柴油机螺旋进气道流动实验与数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
柴油机进气道结构是决定气缸内空气量及其涡流强度重要因素,直接影响柴油机混合气形成和燃烧,从而影响柴油机的动力性、经济性和排放性能。本文应用CFD三维数值模拟和气道稳流试验对某柴油机螺旋进气道流动性能进行了研究,具体内容如下:
     采用逆向工程技术测量气道外形,得到气道外形的数值化模型,然后在Pro/E软件上实现了气道的三维实体造型;应用CFD软件进行了稳流试验条件下的气道—气门—气缸内流场的模拟试验;通过网格的优化、湍流模型的选择、壁面的处理使得模拟试验和稳流试验结果达到一定的精度,保证了模拟计算的正确性。
     模拟得到试验的验证后,详细分析了气道流动的速度场、压力场分布情况,为气道结构优化和开发提供了理论依据和指导方向;结合CFD模拟提供的进气道流动微观详细信息分析了气道流量系数和涡流比随气门升程变化趋势的原因。
     研究了螺旋进气道不同结构参数对其流动的影响规律,结合CFD模拟提供的气道流场信息,对该进气道提出了调整引导管和蜗壳连接处的位置来进一步提高流量系数的实用性修改方案,修改方案的模拟试验表明:修改后的气道模型平均流量系数提高了7.3%。
     本文采用气道稳流试验和CFD模拟相结合的方法,实现了对柴油机螺旋进气道改进优化的快速化,这一方法同样适用于其它发动机气道的设计开发中。
The structure of the intake port of diesel engine is an important factor to affect the amount and the strength swirl of fresh air in cylinder, has direct influence on the air fuel mixing and combustion. So it affects the power, economic performance and the emissions. The steady flow test and the CFD 3D numerical simulation were employed to study the helical intake port of a diesel engine in this paper. The main content are as following:
     The technology of reverse engineering was applied to acquire the model date of helical intake port of the diesel engine. And the 3D geometric solid model of the port was built by Pro/E. Then the numerical simulation of the flow field in port-valve-cylinder under the condition of steady testing was done by 3D CFD software. By optimizing grid quality, choosing suitable turbulence model and cliff treatment, the results between simulation test and steady flow test had good agreement. It guaranteed the correctness of the simulation.
     After simulation was verified, field distribution of the flow field in port was analyzed. It provided theoretical basis and guidance to optimize the structure of port. The flow information of the port provided by CFD was used to analyze how the flow coefficient and the swirl ratio vary with different valve lift in this paper.
     The port performances with different structure parameters were studied. With the help of flow characteristic and information provided by CFD, a modification plan by adjusting the position of the connection between guiding tube and spiral to further improve flow coefficient, was put forward. The result of simulation tests of modification plan showed that: the flow coefficient of modified model has been improved by 7.3%.
     The methods of steady flow test and CFD numerical simulation were used to study the helical intake port of a diesel engine, provided a fast way for optimization and design of the port in this paper. They are also could be used in other intake port design process.
引文
[1]Edres H,NeuberH J,Wurms R.Influence of Swirl and Tumble on Economy and Emission of Multi Valve SI Engines[C].SAE920516,1992:942-953.
    [2]刘胜吉,贾和坤,王建.通用小型汽油机进气道CFD模拟计算与分析[J].小型内燃机与摩托车,2009,38(5):45~46.
    [3]毕玉华,何常明,雷基林等.柴油机螺旋气道结构参数对气道性能的影响分析[J].空气动力学学报,2010,28(5):571-575.
    [4]蒋德明.内燃机燃烧与排放学[M].西安:西安交通大学出版社.2001:109~111.
    [5]Philipp Adomeit,Martin Hopp,Anton Schmidt,et al.CAE-Based Port Development and Flow Design for SI Engines[C].SAE Paper,2005.
    [6]杜爱民,段亮,田永祥.四气门汽油机进气道流动特性的CFD分析[J].同济大学学报(自然科学版),2009,37(2):249~252.
    [7]王志,黄荣华,王必璠.基于CAD/CAM/CFD的发动机气道研究[J].内燃机工程,2002,23(3):26~29.
    [8]康秀玲,付光琦,祖炳锋等.4气门柴油机进气特性的数值模拟和试验研究[J].内燃机学报,2003,21(3):261-264.
    [9]胡云萍.柴油机双进气道流动特性的数值模拟及试验研究[J].内燃机,2010,(1):4-8.
    [10]Philipp Adomeit,Martin Hopp,Anton Schmidt,et al.CAE-Based Port Development and Flow Design for SI Engines[C].SAE Paper,2005.
    [11]Gmsman A D. Ahmed A M Y. Measurement and multidimensional prediction of flow in an axisysmmetic port,valve assembly. SAE 870592.
    [12]Shigeki Sugiura. Numerical analysis of flow in the induction system of internal combustion engine. SAE 900255.
    [13]Dent J C,Chen A. An investigation of steady flow through a curved inlet port. SAE940522.
    [14]Kang Y Huh,Chang Ryol Choi,Jong Gyn Kim. Flow Analysis of the Helical Intake Port and Cylinder of a Direct Injection Dissel Engine. SAE952069.
    [15]Willian Taylor, James H. Leylek, Randall G. Sommer. IC Engine Intake Region Design Modifications for Loss Reduction Based on CFD Methods. SAE981026,1998.
    [16]C. M.Moraes, Jeffrey C. Buell, Robert M. Fefencz In-Cylinder Cold Flow Simulation Using a Finite element Method. Compute Methods ppl. Mesh Engine.2001 (190):3069~3080.
    [17]Ugur Kesgin. Study on the Design of Inlet and Exhaust System of a Stationary Internal Combustion Engine. Energy Conversion and Managemeut.2005,46:2258~2287.
    [18]G.Fontana,E.Galloni.Variable valve timing for fuel economy improvement in a small spark-ignition engine[EB]./ELSEVIER Ltd,2009. http://www.sciencedirect.com/science.
    [19]刘耀峰,韩占忠,闰为革等.内燃机气道内气体流动研究方法应用研究[J].内燃机,2001(6):20~22.
    [20]常思勤,刘雪洪,何小明.现代设计方法在螺旋进气道设计中应用[J].内燃机学报,1999,17(4):365-369.
    [21]杨玟,吴承雄.螺旋进气道—气门—气缸内空气运动的3维数值模拟[J].内燃机学报,1999,17(1):11~13.
    [22]韩占忠,赵福堂,刘耀峰.发动机进气门处气体流动数值模拟[J].车辆与动力技术,2001(2).
    [23]夏兴兰,杨雄,朱忠伟等.数值模拟方法在柴油机进气道改进中的应用[J].内燃机学报,2002,20(5).
    [24]王志,黄荣华4BTAA柴油机螺旋进气道三维数值模拟[J].燃烧科学与技术,2004,10(2):176-180.
    [25]罗马吉,黄震,陈国华等.发动机进气流动三维瞬态数值模拟研究闭[J].空气动力学学报,2005,23(1):74~83.
    [26]陈涛等.高压差下增压柴油机进气道流通特性研究[J].内燃机工程,2008,29(5).
    [27]李明海,王磊,崔洪江.基于数值模拟的螺旋进气道结构优化[J].内燃机车,2009,(6):16-21.
    [28]李云清,成传松,刘宾等.改善495汽油机燃烧性能的分析研究[J].内燃机工程,2010,31(3):52~56.
    [29]赵振武,刘书亮,刘德新等.气道稳流试验的变压差试验研究[J].内燃机学报,2004,22(1):79~85.
    [30]梁桂华.柴油机缸内流场的PIV技术应用研究及数值模拟[D].大连理工大学博士学位论文,2009.
    [31]张小矛,谢枫.发动机螺旋进气道三维流场数值模拟及实验研究[J].小型内燃机与摩托车,2007,36(3):1-4.
    [32]蒋炎坤.CFD辅助发动机工程的理论与应用[M].科学出版社,2004.
    [33]王健,刘德新,刘书亮等.四气门汽油机进气道流动特性的稳流试验研究[J].内燃机学报,2004,22(2):182~186.
    [34]夏兴兰,陈大陆,王胜利.内燃机气道性能的评价方法[J].现代车用动力,2007,(2):7-12.
    [35]王忠,梅德清.柴油机二、四气门进气道流动特性评价指标与对比分析[J].小型内燃机与摩托车,2001,30(6):8~12.
    [36]Gerber A,Charnay G Comparisons between steady and unsteady flows in cylinders of an internal combustion engine.SAE850121.
    [37]刘琦.气体流量测量时的密度补偿[J].中国计量,2005,(z1).
    [38]张也影.流体力学[M].北京:高等教育出版社,1999(2004重印):257~272.
    [39]Khalighi B,EL Tahry S H,Haworth D C et al. Computation and Measurement of Flow and Combustion in a Four-Valve Engine with Intake Variations.SAE950287,1995.
    [40]Issa R I.Ahmadi Befrui B,Beshay K.Solution of the Implicititly Discretised Reacting Flow Equation by Operator-Splitting.J.Comp.Phys,93:388~410,1991.
    [41]Patanka S V,Spalding D B.A Calculation Procedure for Heat Mass And Momentum Transfer in Tree-Dimensional parabolic Flow.Int.J.Heat Mass Tranfer,12:1787,1972.
    [42]刘德平.逆向工程关键技术及其应用研究[D].西安电子科技大学,博士论文,2008.
    [43]马群,王芝秋,黄锦星.具有螺旋进气道的内燃机进气系统三维流场的数值模拟研究[J].柴油机,2008,30(6):30~34.
    [44]Gale N.F. Diesel Engine Cylinder Head Design: The Compromises and the Techniques [C]. SAE,1900,133~137.
    [45]蔡忆昔,蔡继业.基于Fluent软件的直喷柴油机螺旋进气道设计[J].农业机械学报,2006,37(6).
    [46]王志帅,石金,王建昕等.汽车发动机进气道流场三维数值解析与优化[J].清华大学学报(自然科学版),2004,44(8).