基于前驱体法的多孔无机胶体材料合成及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多孔材料是90年代初迅速兴起的一类新型结构材料,具有较大的比表面积、良好的均匀透过性、比强度高、重量轻、隔音、隔热、渗透性好等优点,使其具有其它材料难以取代的优异性质,成为跨学科研究的重点之一。以往的研究主要集中于探索新的多孔材料合成方法及其应用研究,经过近20年的发展,硅基与非硅基有序多孔材料的合成已经相当成熟。目前,研究者们的注意力开始转移到形貌可控、组成可控以及多孔性可控的多孔材料合成。纳米材料的出现以及纳米科技的发展为多孔胶体材料的合成与应用提供了新的契机。与传统模板法合成的块体多孔材料相比,多孔胶体材料具有更好的分散性,特别是在催化反应中,传质过程更快、更高效。前驱体法是一种制备多孔材料的有效方法。近年来在制备多孔材料的研究中引起了人们的广泛关注。前驱体法的优势在于可以通过合成参数的调节,控制前驱体的颗粒大小、形貌、分散性等,从而制备出满足各种应用需求的多孔胶体材料。基于此,本论文研究了几种基于前驱体的多孔材料制备路线,通过XRD、SEM、TEM、 HRTEM、BET、XPS、TGA等材料表征方法,对前驱体的可控合成以及转化合成多孔胶体材料的可行性进行了系统研究,并对其在相关领域的潜在应用进行了探索,本论文主要开展了以下几方面的研究工作:
     (1)在第2章中,发展了一种基于配位化学的单组分/多组分稀土胶体球的制备路线。该方法具有普适性,适用于任何稀土元素。由于稀土元素具有类似的配位化学性质,在该体系中,每种稀土元素具有几乎一样的配位化学行为,当加入两种或多种稀土硝酸盐,就能制备出多组分的固溶体胶体球,组分之间的摩尔比率任意可调,并且元素mapping测试表明每种组分在单个胶体球上分布非常均匀。更重要的是,所制备的多组分胶体球继承了稀土元素特有的磁学及发光性质,它们的荧光性质能够通过调节掺杂离子的种类及浓度而变化。在此基础之上,进一步系统研究了热解转化制备单组分/多组分稀土氧化物胶体球的可行性,研究表明制备的氧化物固溶体球仍然具有单分散性,且元素分布均一。以上研究不但为多组分稀土材料的制备提供了新思路,并且所开发的多组分稀土固溶体胶体球在固体电解质,催化,荧光材料等领域具有很大的研究与应用价值。
     (2)在第3章中,建立了一种简易的、间接的制备路线合成多孔稀土基胶体球。由于不同稀土元素化合物溶度积常数(ksp)及生长速度的不同,利用阴离子直接沉淀法制备多孔多组分的稀土基胶体球几乎难以实现。本研究发展的方法绕开了不同稀土元素化合物的本质差异(溶度积、饱和浓度和生长速度),利用了它们的共性-配位化学性质。首先,将不同的稀土离子用配位剂沉淀,然后利用水热辅助的离子交换方法,通过控制试验参数,转化合成了一系列多孔单组分/多组分稀土氧化物,稀土氟化物,稀土磷酸盐胶体球。该合成路线实现了对产物的微观形貌、多孔性、元素组成与分布的多重控制。
     (3)在第4章中,以有机醇盐为前驱体,开发出了一种一般性的多孔胶体球制备方法。该合成路线主要利用了有机醇盐易水解的特点,首先在丙酮中通过反溶剂作用制备出有机醇盐胶体球,然后将所制得的醇盐前驱体在水热条件下原位水解,形成多孔结构,所得产物不但保持了球形形貌,具有好的分散性,并且具有大的比表面积。将制备的这些胶体球应用到催化反应中,催化活性大大提高,与迄今报道的最好结果相比,反应速度提高了一倍以上。
     (4)在第5章建立了一种基于碳酸盐体系的多孔胶体颗粒制备路线。首先利用溶剂热体系,控制制备出不同形貌的具有单分散性的碳酸钴胶体颗粒前驱体,并系统研究了合成条件对产物形貌的影响,总结出其内在的生长机制。然后将所得产物热转化制备出多孔氧化钴胶体颗粒。结果表明,所得产物保持了前驱体均一的微观形貌。氮气吸附测试表明所制备的颗粒具有大的比表面积,将其应用于乙醇与一氧化碳气体传感器,展现出了非常好的灵敏度和响应速度。
     (5)在第6章中发展了一种基于配位聚合物的多孔过渡金属氧化物纳米线的合成体系。在水热条件下控制合成了3d过渡金属配合物纳米线,并且对该反应体系进行了系统研究,探索了各反应参数如前驱体盐、温度以及溶剂比率与形貌之间的关系。通过在空气中热分解这些配合物,能够简单的制备出它们对应的多孔氧化物纳米线。这些产物不但保留了原有的纳米线形貌,并且由于有机组分分解留下大量孔洞。多孔结构和大比表面积使得这些3d过渡金属氧化物在催化,能源储存等方面具有非常大的应用前景。将制备的多孔过渡金属氧化物材料用作锂离子电池负极材料时,表现出了极好的充放电循环性能。
The porous materials, as a new class of structural materials, have received considerable attention since1990s, due to their large specific surface area, and good uniformity through strength, light weight, good sound and heat insulation, permeability, etc. These porous materials possess a lot of promising properties, which are different from their solid counterparts. The emergence of nanomaterials as well as the development of nano techno logy provides a new opportunity for the development and application of porous materials. Compared with the conventional bulk porous materials synthesized by templates, nanoscaled porous materials have better dispersibility. They are emerging as promising materials for broad applications in enzyme immobilization, adsorption, energy storage, drug delievery, CO2capture and catalysis, and can also serve as fundamental building blocks for complex structures. As supports for catalysts, monodisperse porous spheres inherit the merits of the large specific surface area of their large bulk counterparts and high dispersibility of tiny nanoscale particles in a liquid medium. Therefore, they will be able to well mediate the conflicts between short diffusion path, high catalytic activity, and facile recyclable separation after use. Furthermore, the specific pore structures in porous spheres have been used to immobilize functional molecules and nanoparticles to tailor the material properties or as templates for the synthesis of namomaterials replicas. In this regards, extensive research efforts have focused on the synthesis of diverse porous spheres during the past few years. In particular, research in the synthesis of porous nonsiliceous spheres has seen tremendous growth, which extensively broadened the scope of porous sphere materials. However, development of a low-cost, simple synthesis process for porous nanomaterials is still a great challenge in present study. In this dissertation, we explore sveral precursor-based synthetic routes for the controllable preparation of porous nanomaterials prepared with different morphologies. More details ae summarized below:
     (1) In chapter2, we have devised in this work a general synthetic strategy for preparation of single-and multicomponent rare-earth coordination polymer colloidal spheres (RE-CPCSs). This strategy is based on an integration of coordination chemistry and antisolvent effect for synchronized precipitation. Highly monodisperse RE-CPCSs with homogeneous mixing of RE elements, which are not readily attainable by any existing methods, have been successfully prepared for the first time. In addition, the type and molar ratio of these colloidal spheres can be adjusted easily in accordance to the variety and dosage of precursor salts. The molar ratio of RE elements in as-prepared colloidal spheres shows a linear relationship to that of starting reactants. Furthermore, the RE based core/shell colloidal spheres can be facilely prepared by introducing other metal salts (beyond lanthanide elements) owing to their different coordination chemistry and precipitation behavior. By adjusting concentrations of the ionic activators, luminescent properties can be tuned accordingly. Furthermore, the RE-CPCSs can be transformed to monodisperse lanthanide oxide spheres via simple heat treatment. We believe that the present synthetic strategy provides a viable route to prepare other lanthanide containing colloidal spheres that have enormous potential for future applications as optoelectronic devices, catalysts, gas sensors and solar cells.
     (2) In chapter3, we demonstrate a novel indirect synthetic route to prepare monodisperse porous multicomponent rare earth (RE) based colloidal sphere with uniform size and tunable compositions using RE-CPCSs as precursors. For the multicomponent system, the essential differences of lanthanides in solubility product constant (Ksp), saturated concentration and growth rate, make it almost impossible to synthesize multicomponent RE-based colloidal sphere with controlled morphology and porosity. Generally, the Ksp value of a lanthanide precipitation decreases with decreased ionic radius of the RE ions, following the lanthanide contraction law. Since the colloidal spheres are formed via nucle at ion/growth processes, nucleation can only takes place when the degree of supersaturation (S, given below) reaches the critical supersaturation. It thus can be inferred from that stable nuclei of RE ions with small ionic radii are easier to be formed compared to those with larger ionic radii. This conclusion has also been demonstrated by Matijevic's experimental results, in which the light lanthanides tend to precipitate in a way different from those heavier ones in terms of morphology of the resultant particles during the direct precipitation process. However, the indirect synthetic strategy is based on the integration of coordination chemistry precipitation of RE ions and subsequent ion-exchange process so as to steer clear of obstacle from differences in solubility product constant.
     (3) In chapter4, we develop a low-cost reaction protocol to synthesize highly effective mesoporous Nb2O5-based solid acid catalysts with additional morphological control. In the synthesis, the monodisperse glycolated niobium oxide spheres (GNOS) were prepared by a simple antisolvent precipitation approach, and subsequently converted to mesoporous niobium oxide spheres (MNOS) with large surface area of312m2·g-1by hydrothermal treatment. The obtained mesoporous MNOS were further functionalized with sulfate anions at different temperatures or incorporated with tungstophosphoric acid (TPA) to obtain recyclable solid acid catalysts. The antisolvent acetone used in obtaining GNOS can be completely recovered at a high purity. Our MNOS-based catalysts have shown remarkable performance in a wide range of acid-catalyzed reactions such as Friedel-Crafts alkylation, esterification and hydrolysis of acetates. Because they are monodisperse spheres with diameters in submicrometer regime, the catalysts can be easily separated and reused.
     (4) In chapter5, we report a polyo1process for controlled growth of cobalt carbonate (COCO3). A preparative investigation on morphogenesis of COCO3crystals has been carried out, and three types of highly uniform COCO3products (i.e., peanut-like, capsule-like, and rhombus crystals) in the submicrometer region have been synthesized at200℃under batch conditions. Uniform particles of tricobalt tetroxide (CO3O4) have also been obtained at300℃from the COCO3submicrometer crystals after thermal transformation in laboratory air. The CO3O4powder products possess mesoporosity and essentially preserve the pristine morphologies of their respective solid precursors. Due to high crystal uniformity and specific surface areas in the range of140-149m2/g, the mesoporous CO3O4exhibits enhanced performances for ethanol and carbon monoxide sensing.
     (5) In chapter6, transition metal-based coordination polymer nanowires were synthesized using nitrilotriacetic acid (NA) as a chelating agent by a one-step hydrothermal approach. In the synthesis, transition metal ions were bonded with amino or carboxyl groups of NA to form one-dimension polymer nanowires, which can be confirmed by FTIR and TGA results. Our experimental results show that the morphologies of polymer nanowires greatly depend on the precursor salts, ratios between deionized water and isopropyl acohol. The probable molecular formula and growth mechanism have been proposed. After heat treatment, the cobalt ion-based coordination polymer nanowires can be converted into porous transition metal oxide nanowires, which completely preserved the nanowire-like morphology. When used as anodes in lithium-ion batteries, the obtained porous nanowires exhibited a high reversible capacity of810mAhg-1and stable cyclic retention at30th cycle. The good electrochemical performance could be attributed to the porous nanostructure, which provides pathways for easy accessibility of electrolytes and fast transportation of lithium ions.
引文
[1]Handbook of Heterogeneous Catalysis, Vol.1 (Eds:G. Ertl, H. Kno-zinger, J. Weitkamp), Wiley-VCH, Weinheim, Germany 1997.
    [2]Kresge C T, Leonowicz M E, Roth W J, et al. Ordered Mesoporous Molecular Sieves Synthesized by a Liquid-crystal Template mechanism. Nature,1992, 359(6397):710-712
    [3]Yanagisawa T, Shimizu T, Kuroda K, et al. The Preparation of Alkytrimethylammonium-Kanemite Complexes and Their Conversion to Microporons Materials. Bulletin of the Chemical Society of Japan,1990,63(4): 988-992
    [4]Corma A. From Microporous to Mesoporous Molecular Sieve Materials and Their Use in Catalysis. Chemical Review,1997,97(6):2373-2420
    [5]Ying J Y, Mehnert C, Wong M S. Synthesis and Applications of Supramolecular-Templated Mesoporous Materials. Angewandte Chemie International Edition,1999,38(1-2):56-57
    [6]Schuth F. Non-siliceous Mesostructured and Mesoporous Materials. Chemistry of Materials,2001,13(10):3184-3195
    [7]Soler-Illia G J, Sanchez C, Lebeau B, et al. Chemical Stategies to Design Textured Materials:from Microporous and Mesoporous Oxides to Nanonetworks and Hierarchical Structures. Chemical Review,2002,102(11): 4093-4138
    [8]Schuth F, Schmidt W. Microporous and Mesoporous Materials. Advanced Materials,2002,14(9):629-638
    [9]Stein A. Advances in Microporous and Mesoporous Solids:Highlights of Recent Progress. Advanced Materials,2003,15(10):763-775
    [10]Schuth F. Endo-and Exotemplating to Create High-Surface-Area Inorganic Materials. Angewandte Chemie International Edition,2003,42(31):3604-3622
    [11]He X, Antonelli D. Recent Advances in Synthesis and Applications of Transition Metal Containing Mesoporous Molecular Sieves. Angewandte Chemie International Edition,2002,41(2):214-219
    [12]Taguchi A, Schuth F. Ordered Mesoporous Materials in Catalysis. Microporous Mesoporous Materials,2005,77(1):1-45
    [13]Viswanathan B, Jacob B. Alkylation hydrogenation and Oxidation Catalyzed by Mesoporous Materials. Catalysis Reviews:Science and Engineering,2005, 47(1),1-82
    [14]On D T, Desplantier-Giscard D, Danumah C, et al. Perspectives in Catalytic Applications of Mesostructured Materials. Applied Catalysis A:General,2001, 222(1-2):299
    [15]张立德,纳米材料,2001,95-102,北京:化学工业出版社
    [16]Zhu Y, Shi J, Shen W, et al. Stimuli-Responsive Controlled Drug Release from a Hollow Mesoporous Silica Sphere/Polyelectrolyte Multilayer Core-Shell Structure. Angewandte Chemie International Edition,2005,44(32):5083-5087
    [17]Yuan J, Laubernds K, Zhang Q, et al. Self-assembly of Microporous Manganese Oxide Octahedral Molecular Sieve Hexagonal Flakes into Mesoporous Hollow Nanospheres. Journal of the American Chemical Society,2003,125(17): 4966-4967
    [18]Zhu Y, Fang Y, Kaskel S. Folate-Conjugated Fe3O4@SiO2 Hollow Mesoporous Spheres for Targeted Anticancer Drug Delivery. Journal of Physical Chemistry C,2010,114(39):16382-16388
    [19]Hu J, Chen M, Fang X S, et al. Fabrication and Application of Inorganic Hollow Spheres. Chemical Society Review,2011,40(11):5472-5491
    [20]Feng Z G, Li YS, Niu D C, et al. A Facile Route to Hollow Nanospheres of Mesoporous Silica with Tunable Size. Chemical Communications,2008,23, 2629-2631
    [21]Zhao W R, Lang M D, Li Y S, et al. Fabrication of Uniform Hollow Mesoporous Silica Spheres and Ellipsoids of Tunable Size through a Facile Hard-Temp la ting Route. Journal of Materials Chemistry,2009,19(18):2778-2783
    [22]Shiomi T, Tsunoda T, Kawai A, et al. Synthesis of a Cagelike Hollow Aluminosilicate with Vermiculate Micro-through-Holes and Its Application to Ship-In-Bottle Encapsulation of Protein. Small,2009,5(1):67-71
    [23]Li Y S, Shi J L, Hua Z L, et al. Hollow Spheres of Mesoporous Aluminosilicate with a Three-Dimensional Pore Network and Extraordinarily High Hydrothermal Stability. Nano Letter,2003,3(5):609-612
    [24]Caruso F, Caruso R A, Mohwald H. Nanoengineering of Inorganic and Hybrid Hollow Spheres by Colloidal Templating. Science,1998,282(5391):1111-1114
    [25]Lou X W, Archer L A, Yang Z C. Hollow Micro-/Nano structures:Synthesis and Applications. Advanced Materials,2008,20(21):3987-4019.
    [26]Zhu Y F, Kockrick E, Ikoma T. An Efficient Route to Rattle-Type Fe3O4@SiO2 Hollow Mesoporous Spheres Using Colloidal Carbon Spheres Templates. Chemistry of Materials,2009,21(12):2547-2553
    [27]Beck J S, Vartuli J C, Roth W J. et al. A New Family of Mesoporous Molecular Sieves Prepared with Liquid Crystal Templates. Journal of the American Chemical Society,1992,114(27):10834-10843
    [28]Fan J, Lei J, Wang L M, etal. Rapid and High-capacity Immobilization of Enzymes based on Mesoporous Silica with Controlled Morphologies. Chemical Communications,2003,17,2140-2141
    [29]Grzelczak M, Correa-Duarte M A, Liz-Marzan L M. Carbon Nanotubes Encapsulated in Wormlike Hollow Silica Shells. Small,2006,2(10):1174-1177
    [30]Niu D, Ma Z, Li Y, et al. Synthesis of Core-Shell Structured Dual-Mesoporous Silica Spheres with Tunable Pore Size and Controllable Shell Thickness. Journal of the American Chemical Society,2010,132(43):15144-15147
    [31]Teng Z, Su X, Zheng Y, et al. Mesoporous Silica Spheres with Ordered Radial Mesochannels by a Spontaneous Self-Transfornation Approach. Chemistry of Materials,2013,25(1):98-105
    [32]Chen Y, Chen H, Guo L, et al. Hollow/Rattle-Type Mesoporous Nanostructures by a Structural Difference-Based Selective Etching Strategy. ACS Nano,2010, 4(1):529-539
    [33]Zhao W R, Chen H R, Li Y S, et al. Uniform Rattle-Type Hollow Magnetic Mesoporous Spheres as Drug Delivery Carriers and Their Sustained-Re lease Property. Advanced Functional Materials,2008,18(18):2780-2788
    [34]Fan J, Lei J, Wang L M, et al. Rapid and High-Capacity Immobilization of Enzymes Based on Mesoporous Silicas with Controlled Morphologies. Chemical Communications,2003,17,2140-2141.
    [35]Zhu Y F, Shen W H, Dong X P, et al. Immobilization of Hemoglobin on Stable Mesoporous Multilamellar Silica Vesicles and Their Activity and Stability. Journal of Materials Research,2005,20(10):2682-2690
    [36]Cai Q, Luo Z S, Pang W Q, et al. Dilute Solution Routes to Various Controllable Morphologies of MCM-41 Silica with a Basic Medium. Chemistry of Materials,2001,13(2):258-263
    [37]Yamada Y, Yano K. Synthesis of Monodispersed Super-Microporous/Mesoporous Silica Spheres with Diameters in the Low Submicron Range. Microporous and Mesoporous Materials,2006, 93(1-3):190-198
    [38]Agrawal M, Gupta S, Pich A. A. Facile Approach to Fabrication of ZnO-TiO2 Hollow Spheres. Chemistry of Materials,2009,21(21):5343-5348
    [39]Shang S, Jiao X, Chen D. Template-Free Fabrication of TiO2 Hollow Spheres and Their Photocatalytic Properties. ACS Applied Materials & Interfaces,2012, 4(2):860-865
    [40]Zhang G, Shen X, Yang Y. Facile Synthesis of Monodisperse Porous ZnO Spheres by a Soluable Starch-As sis ted Method and Their Photocatalytic Activity. The Journal of Physical Chemistry C,2011,115(15):7145-7152
    [41]Cheng X, Chen M, Wu L, et al. Novel and Facile Method for the Preparation of Monodispersed Titania Hollow Spheres. Langmuir,2006,22(8):3858-3863
    [42]Li X, Tang C, Ai M, et al. Controllable Synthesis of Pure-Phase Rare-Earth Ofthoferrites Hollow Spheres with a Porous Shell and Their Catalytic Performance for the CO+NO Reaction. Chemistry of Materials,2010,22 (17): 4879-4889
    [43]Li H, Bian Z, Zhu J, et al. Mesoporous Titania Spheres with Tunable Chamber Stucture and Enhanced Photocatalytic Activity. Journal of the American Chemical Society,2007,129(27):8406-8407
    [44]Strandwitz N, Stucky G D. Hollow Microporous Cerium Oxides Spheres Templated by Colloidal Silica. Chemistry of Materials,2009,21(19): 4577-4582
    [45]Fang X, Liu Z, Hsieh M F, et al. Hollow Mesoporous Aluminosilica Spheres with Perpendicular Pore Channels as Catalytic Nanoreactors. ACS Nano,2012, 6(5):4434-4444
    [46]Wang S, Lu Z, Wang D, et al. Porous Monodisperse V2O5 Microspheres as Cathode Materials for Lithium-ion Batteries. Journal of Materials Chemistry, 2011,21(17):6365-6369
    [47]Lang L, Li B, Liu W, et al. Mesoporous ZnS Nanospheres:A High Activity Heterogeneous Catalyst for Synthesis of 5-Substituted 1H-tetrazoles from Nitriles and Sodium Azide. Chemical Communications,2010,46(3):448-450
    [48]Antonelli D M, Ying J Y. Synthesis of Hexagonally Packed Mesoporous TiO2 by a Modified Sol-Gel Method. Angewandte Chemie International Edition,1995, 34(18):2014-2017
    [49]Tatsuda N, Nakamura T, Tamamoto D, et al. Synthesis of Highly Monodispersed Mesoporous Tin Oxides Spheres. Chemistry of Materials,2009, 21 (21):5252-5257
    [50]Zhong L S, Hu J S, Wang L J, et al. Facile Synthesis of Nanoporous Anatase Spheres and Their Environmental Applications. Chemical Communications, 2008,1184-1186
    [51]Shchukin D G, Caruso R A. Template Synthesis and Photo catalytic Properties of Porous Metal Oxide Spheres Formed by Nanoparticle Infiltration. Chemistry of Materials,2004,16(11):2287-2292
    [52]Tsung C K, Fan J, Zheng N F, et al. A General Route to Diverse Mesoporous Metal Oxide Submicrospheres with Highly Crystalline Frameworks. Angewandte Chemie International Edition,2008,47(45):8682-8686
    [53]Guo L, Zhang L, Zhang J, et al. Hollow Mesoporous Carbon Spheres-an Excellent Bilirubin Adsorbent. Chemical Communications,2009,40,6071-6073
    [54]Nakamura T, Yamada Y, Yano K. Monodispersed Nanoporous Starburst Carbon Spheres and Their Three-Dimensionally Ordered Arrays. Microporous & Mesoporous Materials 2009,117(1-2):478-485
    [55]Valle-Vigon p, Sevilla M, Fuertes A B. Synthesis of Uniform Mesoporous Carbon Capsules by Carbonization of Organosilica Nanospheres. Chemistry of Materials,2010,22(8):2526-2533
    [56]Lu A H, Sun T, Li W C. Synthesis of Discrete and Dispersible Hollow Carbon Nanospheres with High Uniformity By Using Confined Nanospace Pyrolysis. Angewandte Chemie International Edition,2011,50(49):11765-11768
    [57]Wen Z H, Wang Q, Li J H. Pt-C Core-Shell Nanoparticles Embedding in Mesoporous Carbon as Methanol Tolerant Cathode Catalyst in Direct Methanol Fuel Cell. Advanced Materials,2008,20(4):743-747
    [58]Wen Z H, Wang Q, Zhang Q, et al. Template Synthesis of Aligned Carbon-Nanotubes Arrays Using Glucose As Carbon Source:Pt Decorating Its Inner and Outer Surfaces for Fuel-Cell Catalysts. Advanced Functional Materials,2008,18(6):959-964
    [59]Ikeda S, Tachi K, Ng Y, et al. Selective Adsorption of Glucose-Derived Carbon Precursor on Amino-Functionalized Porous Silica for Fabrication of Hollow Carbon Spheres with Porous Walls. Chemistry of Materials,2007,19(17): 4335-4340
    [60]Parmentier J, Saadhallah S, Reda M. et al. New Carbons with Controlled Nanoporosity Obtained by Nanocasting Using a SBA-15 Mesoporous Silica Host Matrix and Different Preparation Routes, Journal of Physics and Chemistry of Solids,2004,65(2-3):139-146
    [61]Vix-Guterl C, Saadallah S, Jurewicz K. et al. Supercapacitor Electrodes from New ordered Porous Carbon Materials Obtained by a Templating Procedure, Materials Science and Engineering:B,2004,108(1-2):148-155
    [62]Fuertes A B, Alvarez S. Graphitic Mesoporous Carbons Synthesised Through Mesostructured Silica Templates. Carbon,2004,42(15):3049-3055
    [63]Kim J, Lee J, Hyeon T. Direct Synthesis of Uniform Mesoporous Carbons From the Carbonization of as-Synthesized Silica/Triblock Copolymer Nanocomposites. Carbon,2004,42(12-13):2711-2719
    [64]Fang Y, Gu D, Zou Y, et al. A Low-Concentration Hydrothermal Synthesis of Biocompatible Ordered Mesoporous Carbon Nanospheres with Tunable and Uniform Size. Angewandte Chemie International Edition,2010,49(43): 7987-7991
    [65]Rowsell J L C, Yaghi O M. Metal-organic Frameworks:A New Class of Porous Materials. Microporous and Mesoporous Materials,2004,73,3-14
    [66]Yaghi O M, O'Keeffe M, Ockwig N W, et al. Reticular Synthesis and the Design of New Materials. Nature,2003,423(12):705-714
    [67]Kitagawa S, Kitaura R, Noro S, Angew. Functional Porous Coordination Polymers. Angewandte Chemie International Edition,2004,43(18):2334-2375
    [68]Vodak D T, PQDD. Hydrogen Storage in Microporous Metal-Organic Frameworks. Science,2003,300(5662):1127-1129
    [69]Kepert C J, Prior T. J, Rosseinsky M J. Hydrogen bond-directed hexagonal frameworks based on coordinated 1,3,5-benzenetricarboxylate. Journal of Solid State Chemistry,2000,152(1):261-270
    [70]Yaghi O M, Davis C E, Li G, et al. Selective Guest Binding by Tailored Channels in a 3-D Porous Zinc(Ⅱ)-1,3,5-Benzenetricarboxylate Network. Journal of the American Chemical Society,1997,119(12):2861-2868
    [71]Xu H, Li Y. Two New Microporous Coordination Polymers Constructed by Ladder-like and Ribbon-Like Molecules with Cavities. Journal of Molecular Structure,2004,693(1-3):11-15
    [72]Snurr R Q, Hupp J T, Nguyen S T. Prospects for Nanoporous Metal-organic Materials in Advanced Separations Processes. AIChE Journal,2004,50(6): 1090-1095
    [73]Vishnyakov A, Ravikovitch P I, Neimark A V. Nanopore Structure and Sorption Properties of Cu-Btc Metal-Organic Framework. Nano Letters,2003,3(6): 713-718
    [74]Duren T, Sarkisov L, Yaghi O M, et al. Design of New Materials for Methane Storage. Langmuir,2004,20(7):2683-2689
    [75]Rowsell J L C, Millward A R, Yaghi O M, et al. Hydrogen Sorption in Functionalized Metal-Organic Frameworks. Journal of the American Chemical Society,2004,126(18):5666-5667
    [76]Skoulidas A I. Molecular Dynamics Simulations of Gas Diffusion in Metal-Organic Frameworks:Argon in CuBTC. Journal of the American Chemical Society,2004,126(5):1356-1357
    [77]Cussen E J, Claridge J B, Rosseinsky M J, et al. Flexible Sorption and Transformation Behavior in a Microporous Metal-Organic Framework. Journal of the American Chemical Society,2002,124(32):9574-9581
    [78]Muler U, Harth K, Holzle M, et al. US 0148165 Al,2003.
    [79]Zheng X J, Li L C, Jin L P, et al. Hydrothermal Syntheses, Structures and Magnetic Properties of Two Transition Metal Coordination Polymers with a Square Grid Framework. Polyhedron,2004,23(7):1257-1262
    [80]Liu X J, Fang Q R, Qiu S L, et al. Crystal structure and Fluorescence of a Novel 3D Inorganic-Organic Hybrid Polymer with Mixed Ligands. Inorganic Chemistry Communications,2004,7(1):31-34
    [81]Eddaoudi M, Kim J, Rosi N, et al. Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage. Science,2002,295(5554):469-472
    [82]Rosi N L, Eckert J, Yaghi O M, et al. Hydrogen Storage in Microporous Metal-Organic Frameworks. Science,2003,300(5622):1127-1129
    [83]Yang H, Zhao D. Synthesis of Replica Mesostructures by the Nanocasting Strategy. Journal of Materials Chemistry,2005,15(12):1217-1231
    [84]Ryoo R, Joo S H, Jun S. Synthesis of Highly Ordered Carbon Molecular Sieves via Temp late-mediated Structural Transformation, Journal of Physics Chemitry B,1999,103(37):7743-7749
    [85]Shi Y F, Wan Y, Liu R L, Tu B, Zhao D Y. Synthesis of Highly Ordered Mesoporous Crystalline WS2 and MoS2 via a High-Temperature Reductive Sulfuration Route. Journal of the American Chemical Society,2007,129(30): 9522-9531
    [86]Zeng Y, Wang X, Wang H, Dong Y, Ma Y and Yao J. Multi-shelled Titania Hollow Spheres Fabricated by a Hard Template Strategy:Enhanced Photocatalytic Activity. Chemical Commununications,2010,46,4312-4314.
    [87]Jia G, You H, Zheng Y, Liu K, Guo N and Zhang H. Synthesis and Characterization of Highly Uniform Lu2O3:Ln3+(Ln=Eu,Er,Yb) Luminescent Hollow Microspheres. CrystEngComm,2010,12(10):2943-2948
    [88]Caruso R A, Susha A and Caruso F. Multilayered Titania, Silica, and Laponite Nanoparticle Coatings on Polystyrene Colloidal Templates and Resulting Inorganic Selective Facet Reactivity during Cation Exchange in Cadmium Sulfide Nanorods. Hollow Spheres. Chemistry of Materials,2001,13(2): 400-409
    [89]Caruso F, Caruso R A and Mohwald H. Nanoengineering of Inorganic and Hybrid Hollow Spheres by Colloidal Templating. Science,1998,282(5391): 1111-1114
    [90]Caruso F, Shi X, Caruso R A, et al. Hollow Titania Spheres from Layered Precursor Deposition on Sacrificial Colloidal Core Particles. Advanced Materials,2001,13(10):740-744
    [91]Wang L, Ebina Y, Takada K, et al. Ultrathin Hollow Nanoshells of Manganese Oxide. Chemical Communications,2004,1074-1075
    [92]Wang X, Yang W, Tang Y, et al. Fabrication of Hollow Zeolite Spheres. Chemical Communications,2000,2161-2162
    [93]Caruso F, Spasova M, Susha A, et al. Magnetic Nanocomposite Particles and Hollow Spheres Constructed by a Sequential Layering Approach. Chemistry of Materials,2001,13(1):109-116
    [94]Chen M, Wu L, Zhou S, et al. A Method for the Fabrication of Monodisperse Hollow Silica Spheres. Advanced Materials,2006,18(6):801-806
    [95]Cheng X, Chen M, Wu L, et al. A Novel and Facile Preparation Method of Hollow Silica Spheres Containing Small SiO2 Cores. Journal of Polymer Science Part A:Polymer Chemistry,2007,45(15):3431-3439
    [96]Cheng X, Chen M, Wu L, et al. Novel and Facile Method for the Preparation of Monodispersed Titania Hollow Spheres. Langmuir,2006,22(8):3858-3863
    [97]Deng Z, Chen M, Zhou S, et al. A Novel Method for the Fabrication of Monodisperse Hollow Silica Spheres. Langmuir,2006,22(14):6403-6407
    [98]Bao J, Liang Y, Xu Z, et al. Facile Synthesis of Hollow Nickel Submicrometer Spheres. Advanced Materials,2003,15(21):1832-1835
    [99]Fowler C E, Khushalani D, Mann S. Facile Synthesis of Hollow Silica Microspheres. Journal of Materials Chemistry,2001,11(8):1968-1971
    [100]Nakashima T, Kimizuka N. Interfacial Synthesis of Hollow TiO2 Microspheres in Ionic Liquids. Journal of the American Chemical Society,2003,125(21): 6386-6387.
    [101]Peng B, Chen M, Zhou S, et al. Fabrication of Hollow Silica Spheres using Droplet Templates Derived from a Miniemulsion Technique. J. Colloid Interface Sci. 2008,321(1):67-73
    [102]Bastakoti B P, Guragain S, Yokoyama Y, et al. Synthesis of Hollow CaCO3 Nanospheres Templated by Micelles of Poly(styrene-b-acrylic acid-b-ethylene glycol) in Aqueous Solutions. Langmuir,2011,27(1):379-384
    [103]Sun Y, Mayers B, Xia Y. Metal Nanostructures with Hollow Interiors. Advanced Materials,2003,15(7-8):641-646
    [104]Dloczik L, Kcnenkamp R. Nanostructure Transfer in Semiconductors by Ion Exchange. Nano Letters,2003,3(5):651-653
    [105]Robinson R D, Sadtler B, Demchenko D O, et al. Spontaneous Super lattice Formation in Nanorods Through Partial Cation Exchange. Science,2007, 317(5836):355-358
    [106]Kovalenko M V, Talapin D V, Loi M A, et al. Quasi-Seeded Growth of Ligand-Tailored PbSe Nanocrystals through Cation-Exchange-Mediated Nucleation. Angewandte Chemie International Edition,2008,47(16): 3029-3033
    [107]Sadtler B, Demchenko D O, Zheng H, et al. Selective Facet Reactivity during Cation Exchange in Cadmium Sulfide Nanorods. Journal of the American Chemical Society,2009,131(14):5285-5293
    [108]Wang Z X, Wu L M, Chen M, et al. Facile Synthesis of Superparamagnetic Fluorescent Fe3O4/ZnS Hollow Nanospheres. Journal of the American Chemical Society,2009,131(32):11276-11277
    [109]Sun X M, Li Y D. Ga2O3 and GaN Semiconductor Hollow Spheres. Ange wandte Chemie International Edition,2004,43(29):3827-3831
    [110]Pang M L, Zeng H C. Highly Ordered Self-Assemblies of Sub micro meter Cu2O Spheres and Their Hollow Chalcogenide Derivatives. Langmuir,2010,26(8): 5963-5970
    [111]Xiong S, Zeng H C. Serial Ionic Exchange for the Synthesis of Multishelled Copper Sulfide Hollow Spheres. Angewandte Chemie International Edition. 2012,51(4):949-952
    [112]Bai F, Wang D, Huo Z, et al. A Versatile Bottom-up Assembly Approach to Colloidal Spheres from Nanocrystals. Angewandte Chemie International Edition. 2007,46(35):6650-6653
    [113]Chen C, Nan C, Wang D, et al. Mesoporous Multicomponent Nanocomposite Colloidal Spheres:Ideal High-Temperature Stable Model Catalysts. Angewandte Chemie,2011,123(16):3809-3013
    [114]Wang D, Xie T, Peng Q, Li Y. Ag, Ag2S, and Ag2Se Nanocrystals:Synthesis, Assembly, and Construction of Mesoporous Structures. Journal of the American Chemical Society,2008,130(12):4016-4022
    [115]Wang H L, Zhao G, Zhang P, et al. Size-Controlled Peptide-Directed Synthesis of Hollow Spherical Gold Nanoparticle Superstructures. Small,2011,7(14): 1939-42
    [116]Yin Y, Rioux R M, Erdonmez C K, et al. Formation of Hollow Nanocrystals Through the Nanoscale Kirkendall Effect. Science,2004,304(5671):711-714
    [117]Fan H J, Gosele U, Zacharias M. Formation of Nanotubes and Hollow Nanoparticles Based on Kirkendall and Diffusion Processes:A Review. Small. 2007,3(10):1660-1671
    [118]Li J, Zeng H C. Hollowing Sn-Doped TiO2 Nanospheres via Ostwald Ripening. Journal of the American Chemical Society,2007,129(51):15839-15847
    [119]Fan H J, Knez M, Scholz R, et al. Monocrystalline spinel nanotube fabrication based on the Kirkendall effect. Nature Materilas,2006,5(8):627-31
    [120]Liu B, Zeng H C. Symmetric and Asymmetric Ostwald Ripening in the Fabrication of Homogeneous Core-Shell Semiconductors. Small,2005,1(5): 566-571
    [121]Liu B, Zeng H C. Fabrication of ZnO Dandelions via a Modified Kirkendall Process. Journal of the American Chemical Society,2004,126(51): 16744-16746
    [122]Namdiyanto A B D, Kim S G, Iskandar F, et al. Synthesis of Spherical Mesoporous Silica Nanoparticles with Nanometer-size Controllable Pores and Outer Diameters. Microporous and Mesoporous Materials,2009,120(3): 447-453
    [123]Lee Y G, Oh C, Yoo S K, et al. New approach for the control of size and surface characteristics of mesoporous silica particles by using mixed surfactants in W/O emulsion. Microporous and Mesoporous Materials,2005,86(1-3),134-144
    [124]谢先宇,王潘,安浩,傅振兴.汽车用锂离子电池发展现状.上海汽车,2010,1,21-15.
    [125]杨勇,新型锂离子电池正极材料的研究现状及其发展前景.新材料产业,2010,10(4):11-14.
    [126]Whittingham M S. Lithium Batteries and Cathode Materials. Chemical Review, 2004,104(10):4271-4302.
    [127]李志杰,梁奇,陈栋梁.锂离子电池负极材料的研究进展,应用化学.2001,18(4):269-271.
    [128]Cui L F, Ruffo R, Chan C K, et al. Crystalline-Amorphous Core-Shell Silicon Nanowires for High Capacity and High Current Battery Electrodes. Nano Letter, 2009,9(1):491-495
    [129]Ji L W, Zhang X W. Fabrication of Porous Carbon/Si Composite Nano fibers as High-capacity Battery Electrodes. Electroc he misty Communications,2009, 11(6):1146-1149
    [130]Wang S Q, Li S R, Sun Y, et al. Three-dimensional Porous V2O5 Cathode with Ultra-high Rate Capability. Energy & Environmental Science,2011,4(8): 2854-2857
    [131]Li C C, Yin X M, Li Q H, et al. Topochemical Synthesis of Cobalt Oxide-based Porous Nanostructures for High Performance Lithium Ion Batteries. Chemistry-A European Journal,2011,17(5):1596-1604
    [132]Dahn J R, Zheng T, Liu Y H, et al. Mechanisms for Lithium Insertion in Carbonaceous Materials. Science,1995,270(5236):590-593
    [133]Joo S H, Park J Y, Tsung C K, et al. Thermally Stable Pt/mesoporous Silica Core-shell Nanocatalysts for High-temperature Reactions. Nature Materials, 2009,8(2):126-131
    [134]Oh M, Mirkin C A. Chemically tailorable colloidal particles from infinite coordination polymers. Nature,2005,438(7068):651-654
    [135]Jeong U, Wang Y L, Ibisate M, et al. Some New Developments in the Synthesis, Functionalization, and Utilization of Monodisperse Colloidal Spheres. Advanced Functional Materials,2005,15(12):907-1921
    [136]Sun X M, Li Y D. Colloidal Carbon Spheres and Their Core/Shell Structures with Noble-Metal Nanoparticles. Angewandte Chemie International Edition, 2004,43(5):597-601
    [137]Wang S, Li W C, Hao G P, et al. Temperature-Programmed Precise Control over the Sizes of Carbon Nanospheres Based on Benzoxazine Chemistry. Journal of the American Chemical Society,2011,133(39):15304-15307.
    [138]Guo S R, Gong J Y, Jiang P, et al. Biocompatible, Luminescent Silver@Phenol Formaldehyde Resin Core/Shell Nanospheres:Large-Scale Synthesis and Application for In Vivo Bioimaging. Advanced Functional Materials,2008, 18(6):872-879.
    [139]Hu X L, Gong J M, Zhang L Z, et al. Continuous Size Tuning of Monodisperse ZnO Colloidal Nanocrystal Clusters by a Microwave-Polyol Process and Their Application for Humidity Sensing. Advanced Materials,2008,20(24): 4845-4850
    [140]Li L, Tsung C K, Yang Z, et al. Rare-Earth-Doped Nanocrystalline Titania Microspheres Emitting Luminescence via Energy Transfer. Advanced Materials, 2008,20(5):903-908
    [141]Kelly T L, Yamada Y, Che S P Y, et al. Monodisperse Poly(3,4-ethylenedioxythiophene)-Silica Microspheres:Synthesis and Assembly into Crystalline Colloidal Arrays. Advanced Materials,2008,20(13): 2616-2621
    [142]Bigall N. C, Hartling T, Klose M, et al. Monodisperse Platinum Nanospheres with Adjustable Diameters from 10 to 100 nm:Synthesis and Distinct Optical Properties. Nano Letters,2008,8(12):4588-4592
    [143]Liu J, Qiao S. Z, Liu H, et al. Extension of The Stober Method to the Preparation of Monodisperse Resorcinol-Formaldehyde Resin Polymer and Carbon Spheres. Angewandte Chemie International Edition,2011,50(26): 5947-5951
    [144]Li P, Peng Q, Li Y D. Dual-Mode Luminescent Colloidal Spheres from Monodisperse Rare-Earth Fluoride Nanocrystals. Advanced Materials,2009, 21(19):1945-1948
    [145]Liang X, Wang X, Li Y D. Formation of CeO2-ZrO2 Solid Solution Nanocages with Controllable Structures via Kirkendall Effect. Journal of the American Chemical Society,2008,130(9):2736-2737
    [146]Wang D S, Xie T, Peng Q, et al. Ag, Ag2S, and Ag2Se Nanocrystals:Synthesis, Assembly, and Construction of Mesoporo us Structures. Journal of the American Chemical Society,2008,130(12):4016-4022
    [147]Chen C, Chen W, Lu J, et al.Transition-Metal Phosphate Colloidal Spheres. Angewandte Chemie International Edition,2009,48(26):4816-4819
    [148]Deng Y H, Cai Y, Sun Z K, et al. Multifunctional Mesoporous Composite Microspheres with Well-Designed Nanostructure:A Highly Integrated Catalyst System. Journal of the American Chemical Society,2010,132(24):8466-8473
    [149]Deng Y H, Qi D W, Deng C H, et al. Superparamagnetic High-Magnetization Microspheres with An Fe3O4@SiO2 Core and Perpendicularly Aligned Mesoporous SiO2 Shell for Removal of Microcystins. Journal of the American Chemical Society,2008,130(1):28-29
    [150]Lu Y, Zhao Y, Yu L, et al. Hydrophilic Co@Au Yolk/Shell Nanospheres: Synthesis, Assembly, and Application to Gene Delivery. Advanced Materials, 2010,22(12):1407-1411.
    [151]Yan X H, Li J B, Mohwald H. Templating Assembly of Multifunctional Hybrid Colloidal Spheres. Advanced Materials,2012,24(20):2663-2667
    [152]Gao J H, Gu H W, Xu B. Multifunctional Magnetic Nanoparticles:Design, Synthesis, and Bio medical Applications. Accounts of Chemical Research,2009, 42(8):1097-1107
    [153]Lee J E, Lee N, Kim T, et al. Multifunctional Mesoporous Silica Nanocomposite Nanoparticles for Theranostic Applications. Accounts of Chemical Research, 2011,44(10),893-902
    [154]Lee J E, Lee N, Kim H, et al. Uniform Mesoporous Dye-Doped Silica Nanoparticles Decorated with Multiple Magnetite Nanocrystals for Simultaneous Enhanced Magnetic Resonance Imaging, Fluorescence Imaging, and Drug Delivery. Journal of the American Chemical Society,2010,132(2): 552-557
    [155]Li F, Josephson D P, Stein A. Colloidal Assembly:The Road from Particles to Colloidal Molecules and Crystals. Angewandte Chemie International Edition, 2011,50(2):360-388
    [156]Vlasov Y A, Bo X Z, Sturm J C, et al. On-chip Natural Assembly of Silicon Photonic Bandgap Crystals. Nature,2001,414(6861):289-293
    [157]Zhang J H, Li Y F, Zhang X M, et al. Colloidal Self-Assembly Meets Nano fabrication:From Two-Dimensional Colloidal Crystals to Nanostructure Arrays. Advanced Materials,2010,22(38):4249-4269
    [158]Ge J P, Yin Y D. Magnetically Tunable Colloidal Photonic Structures in Alkanol Solutions. Advanced Materials,2008,20(18):3485-3491
    [159]Jeong U, Xia Y N. Photonic Crystals with Thermally Switchable Stop Bands Fabricated from Se@Ag2Se Spherical Colloids. Ange wandte Chemie International Edition,2005,44(20):3099-3103
    [160]Jeong U, Kim J U, Xia Y N. Monodispersed Spherical Colloids of Se@CdSe:Synthesis and Use as Building Blocks in Fabricating Photonic Crystals. Nano Letters,2005,5(5):937-942
    [161]Liu J N, Bu W B, Zhang S J, et al. Controlled Synthesis of Uniform and Monodisperse Upconversion Core/Mesoporous Silica Shell Nanocomposites for Bimodal Imaging. Chemistry -A European Journal,2012,18 (8):2335-2341
    [162]Bouzigues C, Gacoin T, Alexandrou A. Biological Applications of Rare-Earth Based Nanoparticles. ACS Nano 2011,5(11):8488-8505
    [163]Zhang F, Braun G B, Shi Y F, et al. Fabrication of Ag@SiO2@Y2O3:Er Nanostructures for Bioimaging:Tuning of the Upconversion Fluorescence with Silver Nanoparticles. Journal of the American Chemical Society,2010,132(9): 2850-2851
    [164]Wakefield G, Holland E, Dobson P J, et al. Luminescence Properties of Nanocrystalline Y2O3:Eu. Advanced Materials,2001,13(20):1557-1560
    [165]Wang H, Yu M, Lin C K, et al. Synthesis and Luminescence Properties of Monodisperse Spherical Y2O3:Eu3+@Si02 Particles with Core-shell Structure. The Journal of Physical Chemistry C,2007,111(30):11223-11230
    [166]Zhou L J, Gu Z J, Liu X X, et al. Size-tunable Synthesis of Lanthanide-doped Gd2O3 Nanoparticles and Their Applications for Optical and Magnetic Resonance Imaging. Journal of Materials Chemistry,2012,22(3):966-974
    [167]Cho S H, Kwon S H, Yoo J S, et al. Cathodoluminescent Characteristics of a Spherical Y2O3:Eu Phosphor Screen for Field Emission Display Application. Journal of the Electrochemical Society,2000,147(8):3143-3147
    [168]Wang H, Lin C K, Liu X M, et al. Monodisperse Spherical Core-Shell-Structured Phosphors Obtained by Functionalization of Silica Spheres with Y2O3:Eu3+ Layers for Field Emission Displays. Applied Physics Letters,2005,87(18):181907-181909
    [169]Jing X, Ireland T, Gibbons C, et al. Control of Y2O3:Eu Spherical Particle Phosphor Size, Assembly Properties, and Performance for FED and HDTV. Journal of the Electrochemical Society,1999,146(12):4654-4658
    [170]Matijevic E, Hsu W P, Preparation and Properties of Monodispersed Colloidal Particles of Lanthanide Compounds:Ⅰ. Gadolinium, Europium, Terbium, Samarium, and Cerium(III), Journal of Colloid and Interface Science,1987, 118(2):506-523
    [171]Luwang M N, Ningthoujam R S, Jagannath, et al. Effects of Ce3+ Codoping and Annealing on Phase Transformation and Luminescence of Eu3+-Doped YPO4 Nanorods:D2O Solvent Effect. Journal of the American Chemical Society,2010, 132(8):2759-2768
    [172]Kassab L R P, Silva D S D, et al. Photo luminescence Enhancement by Gold Nanoparticles in Eu3+ doped GeO2-Bi2O3 Glasses. Applied Physics Letters,2009, 94(10):101912-101914
    [173]Gentili P L, Presciutti F, Evangelisti F, et al. The Structures, Morphologies, and Photophysical Properties of Multiluminescent Layered Lanthanide-Phosphono-Carboxylate Nanoparticles. Chemistry-A European Journal,2012,18(14):4296-4307
    [174]Yang P P, Gai S L, Liu Y C, et al. Uniform Hollow Lu2O3:Ln (Ln= Eu3+, Tb3+) Spheres:Facile Synthesis and Luminescent Properties. Inorganic Chemistry, 2011,50(6):2182-2190
    [175]Wang F, Han Y, Lim C S, et al. Simultaneous Phase and Size Control of Upconversion Nanocrystals through Lanthanide Doping. Nature,2010, 463(7284):1061-1065
    [176]Fang Y, Gu D, Zou Y, et al. A Low-Concentration Hydrothermal Synthesis of Biocompatible Ordered Mesoporous Carbon Nanospheres with Tunable and Uniform Size. Angewandte Chemie International Edition,2010,49(43): 7987-7991
    [177]Tsung C-K, Fan J, Zheng N F, et al. A General Route to Diverse Mesoporous Metal Oxide Submicrospheres with Highly Crystalline Frameworks. Angewandte Chemie International Edition,2008,47(45):8682-8686
    [178]Kim T W, Chung P W, Slowing I I, et al. Structurally Ordered Mesoporous Carbon Nanoparticles as Transmembrane Delivery Vehicle in Human Cancer Cells. Nano Letters,2008,8(11):3724-3727
    [179]Park J-H, Gu L, Maltzahn G V, et al. Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nature Materials,2009,8(4):331-336
    [180]Zhu Y F, Kockrick E, Ikoma T, et al. An Efficient Route to Rattle-Type Fe3O4@SiO2 Hollow Mesoporous Spheres Using Colloidal Carbon Spheres Templates. Chemistry of Materials,2009,21(12):2547-2553
    [181]Tang F Q, Li L L, Chen D. Mesoporous Silica Nanoparticles:Synthesis, Biocompatibility and Drug Delivery. Advanced Materials,2012,24(12): 1504-1534
    [182]Deng Y H, Qi D W, Deng C H, et al. Superparamagnetic High-Magnetization Microspheres with An Fe3O4@SiO2 Core and Perpendicularly Aligned Mesoporous SiO2 Shell for Removal of Micro cyst ins. Journal of the American Chemical Society,2008,130(1):28-29
    [183]Gai S, Yang P, Li C, Wang W, et al. Synthesis of Magnetic, Up-Conversion Luminescent, and Mesoporous Core-Shell-Structured Nanocomposites as Drug Carriers. Advanced Functional Materials,2010,20(7):1166-1172
    [184]Zhang C F, Wu H B, Yuan C Z, et al. Template Assembly of Spin Crossover One-Dimensional Nanowires. Angewandte Chemie International Edition,2012, 51(48):11995-11999
    [185]Liu J, Qiao S Z, Hartona S B, et al. Monodisperse Yolk-Shell Nanoparticles with a Hierarchical Porous Structure for Delivery Vehicles and Nanoreactors. Angewandte Chemie International Edition,2010,49(29):4981-4985
    [186]Niu D C, Ma Z, Li Y S, et al. Synthesis of Core-Shell Structured Dual-Mesoporous Silica Spheres with Tunable Pore Size and Controllable Shell Thickness. Journal of the American Chemical Society,2010,132(43): 15144-15147
    [187]Ma W F, Zhang Y, Li L L, et al. Tailor-Made Magnetic Fe3O4@mTiO2 Microspheres with a Tunable Mesoporous Anatase Shell for Highly Selective and Effective Enrichment of Phosphopeptides. ACS Nano,2012,6(4): 3179-3188
    [188]Jeone U, Wang Y, Ibisate M, et al. Some New Developments in the Synthesis, Functionalization, and Utilization of Monodisperse Colloidal Spheres. Advanced Functional Materials,2005,15(12):1907-1921
    [189]Zhang J, Li Y, Zhang X, et al. Colloidal Self-Assembly Meets Nano fabrication: From Two-Dimensional Colloidal Crystals to Nanostructure Arrays. Advanced Functional Materials,2010,22(38):4249-4269
    [190]Li C C, Dou J, Chen L, et al. Antisolvent Precipitation for the Synthesis of Monodisperse Mesoporous Niobium Oxide Spheres as Highly Effective Solid Acid Catalysts. ChemCatChem,2012,4,1675-1682
    [191]Lin C N, Huang M H. Formation of Hollow Gallium Nitride Spheres via Silica Sphere Templates. The Journal of Physical Chemistry C,2009,113 (3):925-929
    [192]Shchukin D G, Caruso R A. Template Synthesis and Photocatalytic Properties of Porous Metal Oxide Spheres Formed by Nanoparticle Infiltration. Chemistry of Materials,2004,16(11):2287-2292
    [193]Zhu Y F, Kockrick E, Ikoma T, et al. An Efficient Route to Rattle-Type Fe3O4@SiO2 Hollow Mesoporous Spheres Using Colloidal Carbon Spheres Templates. Chemistry of Materials,2009,21(12):2547-2553
    [194]Schuster J, He G, Mandlmeier B, et al. Spherical Ordered Mesoporous Carbon Nanoparticles with High Porosity for Lithium-Sulfur Batteries. Angewandte Chemie International Edition,2012,51(15):3591-3595
    [195]Li F, Stein A. Functional Composite Membranes Based on Mesoporous Silica Spheres in a Hierarchically Porous Matrix. Chemistry of Materials,2010, 22(12):3790-3797
    [196]Zhao Y, Lin L N, Lu Y, et al. Templating Synthesis of Preloaded Doxorubicin in Hollow Mesoporous Silica Nanospheres for Bio medical Applications. Advanced Materials,2010,22(46):5255-5259
    [197]Hu J, Chen M, Fang X S, et al. Fabrication and Application of Inorganic Hollow Spheres. Chemical Society Reviews,2011,40(11):5472-5491
    [198]Liu H J, Cui W J, Jin L H, et al. Preparation of Three-Dimensional Ordered Mesoporous Carbon Sphere Arrays by a Two-step Templating Route and Their Application for Supercapacitors. Journal of Materials Chemistry,2009,19(22): 3661-3667
    [199]Tatsuda N, Nakamura T, Yamamoto D, et al. Synthesis of Highly Monodispersed Mesoporous Tin Oxide Spheres. Chemistry of Materials,2009,21(21): 5252-5257
    [200]Fuertes B, Tartaj P. Monodisperse Carbon-Polymer Mesoporous Spheres with Magnetic Functionality and Adjustable Pore-Size Distribution. Small,2007, 3(2):275-279
    [201]Chen C, Nan C Y, Wang D S, et al. Mesoporous Multicomponent Nanocomposite Colloidal Spheres:Ideal High-Temperature Stable Model Catalysts. Angewandte Chemie International Edition,2011,50(16):3725-3729
    [202]Chen Y, Chen H R, Zeng D P, et al. Core/Shell Structured Hollow Mesoporous Nanocapsules:A Potential Platform for Simultaneous Cell Imaging and Anticancer Drug Delivery. ACS Nano,2010,4(10):6001-6013
    [203]Yan X H, Li J B, Mohwald H. Templating Assembly of Multifunctional Hybrid Colloidal Spheres. Advanced Materials,2012,24(20):2663-2667
    [204]Cho H S, Dong Z Y, Pauletti G M, et al. Fluorescent, Superparamagnetic Nanospheres for Drug Storage, Targeting, and Imaging:A Multifunctional Nanocarrier System for Cancer Diagnosis and Treatment. ACS Nano,2010,4(9): 5398-5404
    [205]Liong M, Lu J, Kovochich M, Xia T, et al. Multifunctional Inorganic Nanoparticles for Imaging, Targeting, and Drug Delivery. ACS Nano,2008,2(5): 889-896
    [206]Zhang J, Sasaki K, Sutter E, et al. Stabilization of Platinum Oxygen-reduction Electrocatalysts using Gold Clusters. Science,2007,315(5809):220-222
    [207]Kang J H, Menard L D, Nuzzo R G, et al. Unusual non-bulk Properties in Nanoscale Naterials:Thermal Metal-metal Bond Contraction of y-alumina-supported Pt catalysts. Journal of the American Chemical Society, 2006,128(37):12068-12069
    [208]Stamenkovic V R, Fowler B, Mun B S, et al. Improved Oxygen Reduction Activity on Pt3Ni (111) via Increased Surface Site Availability, Science.2007, 315(5811):493-497
    [209]J. A. Gladysz. Introduction:Recoverable Catalysts and Reagents-Perspective and Prospective. Chemical reviews,2002,102(10):3215-3216
    [210]Joo S H, Choi S J, Oh I, et al. Ordered Nanoporous Arrays of Carbon Supporting High Dispersions of Platinum nanoparticles. Nature,2001, 412(6843):169-172
    [211]Hansen T W, Wagner J B, Hansen P L, et al. Atomic-Resolution in Situ Transmission Electron Microscopy of a Promoter of a Heterogeneous Catalyst. Science,2001,294(5534):1508-1510
    [212]Fu Q, Saltsburg H, Flytzani-Stephanopoulos M. Active Nonmetallic Au and Pt Species on Ceria-Based Water-Gas Shift Catalysts, Science,2003,301(5635): 935-938
    [213]Lu J, Lazzaroni M J, Hallett J P, et al. Tunable Solvents for Homogeneous Catalyst Recycle. Industrial & Engineering Chemistry Researchs,2004,43(7): 1586-1590
    [214]Zhu Z, Espenson J H. Aqueous Catalysis:Methylrhenium Trioxide (MTO) as a Homogeneous Catalyst for the Diels-Alder Reaction. Journal of the American Chemical Society,1997,119(15):3507-3512
    [215]Iwasawa T, Tokunaga M, Obora Y, et al. Homogeneous Palladium Catalyst Suppressing Pd Black Formation in Air Oxidation of Alcohols Journal of the American Chemical Society,2004,126(21):6554-6555
    [216]N. Mizuno, M. Misono. Heterogenous Catalysis. Chemical Reviews,1998, 98(1):199-217
    [217]Yan J M, Zhang X B, Akita T, et al. One-Step Seeding Growth of Magnetically Recyclable Au@Co Core-Shell Nanoparticles:Highly Efficient Catalyst for Hydrolytic Dehydrogenation of Ammonia Borane Journal of the American Chemical Society,2010,132(15):5326-5327
    [218]Alayoglu S, Nilekar A U, Mavrikakis M, et al. Ru-Pt core-shell Nanoparticles for Preferential Oxidation of Carbon Monoxide in Hydrogen. Nature Materials, 2008,7(4):333-338
    [219]Pan X, Bao X, Chem. Reactions over Catalysts Confined in Carbon Nanotubes. Chemical Communications,2008,6271-6281
    [220]White R J, Luque R, Budarin V L, et al. Supported Metal Nanoparticles on Porous Materials. Methods and applications. Chemical Society Reviews,2009, 38,481-494
    [221]Kitano M, Nakajima K, Kondo J N, et al. Protonated Titanate Nanotubes as Solid Acid Catalyst. Journal of the American Chemical Society,2010,132(19): 6622-6623
    [222]Jothiramalingam R, Wang M K. Review of Recent Developments in Solid Acid, Base, and Enzyme Catalysts (Heterogeneous) for Biodiesel Production via Transesterification. Industrial & Engineering Chemistry Researchs,2009, 48(13):6162-6172
    [223]Tagusagawa C, Takagaki A, Hayashi S, et al. Efficient Utilization of Nanospace of Layered Transition Metal Oxide HNbMoO6 as a Strong, Water-Tolerant Solid Acid Catalyst. Journal of the American Chemical Society,2008,130(23): 7230-7231
    [224]Wang B, Cui X, Ma H, et al. Photocatalytic Activity of SO42-/SnO2-TiO2 Catalysts:Direct Oxidation of n-Heptane to Ester under Mild Conditions. Energy & Fuels,2007,21(6):3748-3749
    [225]Busca G, Acid catalysts in Industrial Hydrocarbon Chemistry. Chemical Reviews,2007,107(11):5366-5410
    [226]Kozhevnikov V. Catalysis by Heteropolyacids and Multicomponent Polyoxometalates in Liquid-phase Reactions. Chemical Reviews,1998,98(1): 171-198
    [227]Tagusagawa C, Takagaki A, Iguchi A, et al. Highly Active Mesoporous Nb-W Oxide Solid-Acid Catalyst. Angewandte Chemie International Edition,2010, 49(6):1128-1132
    [228]Katada N, Endo J, Notsu K, et al. Superacidity and Catalytic Activity of Sulfated Zirconia. The Journal of Physical Chemistry B,2000,104(44): 10321-10328
    [229]Tagusagawa C, Takagaki A, Iguchi A, et al. Synthesis and Characterization of Mesoporous Ta-W Oxides as Strong Solid Acid Catalysts. Chemistry of Materials,2010,22(10):3072-3078
    [230]Nakajima K, Fukui T, Kato H, et al. Structure and Acid Catalysis of Mesoporous Nb2O5-nH2O. Chemistry of Materials,2010,22(11):3332-3339
    [231]Leshkov Y R, Davis M E, Activation of Carbonyl-Containing Molecules with Solid Lewis Acids in Aqueous Media. ACS Catalysis,2011,1(11):1566-1580
    [232]Tian X, Su F, Zhao X X. Sulfonated Polypyrrole Nanospheres as A Solid Acid Catalyst. Green Chemistry,2008,10(9):951-956
    [233]Inumaru K, Ishihara T, Kamiya Y, et al. Water-Tolerant, Highly Active Solid Acid Catalysts Composed of the Keggin-Type Polyoxometalate H3PW12O40 Immobilized in Hydrophobic Nanospaces of Organomodified Mesoporous Silica. Angewandte Chemine International Edition,2007,46(40):7625-7628
    [234]Okuhara T. Water-Tolerant Solid Acid Catalysts. Chemistry Reviews,2002, 102(10):3641-3666
    [235]Nakajima K, Tomita I, Hara M, et al. A Stable and Highly Active Hybrid Mesoporous Solid Acid Catalyst. Advanced Materials,2005,17(15):1839-1842
    [236]Feyen M, Weidenthaler C, Schuth F, et al. Synthesis of Structurally Stable Colloidal Composites as Magnetically Recyclable Acid Catalysts. Chemistry of Materials,2010,22(9):2955-2961
    [237]Rao Y X, Kang J J, Antonelli D.1-Hexene Isomerization over Sulfated Mesoporous Ta Oxide:The Effects of Active Site and Confinement. Journal of the American Chemical Society,2008,130(2):394-395
    [238]Narender N, Mohan K V V K, Kulkarni S J, et al. Liquid Phase Benzylation of Benzene and Toluene with Benzyl Alcohol over Modified Zeolites. Catalysis Communications,2006,7(8):583-588
    [239]Wang F, Ueda W. Nanostructured Molybdenum Oxides and Their Catalytic Performance in the Alkylation of Arenes. Chemical Communication,2008,27, 3196-3198
    [240]Hino M, Kobayashi S, Arata K. Solid Catalyst Treated with Anion.2. Reactions of Butane and Isobutane Catalyzed by Zirconium Oxide Treated with Sulfate ion. Solid Superacid Catalyst. Journal of American Chemical Society,1979, 101(21):6439-6441
    [241]Ebitani K, Konishi J, Hattori H. Skeletal Isomerization of Hydrocarbons over Zirconium Oxide Promoted by Platinum and Sulfate Ion. Journal of Catalysis, 1991,130(1):257-267
    [242]Davis B H, Keogh R A, Srinivasan R. Sulfated zirconia as a Hydrocarbon Conversion Catalyst. Catalysis Today,1994,20(2):219-256
    [243]Kamiya Y, Sakata S, Yoshinaga Y, et al. Zirconium Phosphate with a High Surface Area as a Water-Tolerant Solid Acid. Catalysis Letters,2004,94(1-2): 45-47
    [244]Harmer M A, Farneth W E, Sun Q. High Surface Area Nafion Resin/Silica Nanocomposites:A New Class of Solid Acid Catalyst. Journal of American Chemical Society,1996,118(33):7708-7715
    [245]Yamashita K, Hirano M, Okumura K, et al. Activity and Acidity of Nb2O5-MoO3 andNb2O5-WO3 in the Friedel-Crafts Alkylation. Catalysis Today, 2006,118(3):385-391
    [246]Carniti P, Gervasini A, Biella S, et al. Niobic Acid and Niobium Phosphate as Highly Acidic Viable Catalysts in Aqueous Medium:Fructose Dehydration Reaction. Catalysis Today,2006,118(3):373-378
    [247]Moraes M, Pinto W S F, Gonzalez W A, et al. Benzylation of Toluene and Anisole by Benzyl Alcohol Catalyzed by Niobic Acid:Influence of Pretreatment Temperature in the Catalytic Activity of Niobic Acid. Applied Catalysis A:General,1996,138(1):L7-L12
    [248]Rao Y X, Trudeau M, Antonelli D. Sulfated and Phosphated Mesoporous Nb Oxide in the Benzylation of Anisole and Toluene by Benzyl Alcohol. Journal of American Chemical Society,2006,128(43):13996-13997
    [249]Antonelli D M, Ying J Y. Synthesis of a Stable Hexagonally Packed Mesoporous Niobium Oxide Molecular Sieve Through a Novel Ligand-Assisted Templating Mechanism. Angewandte Chemine International Edition,1996, 35(4):426-430
    [250]Antonelli D M, Nakahira A, Ying J Y. Ligand-Assisted Liquid Crystal Templating in Mesoporous Niobium Oxide Molecular Sieves. Inorganic Chemistry,1996,35(11):3126-3136
    [251]熊力,吴展,刘玉洁.半导体一氧化碳敏感材料研究进展.气象水文海洋仪器.2007,4(3):57-59
    [252]He J B, Chen C L, Liu J H. Study of Multiwall Carbon Nanotubes Self-assembled Electrode and Its Application to the Determination of Carbon Monoxide. Sensors Actuators B:Chemical,2004,99(1):1-5
    [253]Fu D L, Lim H L, Shi Y M, et al. Differentiation of Gas Molecules using Flexible and all-carbon Nanotube Devices. Journal of Physical Chemistry C, 2008,112(3):650-653
    [254]刘志强,全宝富,刘凤敏,陈丽华,丁虹.La0.7Sr0.3FeO3对SnO2基CO气敏元件性能的影响.电子元件与材料.2004,3(3):18-19
    [255]Joshi R K, Hu Q, Alvi F, et al. Au Decorated Zinc Oxide Nanowires for CO Sensing. Journal of Physical Chemistry C,2009,113(36):16199-16202
    [256]Cantalini C, Post M, Buso D, et al. Gas Sensing Properties of Nanocrystalline NiO and Co3O4 in Porous Silica Sol-Gel Films. Sensors Actuators B:Chemical, 2005,108(1-2):184-192
    [257]Wollenstein J, Burgmair M, Plescher G, et al. Cobalt Oxide based Gas Sensors on Silicon Substrate for Operation at Low Temperatures. Sensors Actuators B: Chemical,2003,93(1-3):442-448
    [258]梁丽萍,徐海萍.高性能纳米Sn02基一氧化碳敏感元件研究.传感器世界,2002,8(7):11-13.
    [259]Boggio R, Carugati A and Trasatti S. Electrochemical Surface Properties of Co3O4 Electrodes. Journal of Applied Electrochemistry,1987,17(4):828-840
    [260]Choi S D, Min B K. Co3O4-based Isobutene Sensor Operating at Low Temperatures. Sensors Actuators B:Chemical,2001,77(1-2):330-334
    [261]王岚,何放文,刘雅言,王秀艳,丁金英,殷文春,曾雄辉.常温一氧化碳气敏元件制备及气敏机理研究.传感技术,2001,9(2):16-17
    [262]Cao A M, Hu J S, Wan L J, et al. Hierarchically Structured Cobalt Oxide (Co3O4):The Morphology Control and Its Potential in Sensors. Journal of Physical Chemistry B,2006,110(32):15858-15863.
    [263]付其琛,刘庆隆.电化学式一氧化碳传感器的探识.中国环境监测,1997,3(3):20-22.
    [264]Ando M, Kobayashi T, Lijima S, et al. Optical Recognition of CO and H2 by Use of Gas-Sensitive Au-Co3O4 Composite Films. Journal of Material Chemistry,1997,7(9):1779-1783
    [265]Geng B Y, Zhan F M, Fang C H, et al. A Facile Coordination Compound Precursor Route to Controlled Synthesis of Co3O4 Nanostructures and Their Room-Temperature Gas Sensing Properties. Journal of Material Chemistry, 2008,18(41):4977-4984
    [266]Li W Y, Xu L N, Chen J. Co3O4 Nanomaterials in Lithium-Ion Batteries and Gas Sensors. Advanced Functional Material,2005,15(5):851-857
    [267]Wang Y L, Jiang X C, Xia Y N. A Solution-phase, Precursor Route to Polycrystalline SnO2 Nanowires that Can be Used for Gas Sensing under Ambient Conditions. Journal of American Chemical Society,2003,125(52): 16176-16177
    [268]Liu J F, Wang X, Peng Q, et al. Vanadium Pentoxide Nanobelts:Highly Selective and Stable Ethanol Sensor Materials. Advanced Materials,2005, 17(6):764-767
    [269]Nethravathi C, Sen S, Ravishankar N, et al. Ferrimagnetic Nanogranular Co3O4 Through Solvothermal Decomposition of Colloidally Dispersed Mono layers of a-Cobalt Hydroxide. Journal of Physical Chemistry B,2005,109(23): 11468-11472
    [270]Ding Y S, Xu L P, Chen C H, et al. Syntheses of Nanostructures of Cobalt Hydrotalcite Like Compounds and Co3O4 via a Micro wave-assisted Reflux Method. Journal of Physical Chemistry C,2008,112(22):8177-8183
    [271]Hosono E, Fujihara S, Honma I, et al. Fabrication of Morphology and Crystal Structure Controlled Nanorod and Nanosheet Cobalt Hydroxide based on the Difference of Oxygen-solubility between Water and Methanol, and Conversion into Co3O4. Journal of Material Chemistry,2005,15(19):1938-1945
    [272]Zhao Z G, Geng F X, Bai J B, et al. Facile and Controlled Synthesis of 3D Nanorods-based Urchinlike and Nonosheets-based Flowerlike Cobalt Basic salt Nanostructures. Journal of Physical Chemistry C,2007,111(10):3848-3852
    [273]Lou X W, Deng D, Lee J Y, et al. Thermal Formation of Mesoporous Single-crystal Co3O4 Nano-needles and Their Lithium Storage Properties. Journal of Material Chemistry,2008,18(37):4397-4401
    [274]Xu R, Zeng H C. Mechanistic Investigation on Salt-Mediated Formation of Free-standing Co3O4 Nanocubes at 95 degrees C. Journal of Physical Chemistry B2003,107(4):926-930
    [275]Feng J, Zeng H C. Size-Controlled Growth of Co3O4 nanocubes. Chemistry of Materials,2003,15(14):2829-2835
    [276]Feng J, Zeng H C. Reduction and Reconstruction of Co3O4 Nanocubes upon Carbon Deposition. Journal of Physical Chemistry B,2005,109(36): 17113-17119
    [277]Zhang H, Wu J B, Zhai C X, et al. From Cobalt Nitrate Carbonate Hydroxide Hydrate Nanowires to Porous Co3O4 Nanorods for High Performance Lithium-ion Battery Electrodes. Nanotechnology 2008,19(3):035711-035715
    [278]Liang Y X, Chen Y J, Wang T H. Low-resistance Gas Sensors Fabricated from Multiwalled Carbon Nanotubes Coated with a Thin Tin Oxide Layer. Applied Physics Letters,2004,85(4):666-669
    [279]Cong H P, Yu S H. Shape Control of Cobalt Carbonate Particles by a Hydrothermal Process in a Mixed Solvent:An Efficient Precursor to Nanoporous Cobalt Oxide Architectures and Their Sensing Property. Crystal Growth & Design,2009,9(1):210-217
    [280]Ehlsissen K T, Delahaya-Vidal A, Genin P, et al. Preparation and Characterization of Turbostratic Ni/Al Layered Double Hydroxides for Nickel Hydroxide Electrode Applications. Journal of Materials Chemistry,1993,3(8): 883-888
    [281]Tatzber M, Stemmer M, Spiegel H, et al. An Alternative Method to Measure Carbonate in Soils by FT-IR Spectroscopy. Environmental Chemistry Letters, 2007,5(1):9-12
    [282]Wagner C D, Riggs W M, Davis L E, et al. Handbook of X-ray Photoelectron Spectroscopy; Perkin-Elmer:Eden Prairie, MN, U.S.A.1979
    [283]Xu R, Zeng H C. Self-Generation of Tiered Surfactant Superstructures for One-Pot Synthesis of Co3O4 Nanocubes and Their Close- and Non-Close-Packed Organizations. Langmuir,2004,20(22),9780-9790
    [284]Chen H M, Liu R S, Li H L, et al. Generating Isotropic Superparamagnetic Interconnectivity for Two-dimensional Organization of Nanostructured Building Blocks. Angewandte Chemie, International Edition,2006,45(17): 2713-2717
    [285]Penn R L. Kinetics of Oriented Aggregation. Journal of Physical Chemistry B, 2004,108(34),12707-12712
    [286]Zeng H C. Oriented Attachment:A Versatile Approach for Construction of Nanomaterials, International Journal of Nanotechnology,2007,4(4):329-346
    [287]Idota Y, Kubota T, Matsufuji A, et al. Tin-Based Amorphous Oxide:A High-Capacity Lithium-Ion-Storage Material. Science,1997,276(5317): 1395-1397
    [288]Ario S, Bruce P, Scrosati B, et al. Nanostructured Materials for Advanced Energy Conversion and Storage Devices. Nature Materials,2005,4(5):366-377
    [289]Ahn H J, Choi H C, Park K W, et al. Investigation of the Structural and Electrochemical Properties of Size-Controlled SnO2 Nanoparticles. Journal of Physical Chemistry B,2004,108(28):9815-9820
    [290]Li N, Martin C R. A High-Rate, High-Capacity, Nanostructured Sn-Based Anode Prepared Using Sol-Gel Template Synthesis. Journal of Electrochemistry Society,2001,148(2):A164-A170
    [291]Armstrong G, Armstrong A R, Bruce P G, et al. TiO2(B) Nano wires as an Improved Anode Material for Lithium-Ion Batteries Containing LiFePO4 or LiNi0.5Mn1.5O4 Cathodes and a Polymer Electrolyte. Advanced Materials,2006, 18(19):2597-2600
    [292]Nam K T, Kim D W, Yoo P J, et al. Virus-Enabled Synthesis and Assembly of Nanowires for Lithium Ion Battery Electrodes. Science,2006,312(5775): 885-888
    [293]Kim D W, Hwang I S, Kwon S J, et al. Highly Conductive Coaxial SnO2-In2O3 Heterostructured Nanowires for Li Ion Battery Electrodes. Nano Letters,2007,7(10):3041-3045
    [294]Park M S, Wang G X, Kang Y M, et al. Preparation and Electrochemical Properties of SnO2 Nanowires for Application in Lithium-Ion Batterie. Angewandte Chemie International Edition,2007,46(5):750-753
    [295]Yu Y, Chen C H, Shi Y. A Tin-Based Amorphous Oxide Composite with a Porous, Spherical, Multideck-Cage Morphology as a Highly Reversible Anode Material for Lithium-Ion Batteries. Advanced Materials,2007,19(7):993-997
    [296]Shaju K M, Gruce P G. A Stoichiometric Nano-LiMn2O4 Spinel Electrode Exhibiting High Power and Stable Cycling. Chemistry of Materials,2008, 20(17):5557-5562
    [297]Hassoun J, Panero S, Simon P, et al. High-Rate, Long-Life Ni-Sn Nanostructured Electrodes for Lithium-Ion Batteries. Advanced Materials,2007, 19(12):1632-1635
    [298]Li Y G, Tan B, Wu Y Y. Mesoporous Co3O4 Nanowire Arrays for Lithium Ion Batteries with High Capacity and Rate Capability. Nano Letters,2008,8(1): 265-270
    [299]Roney A B, Space B, Castner E W, et al. A Molecular Dynamics Study of Aggregation Phenomena in Aqueous n-Propanol. Journal of Physics Chemistry B,2004,108(22):7389-7401
    [300]Sato K, Noguchi M, Demachi A, et al. A Mechanism of Lithium Storage in Disordered Carbons. Science 1994,264(5518):556-558
    [301]Dahn J R, Zheng T, Liu Y H, et al. Mechanisms for Lithium Insertion in Carbonaceous Materials. Science,1995,270(5236):590-593
    [302]Mao O, Dunlap R A, Dahn J R. Mechanically Alloyed Sn-Fe(-C) Powders as Anode Materials for Li Ion Batteries:I. The Sn2Fe-C System. Journal of the Electrochemical Society,1999,146(2):405-413
    [303]Besenhard J O, Yang J, Winter M. Will advanced Lithium-alloy Anodes Have a Chance in Lithium-Ion Batteries. Journal of Power Sources,1997,68(1):87-90
    [304]Idota Y, Kubota T, Matsufuj A, et al. Tin-Based Amorphous Oxide:A High-Capacity Lithium-Ion-Storage Material. Science,1997,276(5317): 1395-1397
    [305]Poizot P, Laruelle S, Grugeon S, et al. Nano-Sized Transition-Metal Oxides as Negative-Electrode Materials for Lithium Ion Batteries. Nature,2000(6803): 407,496-499
    [306]Armstrong A R, Armstrong G, Canales J, et al. Lithium-Ion Intercalation into TiO2-B Nanowires. Advanced Materials,2005,17(7):862-865
    [307]Chen J, Xu L, Li W Y, et al. a-Fe2O3 Nanotubes in Gas Sensor and Lithium-Ion Battery Applications. Advanced Materials,2005,17(5):582-586
    [308]Lou X W, Deng D, Lee J Y, et al. Thermal Formation of Mesoporous Single-crystal Co3O4 Nano-needles and Their Lithium Storage Properties. Journal of Mateials Chemistry,2008,18(37):4397-4401
    [309]Lou X W, Deng D, Lee J Y, et al. Self-Supported Formation of Needlelike Co3O4 Nanotubes and Their Application as Lithium-Ion Battery Electrodes. Advanced Materials,2008,20(2):258-262
    [310]Li W Y, Xu L N, Chen J. Co3O4 Nano materials in Lithium-Ion Batteries and Gas Sensors. Advanced Functional Materials,2005,15(5):851-857
    [311]Zhang X J, Li D. Metal-Compound-Induced Vesicles as Efficient Directors for Rapid Synthesis of Hollow Alloy Spheres. Angewandte Chemie International Edition,2006,45(36):5971-5974
    [312]Han M G, Foulger S H. Facile Synthesis of Poly(3,4-ethylenedioxythiophene) Nanofibers from an Aqueous Surfactant Solution. Small,2006,2(10): 1164-1169
    [313]Yang X M, Zhu Z X, Dai T Y, et al. Facile Fabrication of Functional Polypyrrole Nanotubes via A Reactive Self-Degraded Template. Macromolecular Rapid Communications,2005,26(21):1736-1740
    [314]Feng X M, Sun Z Z, Hou W H, et al. Synthesis of Functional Polypyrrole/Prussian Blue and Polypyrrole/Ag Composite Microtubes by Using a Reactive Template. Nanotechnology,2007,18(19):195603-195606
    [315]Zang Z A, Yao H B, Zhou Y X, et al. Synthesis and Magnetic Properties of New [Fe18S25](TETAH)14 (TETAH=protonated triethylenetetramine) Nanoribbons: An Efficient Precursor to Fe7S8 Nanowires and Porous Fe2O3 Nanorods. Chemistry of Materials,2008,20(14):4749-4755
    [316]Shen X F, Yan X P. Facile Shape-Controlled Synthesis of Well-Aligned Nanowire Architectures in Binary Aqueous Solution. Angewandte Chemie International Edition,2007,46(40):7659-7663
    [317]Dai T Y, Yang X M, Lu Y. Controlled Growth of Polypyrrole Nanotubule/Wire in the Presence of a Cationic Surfactant. Nanotechnology,2006,17(12): 3028-3034
    [318]Jung S, Cho W, Lee H J, et al. Self-Template-Directed Formation of Coordination-Polymer Hexagonal Tubes and Rings, and Their Calcination to ZnO Rings. Angewandte Chemie International Edition,2009,48(8):1459-1462
    [319]Strydom C A, Strydom H J. X-ray Photoelectron Spectroscopy Studies of Some Cobalt(II) Nitrate Complexes. Inorganica Chimica Acta,1989,159(2):191-195
    [320]Roney A B, Space B, Castner E W, et al. A Molecular Dynamics Study of Aggregation Phenomena in Aqueous n-Propanol. The Journal of Physical Chemistry B,2004,108(22):7389-7401
    [321]Wang G X, Chen Y, Konstantinov K, et al. Investigation of Cobalt Oxides as Anode Materials for Li-ion Batteries. Journal of Power Sources,2002,109(1): 142-147
    [322]Chou S L, Wang J Z, Liu H K, et al. Electrochemical Deposition of Porous Co3O4 Nanostructured Thin Film for Lithium-Ion Battery. Journal of Power Sources,2008,182(1):359-364
    [323]Liu Y, Mi C H, Su L H, et al. Hydrothermal Synthesis of Co3O4 Microspheres as Anode Material for Lithium-Ion Batteries. Electrochimica Acta,2008,53(5): 2507-2513
    [324]Poizot P, Laruelle S, Grugeon S, et al. Searching for New Anode Materials for the Li-Ion Technology:Time to Deviate from the Usual Path. Journal of Power Sources,2001,97-98,235-239
    [325]Larcher D, Sudant G, Leriche J B, et al. The Electrochemical Reduction of Co3O4 in a Lithium Cell. Journal of The Electrochemical Society,2002,149(3): A234-A241
    [326]Liu H C, Yen S K. Characterization of Electrolytic Co3O4 Thin Films as Anodes for Lithium-Ion Batteries. Journal of Power Sources,2007,166(2):478-484
    [327]Thackeray M M, Baker S D, Adendorff K T, et al. Lithium Insertion into Co3O4: A Preliminary Investigation. Solid State Ionics,1985,17(2):175-181
    [328]Yao W L, Wang J L, Yang J, et al. Novel Carbon Nano fiber-Cobalt Oxide Composites for Lithium Storage with Large Capacity and High Reversibility. Journal of Power Sources,2008,176(1):369-372
    [329]Zhao Z W, Guo Z P, Liu H K. Non-aqueous Synthesis of Crystalline Co3O4 Powders using Alcohol and Cobalt Chloride as A Versatile Reaction System for Controllable Morphology. Journal of Power Sources,2005,147(1-2):264-268.
    [330]Fu Z W, Wang Y, Zhang Y, et al. Electrochemical Reaction of Nano crystalline Co3O4 thin Film with Lithium Original Research Article. Solid State Ionics, 2004,170(1-2):105-109
    [331]Kang Y M, Song M S, Kim J H, et al. A Study on the Charge-Discharge Mechanism of Co3O4 as An Anode for the Li ion Secondary Battery. Electrochimica acta,2005,50(18):3667-3673
    [332]Shaju K M, Jiao F, Debart A, et al. Mesoporous and Nanowire Co3O4 as Negative Electrodes for Rechargeable Lithium Batteries. Physical Chemistry Chemical Physics,2007,9(15):1837-1842
    [333]Thackeray M M, Baker S D, Adendorff K T, et al. Lithium Insertion Into Co3O4: A Preliminary Investigation. Solid State Ionics,1985,17(2):175-181