传统BMSCs细胞悬液1ml(1X107个细胞/m1);(3)BMSCs-GFP示踪治疗组(空转组)(C组):接受开腹及肝尾叶切除、关腹手术,盲肠静脉注射仅有GFP标记,没有RNA干扰序列的空白对照慢病毒感染的BMSCs-GFP细胞悬液1m1(1X107个细胞/m1);(4)RNA干扰BMSCs治疗组(D组):接受开腹及肝尾叶切除、关腹手术,盲肠静脉注射同时有GFP标记及CTGF-RNA干扰序列的空白对照慢病毒感染的BMSCs-RNAi-GFP细胞悬液1ml(1X107个细胞/ml)。手术及干细胞移植一周后处死动物,获取肝脏及血清标本,进行以下检测:(1)BMSCs移植样本肝脏组织荧光鉴定;
     (2)酶联免疫吸附测定(Enzyme-linked Immuno Sorbent Assay,Elisa)法测定样本血清中肝纤维化四项指标:血清透明质酸(Hyaluronic Acid, HA)、层粘连蛋白(Laminin, LN)、Ⅲ型前胶原氨端肽(Procollagen Ⅲ N-terminal Peptide, PⅢNP)、Ⅳ型胶原(Collagen Type Ⅳ,CⅣ)及结缔组织生长因子(Conective Tissue Growth Factor, CTGF);
     (3)样本肝脏组织病理切片HE染色;
     (4)免疫组织化学(Immunohistochemistry,IHC)方法检测样本组织切片中CTGF蛋白表达的变化;
     (5)实时荧光定量PCR法检测肝脏标本中CTGF基因mRNA表达水平;
     (6) Western blot方法检测肝脏标本中CTGF蛋白的表达水平。
     结果:
     (1)转染了用GFP标记的BMSCs细胞后的荧光检测照片显示:BMSCs细胞经门静脉系注入肝纤维化模型后,能在大鼠肝脏中发现这些标记了GFP的BMSCs。
     (2)血清中肝纤维化四项指标Elisa检测显示:BMSCs治疗的3组中这4个指标的表达量均显著下降。而RNAi干扰CTGF的BMSCs治疗的效果较BMSCs和GFP空转的BMSCs治疗效果要更好,血清四项的指标要更接近于正常值。
     (3)病理切片HE染色结果显示:干扰CTGF(D组)后,]BMSCs治疗效果更加显著,小叶内变性细胞数、坏死灶面积,汇管间扩大程度及纤维索的数量均较模型组(A组)和传统BMSCs组(B组)和空转组(C组)有显著改善,空转组(C组)较模型组(A组)有很大改善,但是疗效没有CTGF干扰组(D组)显著。
     (4)IHC检测CTGF蛋白表达显示:BMSCs治疗(B组、C组、D组)后表达CTGF的阳性细胞较模型组(A组)明显减少,其中传统BMSCs组(B组)和空转组(C组)改善的情况没有CTGF干扰组(D组)显著。D组中治疗前后的阳性表达区域(Average Optical Density, AOD)比值比较,治疗前CTGF表达阳性面积比为49.53±4.03,治疗后阳性面积为31.98±3.53,二者之间的P值为0.0083,达到了显著性水平。
     (5) Realtime PCR检测显示:使用了不同BMSCs治疗的B组、C组和D组均可检测到CTGF基因mRNA表达水平的降低,其中采用了RNA干扰的D组效果最为显著。
     (6) Western blot检测显示:随肝纤维化程度的增加,CTGF蛋白表达量也随之增加,而BMSCs治疗之后CTGF的表达量较之模型组有显著降低,RNAi干扰组的CTGF蛋白表达量为最低。
     结论:
     (1)肝脏组织荧光鉴定结果提示:经门静脉途径注射CTGF基因RNA干扰慢病毒感染BMSC后细胞可以定植在受损部位并可能生长并修复受损的肝脏组织。
     (2)结果部分(2)至(6)的检测结果当中:①CTGF基因在mRNA及蛋白表达水平都随肝纤维化程度加重而上升的情况提示CTGF基因与肝纤维化病变进展密切相关系,推测CTGF基因可能参与了肝纤维化病变进展过程中某些关键的环节。②B组、C组、D组经BMSCs治疗后CTGF基因在转录及蛋白表达水平的明显下降提示BMSCs可能影响CTGF基因在转录、蛋白表达水平等某些关键的环节;其中RNA干扰BMSCs治疗后(D组)CTGF基因在转录及蛋白表达水平的下降及肝纤维化病变的减轻程度都较未经RNA干扰BMSCs治疗的B组、C组更为显著。
     (3)在B组、C组、D组经BMSCs治疗后并未发现BMSCs治疗后加重肝纤维化的现象提示BMSCs加重肝纤维化可能只是特定条件下出现的偶然现象;但这并不能证明任何传统或经基因修饰的BMSCs移植对肝纤维化的治疗是一定有效或毫无风险的,采用CTGF基因RNA干扰BMSCs移植的治疗方法除了具有传统BMSCs的相关治疗作用外,还下调了BMSCs细胞内CTGF基因在转录及蛋白表达水平的表达,甚至改善了支配BMSCs分化方向的“小生境”从而可能在更大程度上在强化了BMSCs治疗肝纤维化作用的同时还限制了BMSCs在某些特定条件下可能出现的由于CTGF基因表达水平上调或使得肝纤维化加重的风险。
Part One
     Establishment of a Standardized Liver Fibrosis Model with Different Pathological Stages in Rats
     Objective:
     To establish a standardized and stable liver fibrosis model with different pathological stages in rats. On one hand, it was necessary to lay foundation for later experimental procedures of this research, on the other hand, to explore a method to establish a standardized and stable liver fibrosis model creatively would contribute to evaluate other liver fibrosis model in rats.
     Material and Methods:
     The Sprague-Dawley (SD) rats were chose as experimental animals and endured intraperitoneal and subcutaneous injections of10%CC14liver oil solution at a dose of1□mL/kg administered twice a week for15weeks. The5%edible ethanol solution was used as the only drink for experimental rats. Five rats in the control group were sacrificed each week from the2nd to the1.5th week, and the blood-related indices(such as hyaluronic acid (HA), laminin (LN), procollagen Ⅲ N-terminal peptide (PIIINP), collagen type IV (CIV), conective tissue growth factor (CTGF) etc.) and pathological sections were detected for hepatic pathological grading analysis. The pathological grading was based on the criteria of Histological Grading and Staging of Chronic Hepatitis for Fibrosis.
     Results:
     Based on the mothods above, the regularity that the blood-related indices and the pathological grading changed along with the weeks after experiment can be observed.
     Conclusion:
     By taking the method above, the standardized and stable liver fibrosis model with different pathological stages (S0-S4) in rats could be established. Attributing to the chronic lesion induced by taking Low toxicity medicine long-termly and associatedly, the modeling success rate was89.33%, and the death rate was17.3%.
     Part Two
     Amplification And Identification in Vitro of Bone Marrow Mesenchymal Stem Cells
     Objective:
     To isolate, culture and purify establish the bone marrow mesenchymal stem cells(BMSCs) in vitro successfully.
     Material and Methods:
     The simple adherent method was adopted in isolating and culturing experiments of bone marrow mesenchymal stem cells(BMSCs). The inverted microscope was used to observe cells. The flow cytometry was used in checking cell mark antigens.
     Results:
     The morphological characteristics of the major of the BMSCs were unified into polygonal or fusiform, germinated into a spiral shape. Both high expression of CD29、CD71、CD90and low expression of CD11b and CD45were detected by the flow cytometry.
     Conclusion:
     The simple adherent method was a feasible way to isolate, culture and purify BMSCs successfully. It layed foundation for later experimental procedures of this research.
     Part Three
     Construction And Functional Identification of A Recombinant Lentiviral Vector Mediated RNAi Targeting CTGF Gene
     Objective:
     Afer confirming that it was feasible to modify the gene of rats by RNA interference, a recombinant lentiviral vector mediated RNAi targeting CTGF gene was constructed and was used to infect the BMSCs gotten from "Part Two". Then, the cell line infected and labled was cultured and become so stable that it could be indentified and named.
     Material and Methods:
     Firstly, whether it was high expression that the CTGF gene of the BMSCs gotten from " Part Two" should be tested by using qPCR method in order to confirm the later experimental plan. Secondly, the most calculated Multiplicity of infection (MOI) was confirmed after infected experiment by means of different MOI tested. Thirdly, everyone of the four interfering plasmids(pcDNATM6.2-X147-1, pcDNATM6.2-X147-2, pcDNATM6.2-X147-3, pcDNATM6.2-X147-4) and the vector with the hign expression of CTGF gene(pCDNA3.1(+)-CTGF) were chosen to infected the HEK293cell line. Fourthly, the most effective plasmid was used to construct the lentiviral vector by means of BPrecombination,LR recombination and gateway technique. Fifthly, the lentiviral vector and packaging plasmid (mix) were also used to infected293T cell line. NEXT, the lentiviral with viral titer determined was harvested after the viral fluid was concentrated by ultrafiltration. At last, to get the stable BMSCs cell line infected by the recombinant lentiviral which contains CTGF gene, GFP gene and Ampicillin resistance gene and to remove the other by means of resistance selection.
     Results:
     There were high expressions of CTGF gene in rats. The most calculated MOI value was200. The results of gene sequencing demonstrated that the four interferential plasmids(pcDNATM6.2-X147-1, pcDNATM6.2-X147-2, pcDNATM6.2-X147-3, pcDNATM6.2-X147-4), the vector with the high expression of CTGF gene(pCDNA3.1(+)-CTGF) and the lentiviral vector (pLenti6.3-X147-2) were constructed successfully. The effect of RNA interference confirmed that pcDNATM6.2-X147-2was the most effective plasmid and the interferential efficience was81%. The stable BMSCs cell line infected by the recombinant lentiviral which contains CTGF gene, GFP gene and Ampicillin resistance gene was harvested after resistance selection.
     Conclusion:
     The recombinant lentiviral vector mediated RNAi Targeting CTGF Gene (pLenti6.3-X147-2) were constructed successfully. A stable BMSCs cell line infected by the recombinant lentiviral was harvested.
     Part Four
     Therapeutic Effect of Bone Marrow Mesenchymal Stem Cells Infected by the RNAi Targeting CTGF Gene Mediated
     by A Recombinant Lentivirus on Liver Fibrosis in Rats
     Objective:
     To observe the therapeutical impact of bone marrow mesenchymal stem cells infected by the RNAi targeting CTGF gene mediated by a recombinant lentivirus on liver fibrosis in rats and the difference between different pathological stages.
     Material and Methods:
     At first, A total of95male Sprague-Dawley (SD) were provided and established into a standardized and stable liver fibrosis model with different pathological stages in rats by means of "Part One". Next, the rats were divided into different parts with different pathological stages. The4groups were draw from different parts at random and designed as following:
     Group A:received opening abdominal wall, hepatic caudate lobectomy, closing abdominal wall surgery and appendix intravenous injection of lml PBS solution.
     Group B:received opening abdominal wall, hepatic caudate lobectomy, closing abdominal wall surgery and appendix intravenous injection of1ml BMSCs(without infected by virus) solution(1X107cells/ml).
     Group C:received opening abdominal wall, hepatic caudate lobectomy, closing abdominal wall surgery and appendix intravenous injection of1ml BMSCs(infected the by lentivirus only with the high expression of EGFP gene sequence and without the RNAi targeting CTGF gene (pLenti6.3-X147-2) sequence) solution(1X107cells/ml).
     Group D:received opening abdominal wall, hepatic caudate lobectomy, closing abdominal wall surgery and appendix intravenous injection of1ml BMSCs(infected the by lentivirus not only with the high expression of EGFP gene sequence and but also with the RNAi targeting CTGF gene (pLenti6.3-X147-2) sequence) solution(1X107cells/ml).
     At the end, the animals were sacrificed at7day after operation, the liver and serum specimen labeled with numeral were harvested and analysed as following:
     (1) To test with fluorescent identification of liver tissue harvested after BMSCs transplantation;
     (2) To test the serum level of liver fibrosis markers (such as hyaluronic acid (HA), laminin (LN), procollagen Ⅲ N-terminal peptide (PⅢNP), collagen type Ⅳ (CⅣ), conective tissue growth factor (CTGF) etc.) ith enzyme-linked immuno sorbent assay (Elisa);
     (3) To examine the pathologic change with pathological section of liver tissue and HE staining
     (4) To examine the alteration of CTGF protein level in histotomy with Immunohistochemistry(IHC);
     (5) To test the mRNA expression level of CTGF gene with Realtime PCR;
     (6) To test the protein expression level of CTGF with Western blot.
     Results:
     (1) The photo of fluorescent identification of liver tissue harvested after BMSCs transplantation via the portal vein confirmed that the BMSCs could grow in diseased region and repair the damaged tissue.
     (2) The serum level of liver fibrosis markers (such as hyaluronic acid (HA), laminin (LN), procollagen III N-terminal peptide (PⅢNP), collagen type Ⅳ (CIV), conective tissue growth factor (CTGF) etc.) of the3groups treated with BMSCs decreased obviously. And Group D held the biggest magnitude of the drop than Group B and C.
     (3) The pathological section of liver tissue and HE staining confirmed that the degeneration cell number in hepatic lobule, the area of focal necrosis, expanding degree between portal regions and the quantity of fiber rope decreased obviously among the3groups:Group D> Group B≈Group C (the magnitude of the alteration).
     (4) The results of Immunohistochemistry(IHC) demonstrated that the average optical density(AOD) value of the positive area of CTGF protein expression changed from49.53±4.03to31.98±3.53. The variation Reached the significant level(p=0.0083).
     (5) The test of Realtime PCR confirmed that mRNA expression level of CTGF gene decreased distinctly in Group B and Group C, but no more obviously than Group D.
     (6) Afer the protein expression level of CTGF was tested with Western blot, it was indicated that the CTGF protein increased with the severity of hepatic fibrosis, decreased obviously after BMSCs transplantation among the3groups:Group D> Group B≈Group C (the magnitude of the alteration).
     Conclusion:
     The BMSCs infected by the RNAi targeting CTGF gene mediated by a recombinant lentivirus could grow in diseased region and repair the damaged tissue. Moreover, the method of RNA interference down-regulated the over-expression of CTGF gene dramaticlly evoked by fibrosis likely. These were probable mechanism that the BMSCs infected by the RNAi targeting CTGF gene mediated by a recombinant lentivirus could alleviate liver fibrosis in rats in the test of fluorescent identification, the serum level of liver fibrosis markers (HA, LN, PⅢNP, CⅣ, CTGF, et al), pathologic change, IHC, Realtime PCR, Western blot, et al.
引文
[1]Dioguardi N,Grizzi F,Bossi P,et al.Fractal and spectral dimension analysis of liver fibrosis in needle biopsy specimens[J].Anal Quant Cytol Histol,1999,21(262):6-9.
    [2]Kozlowska J,Loch T,Jablonska J,et al.Biochemical markers of fibrosis in chronic hepatitis and liver cirrhosis of viral origin[J].Przegl Epidemiol,2001,55(451):8-10.
    [3]Paggi S,Colli A,Fraquelli M,et al.A non-invasive algorithm accurately predicts advanced fibrosis in hepatitis C:a comparison using histology with internal-external validation[J].J Hepatol, 2008,49(564):71-74.
    [4]Chang PE, Lui HF, Chau YP, et al. Prospective evaluation of transient elastography for the diagnosis of hepatic fibrosis in Asians:comparison with liver biopsy and aspartate transaminase platelet ratio index[J]. Aliment Pharmacol Ther,2008,28(51):61-63.
    [5]Zardi EM,Dobrina A,Ambrosino G,et al.New therapeutic approaches to liver fibrosis:a practicable route[J]? Curr Med Chem,2008,15(1628):44.
    [6]Tiniakos DG. Liver biopsy in alcoholic and non- alcoholic steatohepatitis patients [J]. Gastroenterol Clin Biol,2009,33(930):9-12.
    [7]Kirk GD,Astemborski J,Mehta SH,et al. Assessment of liver fibrosis by transient elastography in persons with hepatitis C virus infection or HIV-hepatitis C virus coinfection[J].Clin Infect Dis, 2009,48(963):72-78.
    [8]Boursier J,Bacq Y,Halfon P,et al.Improved diagnostic accuracy of blood tests for severe fibrosis and cirrhosis in chronic hepatitis C[J]. Eur J Gastroenterol Hepatol,2009,21(28):38-41.
    [9]Cales P,Laine F,Boursier J,et al.Comparison of blood tests for liver fibrosis specific or not to NAFLD[J].J Hepatol,2009,50(165):73.
    [10]Tannapfel A,Denk H, Dienes HP,et al.Histopathological diagnosis of non-alcoholic and alcoholic fatty liver disease. Grade 2 consensus- based guidelines [J]. Pathologe,2010,31 (225):37-38.
    [11]Popper H. Hepatic fibrosis--mechanism,dynamics and clinical consequences[J].Leber Magen Darm,1978,8(2):65-72.
    [12]Popper H,Kent G.Fibrosis in chronic liver disease[J]. Clin Gastroenterol.1975,4(2) 315-32.
    [13]Nagano K,Sasaki T,Umeda Y,et al.Inhalation carcinogenicity and chronic toxicity of carbon tetrachloride in rats and mice[J]. Inhal Toxicol,2007,19(1089):103-108.
    [14]Davoust B, Boni M, Branquet D,et al.Research on three parasitic infestations in rats captured in Marseille:evaluation of the zoonotic risk[J].Bull Acad Natl Med,1997,181 (887):95-98.
    [15]Maida I,Soriano V,Barreiro P,et al. Liver fibrosis stage and HCV genotype distribution in HIV-HCV coinfected patients with persistently normal transaminases[J]. AIDS Res Hum Retroviruses,2007,23(801):4-6.
    [16]陈江,陈玉满,夏勇,等.大鼠肝纤维化复合模型的建立及动态观察[J].中国卫生检验杂志,2010,20(3):547-550.
    [17]秦川.医学实验动物学[M].北京:人民卫生出版社,2008:48.
    [18]Summerfield JA. Hepatobiliary fibropolycystic diseases.A clinical and histological review of 51 patients[J].J Hepatol,2006,44(111):7-8.
    [19]Toshimichi Hasegawa, Takuya Kimura, Yoshiyuki Ihara, et al. Histological classification of liver fibrosis and its impact on the postoperative clinical course of patients with congenital dilatation of the bile duct[J]. Surg Today,2006,36(151):154-156.
    [20]Cuomo O,Perrella A,Pisaniello D,et al.Evidence of liver histological alterations in apparently healthy individuals evaluated for living donor liver transplantation[J].Transplant Proc,2008,40(1823):6-7. [21] Wozniakowska-Gesicka T, Wisniewska-Ligier M, Kups J, et al. Histological evaluation of activity and progression changes in the liver in HCV infected children[J]. Pol Merkur Lekarski,2000,8(381):3-5
    [22]Baba Y,Saeki K,Onodera T,et al.Serological and immunohistochemical studies on porcine-serum-induced hepatic fibrosis in rats[J]. Exp Mol Pathol,2005(79),229:35-39.
    [23]Cremer H.Histological and cytological criteria for classification of primary liver cell carcinoma[J]. Leber Magen Darm,1980,10(74):82-86.
    [24]Desmet VJ,Gerber M,Hoofnagle JH,et al.Classification of chronic hepatitis:Diagnosis, grading and staging[J]. Hepatology,1994,19(15):13-14
    [25]王宝恩.慢性肝炎的诊断、分级与分期的新动态[J].肝脏病杂志,1995,3(3):6-7.
    [26]侯鉴君.病毒性肝炎防治方案(试行)[J].中华内科杂志,1995,34(11):788-789.
    [27]Germani G,Hytiroglou P,Fotiadu A,et al.Assessment of fibrosis and cirrhosis in liver biopsies:an update[J].Semin Liver Dis,2011,31 (82):90-93.
    [28]Stravitz RT,Shiffman ML,Sanyal AJ,et al.Effects of interferon treatment on liver histology and allograft rejection in patients with recurrent hepatitis C following liver transplantation[J]. Liver Transpl,2004,10(850):8-9
    [29]Yamada G. Histopathological characteristics and clinical significance of New Inuyama Classification in chronic hepatitis B [J]. Nippon Rinsho.2004,8(290):2-3.
    [30]Nagula S, Jain D, Groszmann RJ,et al. Histological-hemodynamic correlation in cirrhosis-a histological classification of the severity of cirrhosis[J]. J Hepatol,1986,2(141):56-57.
    [31]Schraut WH, Rosemurgy AS, Riddell RM, et al. Prolongation of intestinal allograft survival without immunosuppressive drug therapy. Transplantation of small bowel allografts[J]. J Surg Res,1983,34(597):607.
    [32]Berends MA. Reliability of the Roenigk classification of liver damage after methotrexate treatment for psoriasis:a clinicopathologic study of 160 liver biopsy specimens[J].Arch Dermatol,2007,143(1515):9.
    [33]Zen Y,Fujii T,Sato Y,et al.Pathological classification of hepatic inflammatory pseudotumor with respect to IgG4-related disease[J].Mod Pathol,2007,20(884):94-96.
    [34]Kim SR. Hypervascular liver nodules in heavy drinkers of alcohol[J]. Alcohol Clin Exp Res,2004,28(17):174-180.
    [35]Denk H.Chronic hepatitis[J].Verh Dtsch Ges Pathol,1995,79(171):6-8. [36] Pariente A.How to measure liver fibrosis in viral hepatitis[J]? Rev Prat,2005,31(646):9-10.
    [37]Lee GP,Jeong Wi,Jeong DH,et al.Diagnostic evaluation of carbon tetrachloride-induced rat hepatic cirrhosis model[J]. Anticancer Res,2005,25(1029):38-39.
    [38]Bettini G,Mandrioli L,Morini M,et al.Bile duct dysplasia and congenital hepatic fibrosis associated with polycystic kidney (Caroli syndrome) in a rat[J].Vet Pathol,2003,40(693):4-8.
    [39]Sanzen T, Harada K, Yasoshima M,et al.Polycystic kidney rat is a novel animal model of Caroli's disease associated with congenital hepatic fibrosis[J].Am J Pathol,2001,158(16):5-12.
    [40]Andrade ZA. Angiogenesis and schistosomiasis[J].Mem Inst Oswaldo Cruz,2010,105(43):6-9.
    [41]Yeh WC.Liver fibrosis grade classification with B-mode ultrasound[J]. Ultrasound Med Biol,2003,29(12):29-35.
    [42]Tsui PH,Chang CC,Ho MC,et al.Use of nakagami statistics and empirical mode decomposition for ultrasound tissue characterization by a nonfocused transducer[J].Ultrasound Med Biol,2009,35(20)55-68.
    [43]Uno M,Kurita S,Misu H,et al. Tranilast,an antifibrogenic agent, ameliorates a dietary rat model of nonalcoholic steatohepatitis[J]. Hepatology,2008,48(10):9-18.
    [44]Gnainsky Y, Spira G, Paizi M,et al.Involvement of the tyrosine phosphatase early gene of liver regeneration (PRL-1) in cell cycle and in liver regeneration and fibrosis effect of halofuginone[J].Cell Tissue Res,2006,32(43):85-94.
    [45]Tran-Paterson R. Expression and regulation of the cystic fibrosis gene during rat liver regeneration[J].Am J Physiol,1992,26(3):55-60.
    [46]Davoust B, Boni M, Branquet D,et al. Research on three parasitic infestations in rats captured in Marseille:evaluation of the zoonotic risk[J]. Bull Acad Natl Med,1997,18(18):87-95.
    [47]Friedman SL. Hepatic stellate cells:protean,multifunctional,and enigmatic cells of the liver[J].Physiol Rev,2008,88(1):125-72.
    [48]Zender L,Hutker S,Liedtke C,et al. Caspase 8 small interfering RNA prevents acute liver failure in mice[J]. Proc Natl Acad Sci USA,2003,100(13):7797-802.
    [49]Fox CK, Furtwaengler A, Nepomuceno RR,et al. Apoptotic pathways in primary biliary cirrhosis and autoimmune hepatitis[J]. Liver,2001,21 (4):272-279.
    [50]Wilson JW, Groat CS, Leduc EH. Histogenesis of the liver[J]. Ann NY Acad Sci,1963, 111:8-24.
    [51]Malhi H, Gores GJ. Cellular and molecular mechanisms of liver injury[J]. Gastroenterology, 2008,134(6):1641-1654.
    [52]Faubion WA,Gores GJ.Death receptors in liver biology and pathobiology[J]. Hepatology, 1999,29(1):1-4.
    [53]Guicciardi ME, Gores GJ.Apoptosis as a mechanism for liver disease progression [J].Semin Liver Dis,2010,30(4):02-10.
    [54]Andrade ZA. Angiogenesis and schistosomiasis[J]. Mem Inst Oswaldo Cruz,2010, 10(5):436439.
    [55]Hasegawa-Baba Y,Doi K. Changes in TIMP-1 and -2 expression in the early stage of porcine serum-induced liver fibrosis in rats[J].Exp Toxicol Pathol,2011,6(3):357-361.
    [56]Tsui PH,Chang CC,Ho MC,et al.Use of nakagami statistics and empirical mode decomposition for ultrasound tissue characterization by a nonfocused transducer[J].Ultrasound Med Biol,2009,3(5):2055-68.
    [57]Uno M, Kurita S, Misu H, et al. Tranilast, an antifibrogenic agent,ameliorates a dietary rat model of nonalcoholic steatohepatitis [J]. Hepatology,2008,4(8):109-18.
    [58]Gnainsky Y,Spira G,Paizi M,et al.Involvement of the tyrosine phosphatase early gene of liver regeneration (PRL-1) in cell cycle and in liver regeneration and fibrosis effect of halofuginone[J].Cell Tissue Res,2006,324 (3):385-94.
    [59]Baba Y,Saeki K,Onodera T,et al. Serological and immunohistochemical studies on porcine-serum- induced hepatic fibrosis in rats[J]. Exp Mol Pathol,2005,79(3):229-35.
    [1]Friedenstein AJ,Petrakova KV,Kurolesova AJ,et al.Heteroopic transplants of bone marrow:analysis of precursor cells for osteogenic and hematopoietic tissues[J]. Transplantation, 1968,6:230-47.
    [2]Halleux C,Sottile V,Gas ser JA,et al.Multi-lineage potential of humanmesenchymal stem cells following clonal expansion[J].J Musculoskelet Neuronal Interact,2001,2:71-6.
    [3]Williams JT,Southerland SS, Souza J,et al.Cells isolated from adult human skeletal muscle capable of differentiating into multiple mesodermal phenotypes[J].Am Surg,1999,65:22-6.
    [4]Tropel P,Noel D.Platet N,et al.Isolation and characterization of mesenchymal stem cells from adult mouse bone marrow[J].Exp Cell Res,2004,295(2):395-406.
    [5]王彤主编.骨髓间充质干细胞临床研究进展[M].北京:人民卫生出版社,2010:2-18.
    [6]王伟,张志坚,林建华,等.大鼠骨髓间质干细胞培养扩增及表面标志[J].福建医科大学学报,2005,39(1):5-7.
    [7]Keene CD, Ortiz-Gonzalez XR, Jiang Y, et al. Neural differentiation and incorporation of bone marrow-derived multipotent adult progenitor cells after single cell transplantation into blastocyst stage mouse embryos[J].Cell Transplant,2003,12:201-13.
    [8]Friedenstein AJ, Piatetzky-Shapiro II, Petrakova KV. Osteogenesis in transplants of bone marrow cells[J].J Embryol Exp Morphol,1966,16(3):381-90.
    [9]Izadpanah R,Joswig T,Tsien F,et al.Characterization of multipotent mesenchymal stem cells from the bone marrow of rhesus macaques [J].Stem Cells Dev,2005.14(4):440-51.
    [10]Delorme B.Chateauvieux S,Charbord P.The concept of mesenchymal stem cells[J].Regen Med,2006,1(4):497-509.
    [11]Pittenger MF, Mackay AM, Beck SC,et al. Multilineage potential of adult human mesenchymal stem cells[J].Science,1999,284:143-7.
    [12]Dippolito G, Diabira S, Howardg A, et al. Marrow-isolated Adult Multilineage Inducible (MIAMI) Cells, a Unique Population of Postnatal Young and Old Human Cells With Extensive Expansion and Differentiation Potentia[J].J Cell Sci,2004,117:2971-81.
    [13]Hong L,Peptan I,Clark P,et al.Tissue Engineering by Human Marrow Stromal Cell Seeded Gelatin Sponge[J].Ann Biomed Eng,2005,33:511-7.
    [14]Hattori H,Ishihara M,Fukuda T,et al.Establishment of a novel method for enriching osteoblast progenitors from adipose tissues using a difference in cell adhesive properties[J].Biochem Biophys Res Commun,2006,343(4):1118-23.
    [15]Nuttall ME, Gimble JM. Controlling the balance between osteoblastogenesis and adipogenesis and the consequent therapeuticimp lications[J]. Curr Op in Phar macol,2004, 4(3):290-4.
    [16]Deng W.Obrocka M,Fischer I,et al.In vitro differentiation of human marrow stromal stem cells into early progenitors of neural cells by conditions that increase intracellular cyclic AMP[J].Biochem Bioph Res Co,2001,282:148-52.
    [17]Pelster A,Mell JA,Lars BL.Adult Stem Cells from Bone Marrow (MSCs) Isolated from Different Strains of Inbred Mice Vary in Surface Epitopes, Rates of Proliferation,and Differentiation Potential [J]. Blood,2004,103:1662-8.
    [18]Tondreau T, Lagneaux L, Dejeneffe M, et al. Isolation of BM mesenchymal stem cells by plastic adhesion or negative selection:phenotype, proliferation kinetics and differentiation potential[J]. Cytotherapy,2004,6(4):372-9.
    [19]Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining mutipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy,2006,8(4):315-317.
    [20]Tondreau T,Lagneaux L,Dejeneffe M, et al. Isolation of BM mesenchymal stem cells by plastic adhesion or negative selection:phenotype, proliferation kinetics and differentiation potential[J]. Cytotherapy,2004,6(4):372-9.
    [21]Zohar R, Sodek J, McCulloch CA. Characterizati on of stromal progenitor cells enriched by flow cytometry[J]. Blood,1997,90(9):3471-81.
    [22]Gronthos S, Graves SE,Ohta S,et al. The STRO-1 + fraction of adult human bone marrow contains the osteogenic p recursors[J].Blood,1994,84 (12):4164-73.
    [23]Colter DC, Class R, Di Girolamo CM, et al. Rapid expansion of recycling stem cells in cultures of plastic 2 adherent cells from human bone marrow[J]. Proc Natl Acad Sci USA, 2000,97(7):3213-8.
    [24]Wang T,Tang W,Sun S,et al.Intravenous infusion of bone marrow mesenchymal stem cells improves myocardial function in a rat model of myocardial ischemia[J].Crit Care Med,2007, 35(11):2587-93.
    [1]盛鹏程.绵羊Myostatin基因shRNA慢病毒载体的构建与鉴定[D].山东农业大学,2011:16-20
    [2]Hannon GJ. RNA interference[J].Nature,2002,418(6894):244-51.
    [3]Filipowicz W.RNAI:the nuts and bolts of the RISC machine [J].Cell,2005,122(1):17-20.
    [4]Daniela C, John JR. The promises and pitfalls of RNA interference based therapeutics[J]. Nature,2009,457(7228):426-33.
    [5]张瑞杰;苗向阳.绵羊抑制素shRNA慢病毒干扰载体的构建与鉴定[J].华北农学报,2011,18(12):34-35
    [6]Carvalho AB, Quintanilha LF, Dias JV,et al. Bone marrow multipotent mesenchymal stromal cells do not reduce fibrosis or improve function in a rat model of severe chronic liver injury [J]. Stem Cells,2008,26(5):1307-14.
    [7]Dalakas E, Newsome PN, Boyle S,et al. Bone marrow stem cells contribute to alcohol liver fibrosis in humans[J]. Stem Cells Dev,2010,19(9):1417-25.
    [8]Alison MR, Islam S, Lim S. Stem cells in liver regeneration, fibrosis and cancer:the good, the bad and the ugly[J]. J Pathol,2009,217(2):282-98.
    [9]叶平等.肝纤维化相关因素的研究现状及进展[J].新医学,2008,39:829-31.
    [10]Chen YL,Li ZY. The relationship between TGF-β1, PDGF-BB, CTGF and chronic hepatitis B with fibrosis[J]. Chin J Diffic ComplCas,2010,9(1):19-20.
    [11]Tang LX, He RH, Yang G, et al. Asiatic acid inhibits liver fibrosis by blocking TGF-beta/Smad signaling in vivo and in vitro[J]. PLoS One,2012,7(2):e31350.
    [12]薛美思.携带重组人胰岛素基因的慢病毒载体转染人脐带间充质干细胞的实验研究[D].兰州大学,2010:38-39.
    [13]Rachfal AW,Brigstock DR.Connective tissue growth factor (CTGF/CCN2) in hepatic fibrosis[J].Hepatol Res,2003,26(1):1-9.
    [14]Bataller R,Brenner DA.Hepatic stellate cells as a target for the treatment of liver fibrosis[J].Semin Liver Dis,2001,21(3):437-51.
    [15]区永聪.miRNA沉默ATM基因对HepG2在电离辐射后DNA的损伤及修复的影响[D].南方医科大学,2011:85-89.
    [16]Wang XL,Chen XM,Fang JP,et al.Lentivirus-mediated RNA silencing of c-Met markedly suppresses peritoneal dissemination of gastric cancer in vitro and in vivo[J].Acta Pharmacol Sin,2012,33(4):513-22.
    [17]毛娅妮,黄娟,肖伟,等.针对小鼠VEGFA基因的siRNA干扰载体的构建和慢病毒包装[J].广州医药,2011,15(8):56-58.
    [18]陈晓瑛.ω--脂肪酸去饱和酶转基因羊的研究[D].山东农业大学,2011:32.
    [19]San Martin C.Latest insights on adenovirus structure and assembly[J]. Viruses,2012,4(5):847-77.
    [20]张锦.肝肠钙黏连蛋白(CDH17)在胃癌发生发展中作用的研究及其相关蛋白的筛选[D].武汉大学,2011:75-78.
    [21]Cooray S, Howe SJ, Thrasher AJ.Retrovirus and lentivirus vector design and methods of cell conditioning[J]. Methods Enzymol,2012,507:29-57.
    [22]常彬霞.细胞色素P450 3A4、谷胱甘肽硫转移酶A1基因转染人肝细胞系的建立及功能测定[D].中国人民解放军军医进修学院,2010:38-39.
    [23]白玉贤,刘磊,隋红,等.miRNA干扰Pokemon基因对大肠癌细胞增殖的影响及机制[J].临床肿瘤学杂志,2011,9(6):38-40.
    [1]Pittenger MF,Mackay AM,Beck SC,et al.Multilineage potential of adult human mesenchymal stem cells[J].Science,1999,284(5411):143-147.
    [2]Dalakas E, Newsome PN,Boyle S,et al.Bone marrow stem cells contribute to alcohol liver fibrosis in humans[J].Stem Cells,2010,19(9):1417-25.
    [3]Tang LX,He RH,Yang G,et al.Asiatic acid inhibits liver fibrosis by blocking TGF-beta/Smad signaling in vivo and in vitro[J].PLoS One,2012,7(2):e31350.
    [4]Mao XR,Yue W,Yuan H,et al.Inhibition effect of small interfering RNA targeting connective tissue growth factor on liver fibrosis in rats[J].Zhejiang Da Xue Xue Bao Yi Xue Ban,2011,40(6):603-8.
    [5]Rachfal AW,Brigstock DR.Connective tissue growth factor (CTGF/CCN2) in hepatic fibrosis[J].Hepatol Res,2003,26(1):1-9.
    [6]秦川.医学实验动物学[M].北京:人民卫生出版社,2008:48.
    [7]于春鹏,单鸿,姜在波,等.大鼠门静脉系影像解剖学研究及穿刺入路的建立[J].中国介入放射学,2008,2(1):72-4.
    [8]Hui AY,Leung WK,Chan HL,et al.Effect of celecoxib on experimental liver fibrosis in rat[J].Liver Int,2006,26(1):125-36.
    [9]Russo FP, Alison MR, Bigger BW, et al. The bone marrow functionally contributes to liver fibrosis[J]. Gastroenterology,2006,130(6):1807-21.
    [10]Ali Ashfaq U, Ansar M, Sarwar MT, et al. Post-transcriptional inhibition of hepatitis C virus replication through small interference RNA[J]. Virol J,2011,10(8):112.
    [11]Kaimori A, Potter J, Kaimori JY, et al. Transforming growth factor-betal induces an epithelial-to-mesenchymal transition state in mouse hepatocytes in vitro[J]. J Biol Chem,2007,282(30):22089-101.
    [12]王岸聪.TLR4对卵巢癌细胞紫杉醇敏感性影响的实验研究[D].山东大学,2009:38-40.
    [13]Xue X, Lin J, Song Y,et al.RNA interference targeting leptin gene effect on hepatic stellate cells[J].J Hua zhong Univ Sci Technolog Med Sci,2005,25(6):655-7.
    [14]Chen YL,Li ZY.The relationship between TGF-β1,PDGF-BB,CTGF and chronic hepatitis B with fibrosis[J].Chin J Diffic ComplCas,2010,9(1):19-20.
    [15]Tang LX,He RH,Yang G,et al.Asiatic acid inhibits liver fibrosis by blocking TGF-beta/Smad signaling in vivo and in vitro[J].PLoS One,2012,7(2):313-5.
    [16]Lang Q,Liu Q,Xu N,et al.The antifibrotic effects of TGF-(31 siRNA on hepatic fibrosis in rats[J].Biochem Biophys Res Commun,2011,409(3):448-53.
    [17]Cao Q, Mak KM, Lieber CS.Leptin enhances alphal(I) collagen gene expression in LX-2 human hepatic stellate cells through JAK-mediated H2O2-dependent MAPK pathways[J].J Cell Biochem,2006,97(1):188-97.
    [18]Qian J, Niu M, Zhai X,et al.β-Catenin pathway is required for TGF-β1 inhibition of PPARy expression in cultured hepatic stellate cells[J].Pharmacol Res,2012,66(3):219-25.
    [19]张小磊.诱骗寡核苷酸技术靶向阻断STAT3对卵巢癌生物学行为影响的实验研究[D].山东大学,2009:55-56.
    [20]Li G,Xie Q, Shi Y,et al.Inhibition of connective tissue growth factor by siRNA prevents liver fibrosis in rats[J].J Gene Med,2006,8(7):889-900.
    [21]Yang H.Zhao LF,Zhao ZF,et al.Heme oxygenase-1 prevents liver fibrosis in rats by regulating the expression of PPARy and NF-κB[J]. World J Gastroenterol,2012,18(14):1680-8.
    [22]Yan K,Deng X,Zhai X,et al.p38 mitogen-activated protein kinase and liver X receptor-a mediate the leptin effect on sterol regulatory element binding protein-lc expression in hepatic stellate cells[J].Mol Med,2012,18(1):10-8.
    [23]Kaimori A, Potter J, Kaimori JY,et al.Transforming growth factor-betal induces an epithelial-to-mesenchymal transition state in mouse hepatocytes in vitro[J] J Biol Chem,2007,282(30):22089-101.
    [24]Yang H, Zhao LF, Zhao ZF,et al.Heme oxygenase-1 prevents liver fibrosis in rats by regulating the expression of PPARy and NF-κB[J]. World J Gastroenterol,2012,18(14):1680-8.
    [25]Borkham-Kamphorst E,van Roeyen CR,Van de Leur E,et al.CCN3/NOV small interfering RNA enhances fibrogenic gene expression in primary hepatic stellate cells and cirrhotic fat storing cell line CFSC[J].J Cell Commun Signal,2012,6(1):11-25.
    [26]Cheng K,Mahato RI.Gene modulation for treating liver fibrosis[J]. Crit Rev Ther Drug Carrier Syst,2007,24(2):93-146.
    [27]Chen YL,Li ZY.The relationship between TGF-β1,PDGF-BB,CTGF and chronic hepatitis B with fibrosis[J].Chin J Diffic ComplCas,2010,9(1):19-20.
    [28]Tsukada S,Westwick JK,Ikejima K,et al.SMAD and p38 MAPK signaling pathways independently regulate alphal(1) collagen gene expression in unstimulated and transforming growth factor-beta-stimulated hepatic stellate cells[J].J Biol Chem,2005,280(11):10055-64.
    [29]Lang Q,Liu Q,Xu N,et al.The antifibrotic effects of TGF-β1 siRNA on hepatic fibrosis in rats[J]. Biochem Biophys Res Commun,2011,409(3):448-53.
    [30]Abou-Shady M, Friess H, Zimmermann A,et al.Connective tissue growth factor in human liver cirrhosis[J].Liver,2000,20(4):296-304.
    [31]Katsube K, Sakamoto K, Tamaura Y,et al.Role of CCN,a vertebrate specific gene family,in development[J]. Dev Growth Differ,2009,51:55-67.
    [32]许明.结缔组织生长因子反义寡核苷酸对增生性瘢痕成纤维细胞凋亡的作用及其机理[D].第二军医大学,2007:53-55.
    [33]Shinji T, Ujike K, Ochi K,et al.Establishment of a novel collagenase perfusion method to isolate rat pancreatic stellate cells and investigation of their gene expression of TGF-betal, type I collagen, and CTGF in primary culture or freshly isolated cells[J].Acta Med Okayama, 2002,56(4):211-8.
    [34]Paradis V,Dargere D,Bonvoust F,et al. Effects and regulation of connective tissue growth factor on hepatic stellate cells[J].Lab Invest,2002,82(6):767-74.
    [35]董琼珠.骨桥蛋白不同剪切体及单体型在肝癌侵袭转移中的功能与机制研究[D].复旦大学,2009:57.
    [36]Tang LX,He. RH,Yang G,et al.Asiatic acid inhibits liver fibrosis by blocking TGF-beta/Smad signaling in vivo and in vitro[J].PLoS One,2012,7(2):e31350.
    [37]Mao XR,Yue W.Yuan H,et al.Inhibition effect of small interfering RNA targeting connective tissue growth factor on liver fibrosis in rats[J].Zhejiang Da Xue Xue Bao Yi Xue Ban,2011,40(6):603-8.
    [38]李少儒.DACH1在子宫内膜癌中的表达及其与ER、PR表达的相关性研究[D].山东大学,2010:55
    [39]Xue X, Lin J, Song Y,et al.RNA interference targeting leptin gene effect on hepatic stellate cells[J].J Huazhong Univ Sci Technolog Med Sci,2005,25(6):655-7.
    [40]Yu FJ,Dong PH,Fan XF,et al.Down-regulation of angiotensin II by shRNA reduces collagen synthesis in hepatic stellate cells[J].Int J Mol Med,2010,25(5):801-6.
    [41]Cong M, Liu T, Wang P,et al.Suppression of tissue inhibitor of metalloproteinase-1 by recombinant adeno-associated viruses carrying siRNAs in hepatic stellate cells[J].Int J Mol Med,2009,24(5):685-92.
    [42]眭杰.siRNA双靶向干扰IL-1β/TNF-α治疗肩袖疾病患者肩峰下滑囊炎的实验研究[D].第二军医大学,2012:75
    [43]Kim KH,Kim HC,Hwang MY,et al.The antifibrotic effect of TGF-betal siRNAs in murine model of liver cirrhosis[J].Biochem Biophys Res Commun,2006,343(4):1072-8.
    [44]Ali Ashfaq U,Ansar M,Sarwar MT,et al. Post-transcriptional inhibition of hepatitis C virus replication through small interference RNA[J]. Virol J,2011,10(8):112.
    [45]Cheng K, Mahato RI.Gene modulation for treating liver fibrosis[J]. Crit Rev Ther Drug Carrier Syst,2007,24(2):93-146.
    [1]Weissman,I.L,Anderson, D.J,and Gage,F. Stem and progenitor cells:origins, phenotypes, lineage commitments, and transdifferentiations[J]. Annu. Rev. Cell Dev.Biol,2001,17:387-403.
    [2][美]罗伯特.兰扎等编;刘清华等译.精编干细胞生物学[M].北京:科学技术出版社,2009.
    [3]Ferrari G, Cusella-De Angelis G, Coletta M, et al. Muscle regeneration by bone marrow-derived myogenic progenitors [J]. Science,1998,279:1528.
    [4]Eglitis MA,Mezey E. Hematopoietic cells differentiate into both microglia and microglia in the brains of adult mice[J].Proc Natl Acad Sci USA,1997,94:4080.
    [5]Siminovitch L, McCulloch EA, Till JE. The distribution of colony-forming cells among spleen colonies[J]. J Cell Comp Physiol,1963,62:327.
    [6]Becker A,McCulloch EA, Till JE. Cytological demonstration of the clonal nature of spleen colonies derived from transplanted mouse marrow cells[J].Nature,1963,197:452.
    [7]Kyba M., Perlingeiro R.C.,Daley G.Q. Hoxb4 confers definitive lymphoid-myeloid engraft potential on embryonic stem cell and yolk sac hematopoietic progenitors[J].Cell,2002,109:29-37.
    [8]王彤主编.骨髓间充质干细胞临床研究进展[M].北京:人民卫生出版社,2010:2-18.
    [9]Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells [J]. Science,1999,284(5411):143-147.
    [10]Sato Y, Araki H, Kato J, et al.Human mesenchymal stem cells xenografted directly to rat liver are differentiated into human hepatocytes without fusion[J].Blood,2005,106(2):756-763.
    [11]Popp FC, Slowik P, Eggenhofer E, et al. No contribution of multipotent mesenchymal stromal cells to liver regeneration in a rat model of prolonged hepatic injury [J]. Stem cells, 2007,25(3):639-945.
    [12]di Bonzo LV, Ferrero I,Cravanzola C,et al.Human mesenchymal stem cells as a two-edged sword in hepatic regenerative medicine:engraftment and hepatocyte differentiation versus profibrogenic potential[J]. Gut,2008,57(2):223-231.
    [13]Russo FP, Alison MR, Bigger BW,et al. The bone marrow functionally contributes to liver fibrosis[J]. Gastroenterology,2006,130(6):1807-21.
    [14]Carvalho AB, Quintanilha LF, Dias JV,et al. Bone marrow multipotent mesenchymal stromal cells do not reduce fibrosis or improve function in a rat model of severe chronic liver injury[J].Stem Cells,2008,26(5):1307-14.
    [15]Dalakas E, Newsome PN, Boyle S,et al.Bone marrow stem cells contribute to alcohol liver fibrosis in humans[J]. Stem Cells Dev,2010,19(9):1417-25.
    [16]Alison MR, Islam S, Lim S.Stem cells in liver regeneration, fibrosis and cancer:the good, the bad and the ugly[J]. J Pathol,2009,217(2):282-98.
    [17]Ashihara E, Kawata E, Maekawa T. Future prospect of RNA interference for cancer therapies [J].Curr Drug Targets,2010,11(3):345-360.
    [18]Hannon GJ. RNA interference [J].Nature,2002,418(6894):244-51.
    [19]Filipowicz W. RNAI:the nuts and bolts of the RISC machine [J].Cell,2005,122(1):17-20.
    [20]Daniela C,John JR.The promises and pitfalls of RNA interference based therapeutics[J].Nature,2009,457(7228):426-33.
    [21]Pan H, Zhang W, Zhang W,et al.Find and replace:editing human genome in pluripotent stem cells[J].Protein Cell.2011,2(12):950-6.
    [22]Bessis N, Garciacozar FJ, Boissier MC. Immune responses to gene therapy vectors: Influence on Vector Function and Effector Mechanisms [J].Gene Ther,2004,11:s10-17.
    [23]Praetorius M,Baker K,Brough DE,et al.Pharmacodynamics of adenovector distribution within the inner ear tissues of the mouse[J].Hear Res,2007,227:53-58.
    [24]Lalwani AK,Jero J,Mhatre AN.Current issues in cochlear gene transfer[J].Audiol Neurotol,2002,7:146-151.
    [25]Han D,Yu Z,Fan E,et al.Morphology of auditory hair cells in guinea pig cochlea after transgene expression[J].Hear Res,2004,190:25-30.
    [26]Ishimoto S,Kawamoto K,Stover T,et al.A glucocorticoid reduces adverse effects of adenovirus vectors in the cochlea[J].Audiol Neurootol,2003,8:70-79.
    [27]Pittenger MF.Mackay AM.Beck SC,et al. Multilineage Potential of Adult Human Mesenchymal Stem Cells. [J] Science,1999,284(5411):143-147.
    [28]Spaggiari GM,Capobianco A,Becchetti S,et al. Mesenchymal stem cell-natural killer celIinteractions:evidence that activated NK cellsare capable of killing MSCSs,whereas MSCs can inhibit IL-2-induced NK cell proliferation[J]. Blood,2006,107(4):1484-1490.
    [29]Devine SM,Cobbs C,Jennings M,et al. Medsenchymal stem cells distribute to a wide range of tissues following systemic infuseon into nonhuman primates[J]. Blood,2003,101(8):2999-3001.
    [30]常静,雷寒,陈建斌,等.人间充质干细胞免疫学性质的对比研究[J].临床心血管病杂志,2007,23(10):799-783.
    [31]Lazarus H,Curtin P,Devine S,et al. Role of mesenchymal stemcells in allogeneic transplantation:early phase I clinical results[J]. Blood,2000,96:392a.
    [32]Crop MJ,Baan CC,Korevaar SS,et al. Donor-derived mesenchymal stem cells suppress alloreactivity of kidney transplant patients[J]. Transplantation,2009,87(6):896-906.
    [33]Donckier V,Troisi R,Toungouz M,et al. Donor stemcell infusion after non-myeloabltive conditioning for tolerance induction to HLA mismatched adult living-donor liver graft[J]. Transpl Immunol,2004,13(2):139-146.
    [34]Boyd AS, Rodrigues NP, Lui KO,et al. Concise review:Immune recognition of induced pluripotent stem cells[J]. Stem Cells,2012,30(5):797-803
    [35]叶平等.肝纤维化相关因素的研究现状及进展[M].新医学,2008,39:829-831.
    [36]Chen YL,Li ZY.The relationship between TGF-β1,PDGF-BB,CTGF and chronic hepatitis B with fibrosis[J].Chin J Diffic ComplCas,2010,9(1):19-20.
    [37]姜晓笛.RNA干扰抑制大鼠肝星状细胞CTGF表达的实验研究[D].中国医科大学,2010:28-30.
    [38]李喆.结缔组织生长因子诱导人增生性瘢痕成纤维细胞转分化的研究[D].第三军医大学,2006:76-80.
    [39]许明.结缔组织生长因子反义寡核苷酸对增生性瘢痕成纤维细胞凋亡的作用及其机理[D].第二军医大学,2007:84-85.
    [40]李慧,高春芳,等.结缔组织生长因子在肝病中的研究进展[J].现代免疫学,2012,104(56):424-428.
    [41]张伟.曲尼司特对实验性COPD大鼠气道重塑的干预作用[D].东南大学,2005:75-81.
    [42]刘志达.实验性肝纤维化大鼠肝组织结缔组织生长因子动态变化及其意义[D].河北医科大学,2006:39-41.
    [43]Tang LX, He RH, Yang G,et al. Asiatic acid inhibits liver fibrosis by blocking TGF-beta/Smad signaling in vivo and in vitro[J]. PLoS One,2012,7(2):e31350.
    [44]Mao XR, Yue W, Yuan H,et al. Inhibition effect of small interfering RNA targeting connective tissue growth factor on liver fibrosis in rats [J]. Zhejiang Da Xue Xue Bao Yi Xue Ban,2011,40(6):603-8.
    [45]Rachfal AW, Brigstock DR. Connective tissue growth factor (CTGF/CCN2) in hepatic fibrosis[J].Hepatol Res,2003,26(1):1-9.
    [46]姬汉书.EGFR, CTGF在婴儿胆道梗阻肝内胆管上皮细胞的表达及意义[D].河北医科大学,2008:72-75.
    [47]Gutierrez,Ruiz MC,Gomez,et al. Liver fibrosis:searching for cell model answers[J]. Liver Int,2007,27:434-39.
    [48]焦洁.细胞因子在尘肺病中的表达及其意义[D].郑州大学,2007:32-35.
    [49]Chen YX,Lu CH,Xie WF, et al. Effects of ribozyme targeting platelet- derived growth factor receptor β subunit gene on theproliferation and apoptosis of hepatic stellate cells in vitro[J]. Chin Med J,2005,118:982-8.
    [50]Koutroubakis IE,Malliaraki N,Dimoulios PD,et al. Decreased total and corrected antioxidant capacity in patients with inflammatory bowel disease[J]. Dig Dis Sci,2004,49:1433-1437.
    [51]Rudolph K L, Chang S, M illard M, et al. Inhibition of experiment al liver cirrhosis in m ice by t el om erase gen e delivery[J].Science,2000,287:1253-1258.
    [52]Nishino M,Iimuro Y.Ueki T,et al. Hepatocyte growth factor improves survival after partial hepatectomy in cirrhotic rats suppressing apoptosis of hepatocytes[J]. Surgery,2008,144(3) 374-384.
    [53]Schievenbusch S,Strack I,Scheffler M,et al. Combined paracrine and endocrine AAV9.-mediated expression of hepatocyte growth factor for the treatment of renal fibrosis[J]. Mol Ther,2010,18(7):1302-1309.
    [54]Long X,Xiong SD,Xiong WN,et al. Effect of intramuscular injection of hepatocyte growth factor plasmid DNA with electroporation on bleomycin-induced lung fibrosis in rats[J]. Chin Med J,2007,120(16):1432-1437.
    [55]Matsuoka T,Maeda Y,Matsuo K,et al. Hepatocyte growth factor prevents peritoneal fibrosis in an animal model of encapsulating peritoneal sclerosis[J]. J Nephrol,2008,21(1):64-73.
    [56]Abraham D,Ponticos M,Nagase H. Connective tissue remodeling:cross -talk between endothelins and matrix met alloproteinases[J].Curt Vase PharmacOl,2005,3(4):369-379.
    [57]Bi WR, Yang CQ, Shi Q.Transforming Growth Factor-β1 Induced Epithelial-Mesenchymal Transition in Hepatic Fibrosis. Hepatogastroenterology [J].2012,11 (59):118.
    [58]Maheswaran T, Rushbrook SM. Epithelial-mesenchymal transition and the liver:role in hepatocellular carcinoma and liver fibrosis[J]. Gastroenterol Hepatol,2012,27(3):418-20.
    [59]Yue HY, Yin C, Hou JL et al. Hepatocyte nuclear factor 4alpha atten uates hepatic fibrosis in rats[J].Gut,2010,59(2):236-46.
    [60]Parekkadan B, van Pol 1 D, Suganuma K, et al. Mesenchymal stem cell-derived molecules reverse fulminant hepatic failure. PLoS One,2007,26;2(9):e941.