两相非共沸混合工质逆布莱顿循环热泵应用的理论与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非共沸混合工质在蒸发器和冷凝器中的相变过程是一个定压变温过程,作为高低温热源的环境介质,在两器中也是一个变温过程,从热力学角度而言,如果工质和热源的温度变化过程相匹配,即始终保持一个均匀的、适中的换热温差,则换热不可逆性可以大大减小,从而提高循环效率。逆向布莱顿循环具有输出膨胀功的特点,本文从理论和实验两方面分析探讨了非共沸混合工质应用于逆向布莱顿热泵循环的性能。
     工质的T—S相图在循环模拟、设计和分析中发挥着十分重要的作用,循环的路径与相图的饱和状态线之间的相对位置关系,对整个系统的运行状态和设备的设计选型有很大影响。本文对有关工质在T—S图上的相边界形状,特别是气相饱和线的形状进行了分析研究。
     选用非共沸工质的一个重要原因是为了利用其温度滑移特性以匹配热源流体的温度变化,减少换热过程的不可逆性。过小的温度滑移值,无法发挥其优越性,而过大的温度滑移反而可能增大换热损失。本文第四章对非共沸混合工质的温度滑移特性,以及与温度滑移密切相关的焓变的线性特性进行了详细研究。
     基于循环的热力学分析和从热力学角度选择的工质,采用RKS状态方程对几种非共沸混合工质进行了循环模拟计算,详细讨论了工质成分等参数对系统性能的影响。
     实验研究以理论为指导,验证了理论数值分析,在得到本课题的一些重要结论的同时也发现了一些不足,为本课题的进一步研究提供了依据。
The phase change of non-azeotropic refrigerants in evaporator and condenser is a isobaric&non-isothermal process. And the heat source in the two heat exchanger is also non-isothermal. In the view of thermodynamics, if the heat exchange processes of the refrigerants and the heat source match well, the irreversibility of the heat exchange process will be much more less and the efficiency of the cycle will be higher. Utilizing the non-azeotropic refrigerants and the two phase expanse work of the expander, this thesis, theoretically and experimentally, analyzes and explores thoroughly the cycyle performance in the heat pump system of the Reveser-Brayton Cycle.
    The T-S phase diagram of working substance is very important for cycle simulation, design and analysis. The relative location of cycle process lines and the saturation curve of the T-S phase diagram playes an important role in the design of the equipment and operation of the system. This thesis analyzes the shape of the saturation curve of some working substances' T-S phase diagram, especially the shape of the saturated vapor line.
    To take advantage of the temperature glide matching of working substances and heat resources is an very importment reason of using non-azeotropic refrigerants. If the glide is small, the advantage is difficult to be taken, and if the glide is too big, the irreversibility of the heat exchange process would be much more bigger either. This thesis also analyzes the temperature glide of some non-azeotropic refrigerants, and the characteristic of enthalpy change during the phase change process, which has much correlativity with the temperature glide.
    In order to attain the nature of this research object, by the thermodynamic analysis and selecting refrigerants from the view of thermodynamic, it, used RKS equation of
    
    
    BSTRACT
    state, carried out simulating the cycle with multiplex non-azeotropic refrigerants, and discussed in details the impacts of many restriction on the cycle performance, which involved the component of the refrigerants etc.
    The experimental study verified the theoretical results. Ultimately, a few important conclusions were obtained and some problems were found, which provide the direction for further study.
引文
[1] 陈光明,陈国邦主编.制冷与低温原理.北京:机械工业出版社,2000年,第一版
    [2] W.F. Stoecker 和 Energy Division Conserving energy in domestic refrigerators through the use of refrigerant mixtures International Journal of Refrigeration, 1981(7), Vol.4: 201-207
    [3] H. Kruse The advantages of non-azeotropic refrigerant mixtures for heat pump application International Journal of Refrigeration, 1981(5), Vol.4: 119-125
    [4] H.A. Cormon 和 D. W. Drew Estimation and application of thermodynamic properties for a non-azeotropic refrigerant mixture International Journal of Refrigeration, 1983(7), Vol.6:203-208
    [5] M.O. McLinden and R. Radermacher Methods for comparing the performance of pure and mixed refrigerants in the vapour compression cycle International Journal of Refrigeration, 1987(11), Vol. 10:318-325
    [6] L.J.M. Kuijpers, J. A. de Wit和 M. J. Janssen Possibilities for the replacement of CFC12 in domestic equipment International Journal of Refrigeration, 1988(7), Vol. 11:284-291
    [7] M. Narodoslawsky 和 F. Moser New compression heat pump media as replacements for CFCs International Journal of Refrigeration, 1988(7), Vol.11:264-268
    [8] David A. Didion 等 Role of refrigerant mixtures as alternatives to CFCs International Journal of Refrigeration, 1990(5), Vol. 13:163-175
    [9] R.W. James 和 J.F. Missenden The use of propane in domestic refrigerators International Journal of Refrigeration, 1992, Vol. 15: 95-100
    [10] Akio Miyara,Shigeru Koyama 和 Tetsu Fujii Consideration of the performance of a vapour-compression heat-pump cycle using non-azeotropic refrigerant mixtures International Journal of Refrigeration, 1992, Vol. 15:35-40
    [11] M. Hogberg, L. Vamling 以及T. Berntsson Calculation methods for comparing the performance of pure and mixed working fluids in hest pump applications International Journal of Refrigeration, 1993, Vol. 16:403-412
    [12] E. Bodio、M. Chorowski 和 M. Wilczek Working parameters of domestic refrigerators filled with propane-butane mixture International Journal of Refrigeration, 1993, Vol. 16: 353-356
    [13] Akio Miyara Performance evaluation of a heat pump cycle using NARMs by a simulation with equations of heat transfer and pressure drop International Journal of
    
    Refrigeration, 1993, Vol.16:161-168
    [14] A. Bensafi and G. G. Haselden Wide-boiling refrigerant mixtures for energy saving International Journal of Refrigeration, 1994, Vol. 17:469-474
    [15] W.J. Mulroy、P.A. Domanski 和 D.A. Didion Glide matching with binary and ternary zeotropic refrigerant mixtures International Journal of Refrigeration, 1994, Vol. 17: 220-225
    [16] Graham Morrison The shape of the temperature-entropy saturation boundary International Journal of Refrigeration, 1994, Vol. 17:494-504
    [17] G. Lorentzen The use of natural refrigerants: a complete solution to the CFC/HCFC predicament International Journal of Refrigeration, 1995, Vol.18:190-197
    [18] R.S. Agarwal, M. Ramaswamy 和 V. K. Srivastava Transport properties of ternary near-azeotropic mixtures International Journal of Refrigeration, 1995, Vol. 18:132-138
    [19] R.N. Richardson 和 J. S. Butterworth The performance of propane/isobutane mixtures in a vapour-compression refrigeration system International Journal of Refrigeration, 1995, Vol.18:58-62
    [20] G. Venkatarathnam, Girish Mokashi 和 S. Srinivasa Murthy Occurrence of pinch points in condensers and evaporators for zeotropic refrigerant mixtures International Journal of Refrigeration, 1996, Vol.19:361-368
    [21] O. Brunin, M. Feidt 和 B. Hivet Comparison of the working domains of some compression heat pumps and a compression-absorption heat pump International Journal of Refrigeration, 1997, Vol.20:308-318
    [22] F.stamler.开发CFC替代物的趋势.低温与特气 1996,9 48-51
    [23] J. Swinney, W.E. Jones 和 J.A. Wilson The impact of mixed non-azeotropic working fluids on refrigeration system performance International Journal of Refrigeration, 1998, Vol.21: 607-616
    [24] B. Purkayastha 和 P.K. Bansal An experimental study on HC290 and a commercial liquefied petroleum gas(LPG) mix as suitable replacements for HCFC22 International Journal of Refrigeration, 1998, Vol.21: 3-17
    [25] G. Venkatarathnam 和 S. Srinivasa Murthy Effect of mixture composition on the formation of pinch points in condensers and evaporators for zeotropic refrigerant mixtures International Journal of Refrigeration, 1999, Vol.22:205-215
    [26] P.P.J. Vorster, J.P. Meyer Wet compression versus dry compression in heat pumps working with pure refrigerants or non-azeotropic binary mixtures for different heating applications International Journal of Refrigeration, 2000, Vol.23:292-311
    
    
    [27] Eric Granryd Hydrocarbons as refrigerants--an overview International Journal of Refrigeration, 2001, Vol.24:15-24
    [28] A. Johansson 和 P. Lundqvist A method to estimate the circulated composition in refrigeration and heat pump systems using zeotropic refrigerant mixtures International Journal of Refrigeration, 2001, Vol.24:798-808
    [29] G. Angelino 和 C. Invernizzi General method for the thermodynamic evaluation of heat pump working fluids International Journal of Refrigeration, 1988, Vol. 11:16-24
    [30] G. Angelino 和 C. Invernizzi Prospects for real-gas reversed Brayton cycle heat pumps International Journal of Refrigeration, 1995, Vol. 18:272-280
    [31] J.E. Braun, P.K. Bansal 和 E.A. Groll Energy efficiency analysis of air cycle heat pump dryers International Journal of Refrigeration, 2002, Vol.25:954-965
    [32] Jan Szargut Component efficiencies of a vapour-compression heat pump International Journal of Refrigeration, 2002, Vol.25: 99-104
    [33] Leelananda Rajapaksha 等 Influence of liquid receiver on the performance of reversible heat pumps using refrigerant mixtures International Journal of Refrigeration, 2004, Vol.27:53-62
    [34] 苏长荪主编.《高等工程热力学》.北京:高等教育出版社,1987
    [35] 朱自强主编.《流体相平衡原理及其应用》.杭州:浙江大学出版社,1990
    [36] 韩宝琦,李树林主编.《制冷空调原理及应用》.北京:机械工业出版社,1995
    [37] 陈光明,侯虞钧.非共沸混合工质用于冰箱循环的热力学分析.制冷学报,1990,44(2):1-3
    [38] 沈永年,黄柏才.天然工质应用于逆向Brayton循环中的理论分析.低温工程,2000,120(2):28-32
    [39] 郑贤德主编.制冷原理与装置.北京:机械工业出版社,2001年,第一版
    [40] 张华俊,俞炳丰.制冷系统中采用两相膨胀机的理论分析.低温工程,1996.2:6-12
    [41] McLinden M O. Thermodynamic properties of CFC alternatives: A survey of the available data. Int J Refrig, 1990, 13(3): 149-162
    [42] 石玉美,顾安忠.天然气液化流程中的汽液相平衡计算.低温工程,1997.97(3):12-17
    [43] 庄友明.RKS状态方程用于制冷剂热力性质的计算.化学工程.1990.18(4):44-48
    [44] 朱瑞琪.制冷装置自动化.西安:西安交通大学出版社.1993,第一版
    [45] 沈永年.涡旋式膨胀机热力过程分析与实验研究.低温工程,2000.116(4):23—28