氮杂环化合物介质阻挡放电降解的实验研究及机理初探
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氮杂环化合物是一种重要的化工原料,广泛存在于焦化废水、制药废水、农药废水及印染废水中,严重污染水体环境。氮杂环化合物是一类难生物降解的有机物,具有致癌、致畸、致突变的性质,对人类健康构成巨大威胁,因此开发一种高效、经济、绿色的氮杂环化合降解技术具有十分重要的意义。
     论文提出含氮杂环化合物废水的介质阻挡放电(DBD)处理法,并对介质阻挡放电用于水中难降解有机物的去除作用机理进行了初步探讨。在此基础上,提出以待处理废水作为接地极的一种新型介质阻挡放电水处理反应器结构。通过实验,考察了该反应器在不同电源频率、极板间距及极板电压作用下的放电特性。以模拟含氮杂环化合物废水为处理对象,研究了放电电压、电源频率、初始浓度、初始pH值等因素对去除效果的影响,采用液质联用技术对放电处理过程中的中间产物进行分析,初步探讨了此类化合物的降解机理。
     本论文的研究成果如下:
     (1)研制新型介质阻挡放电水处理反应器,以待处理废水作为接地极,使介质阻挡放电过程中产生的各种化学活性粒子(·OH、·O、H_2O_2、O_3等)与废水充分接触反应,能够提高废水中有机污染物的降解率。
     (2)研究介质阻挡放电反应器特性发现,电源频率与极板间距对极板电压影响较大。在相同极板间距下,随着电源频率的增大,极板电压先增大后减少,极板电压最大时的电源频率为9kHz,当极板电压达到放电电压后其值基本保持不变。相同电源频率下,随着极板间距的增大,放电电压也随之升高。
     (3)降解喹啉的实验中发现放电电压、电源频率、初始浓度、初始pH值都会对喹啉的降解造成影响。不同实验条件下,发现喹啉水样的吸光度都出现先降低后升高的现象,说明有大量中间产物的产生,导致吸光度叠加。实验中发现,放电电压为10kV,电源频率为10kHz,初始浓度为20ppm,在酸性条件下都能取得较好的处理效果。通过液质联用技术对喹啉降解中间产物进行研究,发现介质阻挡放电过程中产生的·OH、O_3主要进攻喹啉分子的5,8位碳原子,进而改变整个分子的π电荷密度分布,使喹啉易于降解。
     (4)降解吡啶的实验发现吡啶水样的吸光度一直处于上升趋势,说明有大量中间产物的产生。本实验中放电电压为10kV,电源频率为9kHz,初始浓度为60ppm,在碱性条件下都能得到较好处理效果。对吡啶降解机理进行初步推断,放电过程中3号位碳原子先羟基化,进而改变整个吡啶环π电荷密度分布,使吡啶降解容易进行。
     (5)降解吲哚的实验发现吲哚水样由无色变成红棕色,推断放电过程中2,3号位碳原子发生羟基化反应,产物为吲哚衍生物靛红。
     (6)介质阻挡放电对氮杂环化合物有机废水的确具有降解效果,因此可作为一种预处理手段,降低后续水处理工艺的处理难度。
N-heterocyclic compounds are one of the important chemical raw material and have great harm of the environment, which exist in many kinds of industrial wastewater, for example , coal coking wastewater; pharmacy wastewater, pesticide wastewater, printing and dyeing wastewater. N-heterocyclic compounds are included in the persistent organic pollutants, and very dangerous to human health, because of theirs carcinogenicity, teratogenicity, mutagenicity. Therefore it is great significant to search an efficient, economic and clean technology on the degradation of N-heterocyclic compounds.
     In this paper, dielectric barrier discharge(DBD) using on degrading N-heterocyclic compounds wastewater was studied. The mechanism on DBD for the persistent organic pollutants was preliminary researched. By these studies, a new type of DBD reactor was manufactured with wastewater as the earthing electrode. Then the influences of the frequency and the gas gap distance between two electrodes were studied, and the characteristics of the DBD reactor were determined. The influences of discharge voltage, power frequency, initial concentration and initial pH value were researched .The intermediate products in the process of discharge were analyzed by LC-MS, and the mechanism of degradation was also discussed.
     The main conclusions are drawn as follows:
     (1) The new type of DBD reactor was manufactured, in which the wastewater was the earthing explode. Many active substances (O·, H·,·OH, O_3, et al) generated in DBD reacted with the wastewater directly, which can improve the rate of degradation.
     (2) The study on the characteristics of DBD reactor indicates that the frequency or the gas gap distance influenced the voltage between the two plates greatly. At the same gas gap distance, the voltage between the two plates increased with the increase of frequency at first. But after the frequency went up to 9kHz, the voltage declined with the increase of frequency. After the voltage between the two plates reached some value, named discharge voltage, it almost kept still. At the same frequency, with increase of the gas gap distance, the discharge voltage increased.
     (3) The degradation of quinoline with DBD is influenced by the discharge voltage, power frequency, initial concentration, initial pH. Under different experimental conditions, the absorbance of water samples went up firstly, then reduced, which indicated that a large number of intermediate products were produced. In the experiment, it was found that the discharge voltage of 10kV, the frequency of 10kHz, the initial concentration of 20ppm and under the acidic conditions, we can achieved better treatment effect. The study of the intermediate products by LC-MS indicated that·OH, O_3, which were generated in the process of DBD, attacked 5,8-C of quinoline molecule, and then changed the % charge density, which made quinoline to be degraded easily.
     (4) In the experiment of pyridine, it was found that the absorbance of pyridine has been rising from the very beginning, which indicated a large number of intermediate products were produced. It was found that the discharge voltage of 10kV, the frequency of 9kHz, the initial concentration of 60ppm, in alkaline conditions, pyridine was degraded better. It was inferred that 3-C may be attacked early, then changed theπcharge density in the molecule.
     (5) In the experiment of indole, it was found that the color of the water sample changed from colorless to red. It was inferred that during the discharge, 2,3-C were hydroxylated, and indole changed into isatin.
     (6) It is effective that DBD is used to degrade N-heterocyclic compounds wastewater. DBD can reduce the difficulty of the following process as a pretreatment.
引文
[1]姚培芬,张更,张巧生.难降解有机物的高级化学氧化技术[J].河北化工.2007,30(10):23-26.
    [2]吴高明.焦化废水(液)物化处理技术研究[D].武汉,华中科技大学,2006.
    [3]王伟等.齐多夫定的合成工艺改进[J].河南师范大学学报(自然科学版),2003,31(2):73-75.
    [4]Stnaislas.Czemeeki,Jean-Mare.Valery Process for prearing AZT(3'-Azido-3'-Deoxy-Thymidine)and Related Compounds[P].US:5124442,1991,6-23.
    [5]胡笑形.从国外农药禁(限)用看我国农药发展方向农药新世纪[J].农化新世纪,2004,(3):9-14.
    [6]膨润土在印染废水处理中的应用.http://www.water800.com/jswz/5/yyfs050913.htm,2004.7
    [7]Johansen S.S.,Hansen A.B.,Mosbaek H.,Arvin,E.Identification of heteroaromatic and other organic compounds in ground water ai creosote-contaminated sites in Denmark.Groundwater Monit.Rem.1997,17:106-115
    [8]吴立波,王建龙,黄霞.自固定化高效菌种强化处理焦化废水研究.中国给水排水,1999,15(5):1-5.
    [9]朱春媚,沈其龙.部分氮杂环类化合物的遗传毒性及其QSAR研究[J].环境化学,1997,16(2):142-145.
    [10]王连生编著.环境健康化学[M].北京:科学出版社,1994.
    [11]江敏,李咏梅,顾国维.含氮杂环化合物对水生生物的毒性作用研究[J].环境科学学报,2005,25(9):1253-1257,
    [12]Asakura S.,Sawada S.,Sughihara T.,Quinoline-induces chromosome aberrations and sister chromatid exchanges in rat liver.Environ.Mol.Mutagen.1997,30:459-467.
    [13]CL ENMENTS J S.Preliminary investigation of pre2breakdown phenomena and chemical reactions using a pulsed highvoltage discharge in water[J].IEEE Transaction on Industry Applications,1987,23(2):224.
    [14]冯玉杰,崔玉虹,孙丽欣,刘峻峰,蔡伟民.电化学废水处理技术及高效电催化电极的研究与进展[J].哈尔滨工业大学学报,2004,36(4):450-454.
    [15]曾次元,李亮,赵心越等.电化学氧化法除氨氮的影响因素[J].复旦学报(自然科学学报),2006,45(3):348-352.
    [16]王程远,胡翔,李毅等.电化学氧化法处理高浓度氨氮废水的研究[J].工业用水与废水,2008,39(3):59-61.
    [17]杨长河,叶齐政,李劲等.EHD水处理装置放电现象的研究[J].高电压技术,2001,27(5):11-12.
    [18]杨世东,史富丽,马军等.水中高压脉冲放电机理与效能[J].工业水处理.2005,25(8):5-8.
    [19]徐学基,诸定昌.气体放电物理[M].上海.复旦大学出版社,1996.
    [20]赵化侨.等离子体化学与工艺[M].合肥.中国科学技术大学出版社,1993.
    [21]左莉,侯立安.介质阻挡放电与脉冲电晕放电净化气态污染物的试验研究[J].洁净与空调技术,2003(3):43-45.
    [22]郑光明,朱承驻,张仁熙等.平行板双介质阻挡放电处理水相中氯酚的脱氯机理[J].环境科学学报,2004,24(6):962-968.
    [23]黄琴,朱承驻,高静轩等.介质阻挡放电与Fe~(2+)协同处理硝基苯水溶液研究[J].合肥工业大学学报(自然科学版),2008,31(8):1213-1217.
    [24]于红,刘彦民,韩治德等.介质阻挡放电等离子体与淀粉溶液的反应[J].中国石油大学学报(自然科学版),2008,32(1):108-112.
    [25]王占华,许德玄,陈瑜等.放电极雾化介质阻挡放电低温等离子体对染料溶液的脱色研究[J].环境科学研究,2007,20(6):126-130.
    [26]冯景伟,郑正,孙亚兵等.介质阻挡放电对水中敌草隆的降解研究[J].环境化学,2008,27(4):421-426.
    [27]靳承铀.介质阻挡放电反应器在水处理中的实验研究[D].大连:大连理工大学,2003.
    [28]吴彦,张若兵,许德玄.利用高压脉冲放电处理废水的研究进展[J].环境污染治理技术与设备,2002,3(3):51-55.
    [29]李劲,叶齐政,郭香会等.电流体直流放电降解水中硝基苯的研究[J].环境科学,2001,22(5):99-101.
    [30]李胜利,李劲.脉冲放电对印染废水脱色效果的实验研究[J].环境科学,1996,17(1):13-16.
    [31]WEN Y Z,JIANG X Z.Pulsed corona discharge induced reactions of acetophenone in water[J].Plasma Chemistry and Processing,2001,21(3):345-354.
    [32]文岳中.高压脉冲放电降解水中有机污染物及转化CO_2为CO的研究[D].杭州:浙江大学.2000.
    [33]WEN Y Z,JIANG X Z.Degradation of 4-chordophone by highvoltage pulse corona discharges combined with ozone[J].Plasma Chemistry and Plasma Processing,2002,22:175-185.
    [34]陈银生,张新胜,袁渭康.高压脉冲电晕放电等离子体降解废水中苯酚[J].环境科学学报,2002,22:566-569.
    [35]CHEN Y S,ZHANG X S,DAI Y C,et al.Pulsed high voltage discharge plasma for degradation of phenol in aqueous solution[J].Sep Purif Technol,2004,34:5-13.
    [36]陈银生,张新胜,袁渭康.高压脉冲放电低温等离子体法降解废水中4-氯酚[J].华东理工大学学报(自然科学版),2002,28:232-234,244.
    [37]陈银生,张新胜,戴迎春.脉冲电晕放电等离子体降解含4-氯酚废水[J].化工学报,2003.54:1269-1273.
    [38]Irving B.Glow discharge Plasma.Mining environmental management,MEI Online:Hydrometallurgy,2003:21.
    [39]M.Tezuka,M.Wlasaki.Plasma-induced degradation of aniline in aqueous solution[J].Thin solid Films,2001,386:204-207.
    [40]Jinzhang Gao,Zhnogaai HU,xiaoyan Wang.Oxidative degradation of acridine orange induced by plasma with contact glow discharge electrolysis[J].Thin solid Film,2001,390:154-158.
    [41]JiZnhnag Gao,Xiaoyan Wang,Zhongai Hu.Plasma degradation of dyes in water with contact glow discharge electrolysis[J].Water research,2003.37:267-272.
    [42]Jinzhang Gao,Lumei Pu,Wu yang.Oxidative degradation of nitro phenols in aqueous solution induced by plasma with submersed glow discharge electrolysis[J].Plasma Process &polymer,2004,1(2):171-176.
    [43]蒲陆梅,李国琴,伏建明等.辉光放电等离子体对农药毒性的消除作用[J].现代农药,2008(1):13-15.
    [44]张道勇,潘响亮,穆桂金.辉光放电降解酸性红染料废水[J].水处理技术,2008,34(7):55-57.
    [45]马东平,盖轲,赵芸芳.活性炭存在下辉光放电等离子体降解甲基紫[J].陇东学院学报,2008,19(5):20-23.
    [46]刘亚纳,严建华,李晓东等.滑动弧等离子体在废水处理应用中的研究进展[J].高电压技术,2007,33(2):159-162.
    [47]薄拯,严建华,李晓东等:滑动弧放电降解直链烃挥发性有机化合物[J].浙江大学学报(工学版),2008,42(4):707-711.
    [48]杜长明,严建华,李晓东等.气液两相流滑动弧放电降解苯酚废水[J].工程热物理学报,2005,26(3):534-536.
    [49]严建华,刘亚纳,李晓东等.不同气氛下气液两相滑动弧放电降解甲基紫[J].浙江大学学报(工学版),2009.43(5):931-936.
    [50]Fetzner S.Bacterial degradation of pyridine,indole,quinoline,and their derivatives under different redox conditions[J].Appl.Microbiol.Biotechnol.1998,49:237-250.
    [51]朱顺妮,樊丽,倪晋仁.两株喹啉降解菌代谢途径的分析[J].中国环境科学,2008,28(5):456-460.
    [52]崔明超,李丽,陈繁忠.喹啉及其衍生物微生物降解研究进展[J].上海环境科学,2003,22(1):52-56.
    [53]Licht D,Johansen S S,Arvin E,et al.Transformation of indole and quinoline by Desulfobacterium indolicum(DSM3383)[J].Appl.Microbiol.Biotechnol.1997,47:167-172.
    [54]何苗,张晓健,顾夏声等.杂环化合物及多环芳烃厌氧酸化降解性能的研究[J].中国给水排水,1997,13(3):13-16.
    [55]张晓健,雷晓玲,何苗.焦化废水中几种难降解有机物的厌氧生物降解特性[J].环境工程,1996,14(1):10-13.
    [56]李咏梅.焦化废水生物处理工艺研究[D].上海:同济大学博士论文,1999.
    [57]Dyreborg S,Arvin E,Broholm K.Biodegradation of NSO-compounds under different redox-conditons[J].Journal of contaminant hydrology,1997,25:177-197.
    [58]SM Liu,WJ Jones,J E Rogers.Influence of redox potential on the anaerobic biotransformation of nitrogen heterocyclic compounds in anoxic freshwater Sediments[J].Appl.Microbiol.Biodegradation,1994,41:717-724.
    [59]Gu Jidong,Fan Yanzhen,Shi Hanchang.Relationship between structures of substituted indole compounds and their degradation by marine anaerobic microorganisms[J].Marine Pollution Bulletin,2002,(45):379-384.
    [60]申海虹.含氮杂环化合物的缺氧生物降解研究[D].上海:同济大学硕士论文,2002.
    [61]郑广宏.含氮杂环有机化合物缺氧生物降解特性及机理研究[D].上海:同济大学博士学位论文,2003.03
    [62]全向春,王建龙,韩力平等.喹啉与葡萄糖共基质条件下生物降解动力学分析[J].环境科学学报,2001,21(4):416-419.
    [63]马娜.几种含氮杂环化合物生物降解研究[D].上海:同济大学工程硕士学位论文,2003.
    [64]方喜玲,成捷,胡兰花等.TiO_2/H_2O_2/UV和TiO_2/O_3/UV降解对氯苯甲酸和喹啉的试验研究[J].环境污染治理技术与设备,2005,6(9):12-15.
    [65]Wang Xiaomao,Huang Xia,Zuo Chenyan,et al.Kinetics of quinoline degradation by O_3/UV in aqueous phase[J].Chemosohere,2004,55:733-741.
    [66]周莉.TiO_2光催化降解焦化废水中典型杂环化合物的研究[D].重庆,重庆工商大学,2007.
    [67]于丽华,钟俊波,沈昱等.Al_2O_3/TiO_2的制备及光催化降解吡啶[J].大连铁道学院学报:2004.25(1):85-88.
    [68]Zhao Hong,Xu Suohong,Zhong Junbo,et al.Kinetic study on the photo-catalytic degradation of pyridine in TiO_2 suspension systems[J].Catalysis Today,2004(93):857-861.
    [69]古昌红,傅敏,丁培道等.超声波降解吡啶溶液[J].化学研究与应用,2003,15(3):387-389.
    [70]古昌红,傅敏,余纯丽等.在微波辐射下用ACF处理吲哚溶液的实验研究[J].重庆环境科学,2003,25(3):29-31.
    [71]傅敏,高宇,徐小丁.超声波降解吲哚废水的实验研究[J].西南师范大学学报(自然科学版).2005.30(1):117-121.
    [72]Niu,Jianjun,Conway,Brian E.Molecular structure factors in adsorptive removal of pyridinium cations,1,4-pyrazine and 1-quinoline at high-area C-cloth electrodes for waste-water remediation.[J].Joumal of Electroanalytical Chemistry,2002,529(2):84-96.
    [73]庄洪春,孙鹞鸿,彭燕吕等.介质阻挡放电产生等离子体技术研究[J].高电压技术,2002,28(120):57-58
    [74]王辉,孙岩洲,方志等.不同电极结构下介质阻挡放电的特性研究[J].高压电器.2006.42(1):25-27.
    [75]James A.Robinson,Maurice A.Bergougnou,William L.Cairns,G.S.Peter Castle.and Ion I.A.New Type of Ozone Generator Using Taylor Cones on Water Surfaces[J].TRANSACTIONS ON INDUSTRY APPLICATIONS,1998,34(6):1218-1223.
    [76]等离子体[OL].http://baike.baidu.com/view/1277.htm?fr=ala0,2009,08.
    [77]王新新.介质阻挡放电及其应用[J].高电压技术.2009,35(1):3-11.
    [78]U.Kogeischatz.Dielectric-barrier discharges:Their History,Discharge Physics,and Industrial Applications[J].Plasma Chemistry and plasma Processing,2003,23(1):3-7.
    [79]邵建设,严萍.高频高压交流电源应用于介质阻挡放电特性的研究[J].高电压技术,2006,32(3):78-80.
    [80]王辉,方志,邱毓昌.多针.平板电极介质阻挡放电的研究[J].印染,2005,1:1-4.
    [81]赵艳辉,周建刚,吴晓东等.不同结构介质阻挡放电的放电特性[J].大连海事大学学报,2004,30(3):59-61.
    [821赵文华,张旭东.电极尺寸对介质阻挡放电冷等离子体去除NO的影响[J].环境污染治理技术与设备,2004,5(1):51-53.
    [83]陈敏为,甘礼骓.有机杂环化合物[M].北京,高等教育出版社,1990,06.
    [84]赵雁来.杂环化合物导论[M].高等教育出版社.1992,08.
    [85](加)德朗尚(Deslongchamps,P)著李国清、房秀华.有机化学中的立体电子效应[M].北京:北京大学出版社,1991.
    [86]朱大章.N-杂环化合物真空紫外降解机理研究[D].同济大学,2006.
    [87]黄成坤,周聪晓,李涛等.喹啉臭氧化-脱羧合成烟酸[J].化工进展,2007.26(8):1125-1128.
    [88]柯以侃,董慧茹.化学分析手册第三册.光谱分析[M].北京.化学工业出版社.1998,09.
    [89]Claus G,Kutzner H J.Degradation of indole by Alcaligenes sp.[J].Sys AppL Microbiol,1983,4:169-180.
    [90]Stalick Wayne M.Mushrush George W.,Murray Joseph H.,Zahadat Nazdaneh.Pyrolysis free radical reactions of substituted long chain alkyl pyridines and quinolines.Ameriean Chemical Soeiety,Division of Petroleum Chemistry,Hydrogen Transfer in Hydrocarbon Processing,1994,39(3):317-320.
    [91]Ogunsola Olubunmi M.Decomposition of isoquinoline and quinoline by supercritical water.Journal of Hazardous Materials,2000,74(3):187-195.