氟利昂-12预混合燃烧水解研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氟利昂(CFCs)是一类重要的臭氧消耗物质(ODS)和温室气体,在臭氧层破坏、气候变化异常和酸雨三大全球性环境问题中,臭氧层破坏及气候变化异常均与氟利昂排放相关。为了解决这一全球性的问题,旨在限制和禁止使用CFCs等ODS的《关于消耗臭氧层物质的蒙特利尔议定书》(About the ozone depleting substance of the Montreal protocol)(以下简称《议定书》)得到世界上160多个国家的支持和批准。尽管CFCs的生产与使用已受到极大限制,但如何处理和利用库存和在用设备中的CFCs成为一个广受关注的焦点问题,开发实用的CFCs降解工艺和设备具有重要的现实意义。
     以热力学软件Factsage为工具,对二氟二氯甲烷(CFC-12)在不同温度、压力以及甲烷、石油液化气(LPG)、一氧化碳、氢气四种燃料氛围中的平衡组成和产物分布作了深入研究,发现CFC-12在4种燃料体系中都能很完全地转化为HF、HCl和C02,反应的化学亲和势和平衡常数都比没有燃料添加时大得多,这一效果以LPG体系更加显著,结合平衡组成分布考虑,认为LPG是降解CFC-12的最佳燃料。热力学研究显示CFC-12的热力学稳定性并不高,在一定条件下很容易发生裂解。在各种影响因素中,温度对裂解后平衡产物的分布影响很大,其中氯元素的分布特征是1400K以下以C12为主,C1量很小,1950K以上以Cl为主。F元素的分布以CF4为主,1900K后,CF2的量也占有比较明显的优势,2500K时,CF4、CF2同时成为F的主要存在形式。当体系中有水存在时,主要产物则是HF、HCl和CO2,但其形成并非是温度越高越好,相对的低温更有利于HF、HCl和CO2的选择性形成。压力对CFC-12降解反应影响很小,因此,在后续实验中没有考察压力对反应的影响。
     用量子化学中的密度泛函理论(DFT)进行了反应机理分析。对于CFC-12在LPG燃烧场中的降解反应提出了一个涉及46个物种,包含388个反应的自由基反应机理。对所有基元反应进行量子化学计算予以确认。计算过程使用Materials Studio软件在密度泛函LDA/PWC(DNP)水平下完成,经过筛选,最终得到一个包括113个能垒低于10kcal/mol的CFC-12降解机理。从理论上证实了CFC-12在LPG燃烧场中的降解存在多个低能垒的优势反应通道,它们互相交叉,形成了一个网络状反应通道体系。这一低能垒反应通道网络为CFC-12的快速、彻底降解提供了保障,这一保障来源于燃烧场提供的自由基。LPG燃烧过程中形成的CH3、CH2等烃类自由基和卡宾与CFC-12分子及其碎片之间有很强的反应活性,有效地增加了CFC-12的低能垒分解通道,这说明了选择LPG作为燃料的优越性。该机理揭示了CFC-12降解的前半部分反应主要以形成HCl为主,其通道均为自由基反应;而HF主要在后半部分反应中形成,其来源有很大部分依赖于水解通道。该机理还揭示了CFC-12对LPG的燃烧有抑制,但水解通道的存在降低了对燃烧的抑制,水的存在有利于CFC-12的降解。
     实验研究从CFC-12、H2O对LPG燃烧特性的影响入手,研究了燃烧处理CFC-12的基本规律,实验结果与理论研究完全一致。CFC-12及H20对LPG-空气混合气的燃烧速率有显著影响,CFC-12严重抑制燃烧,最大使LPG燃烧速率下降77.4%。水的影响与CFC-12类似,但程度较轻。实验证实在LPG燃烧场中,CFC-12分解反应能在瞬间完成,是一个动力学快速反应,通过GC-MS分析,没有发现中间产物富集。由于CFC-12对LPG的燃烧有很强的抑制,要提高CFC-12处理效率(即CFC/LPG),控制目标指向燃烧场的稳定。实验结果表明,CHRFPPF (Combustion and Hydrolysis of Rotational Flow with Partial-Premixed Feeding)工艺较好的解决了这一问题,这一工艺过程在设备上则通过将单环缝隙旋流燃烧器改为双环缝隙旋流燃烧器来实现。LPG燃烧场中加入少量水蒸气有助于提高燃烧场处理CFC-12的能力,一次空气中水含量为14g/Nm3-20g/Nm3时对CFC-12降解有利,超过20g/Nm3后则对CFC-12的降解有负作用,用水在室温下以鼓泡的方式饱和预混空气即可达到理想的效果。
     氟是重要的战略资源,通过向CFC-12燃烧尾气的吸收液中添加CaCl2,将吸收液中的氟以CaF2的形式沉淀出来,通过分离即可实现CFC-12的资源化利用。实验证实,沉淀物的主要成分是碳酸钙和氟化钙,沉淀物要达到萤石精矿对CaF2品位最低要求的工艺条件是:吸收液pH值3.0以下,CaCl2的投加量取理论需要量的2.5倍。
     通过实验优化了CHRFPPF工艺参数:预混气体供给燃烧器内环,二次空气供给外环;a=1.2;一次空气A1:二次空气A2=0.4:0.6;一次空气用鼓泡法增加水含量。该条件下CFC/LPG值达到2.02而CFC-12分解率在99.9%以上。该结果较文献报道的最好处理能力(CFC/LPG值)高18.8%,还取消了燃烧场中的电热丝系统,简化了设备,降低了能耗。
     使用Fluent软件,涡耗散(Eddy-Dissipation)化学反应模型完成了双环预混进口形式的CFC-12分解燃烧器射流燃烧与旋流燃烧的数值模拟。计算结果表明旋流燃烧方式可得到比射流湍流扩散燃烧更短的火焰,有利于减小燃烧器尺寸,降低设备造价。强烈的涡旋气流使整个燃烧器的温度、浓度分布更加均匀,更有利于CFC-12的分解。旋流流场中存在的径向和切向速度分布,使全预混旋流燃烧方式下的CFC-12分解率稍低于部分预混燃烧方式的CFC-12分解率。这与实验吻合的很好。
     根据CHRFPPF工艺要求,设计制作了一套CFC-12处理能力为2千克/小时的设备,其燃烧过程稳定,CFC-12分解率大于99.9%,处理能力达到设计要求,实现了研究目标,为工业化应用打下了良好基础。
     以二氟二氯甲烷(CFC-12)为研究对象,以热力学和反应机理等理论研究为基础,自行设计了中试实验装置,结合实验研究,确定了预混合旋流燃烧水解(Combustion and Hydrolysis of Rotational Flow with Partial-Premixed Feeding (CHRFPPF))基本工艺参数。
Ozone depletion, abnormal climate change and acid rain are the main global environmental problems. The former two issues are related with the emission of chlorofluorocarbons(CFCs), which is an important ozone depleting substances (ODS) and green house gas. In order to address this global issue of CFCs,'About the ozone depleting substance of the Montreal protocol'(Montreal protocol) has been approved and supported by more than 160 countries to limit and/or prohibit the usage of CFCs and other ODS. It has been an issue on how to deal and utilize the CFCs in storage and current instruments, although production and usage of CFCs have been limited by the Montreal protocol. It is an importance of reality to develop practical technology and instrument to decompose CFCs. In this research, dichlorodifluoromethane (CFC-12) was investigated based on theories of thermodynamics and reaction mechanism. Combined with experimental studies, a technology named' Combustion and Hydrolysis of Rotational Flow with Partial-Premixed Feeding (CHRFPPF)', and corresponding pilot-scale instrument were developed to decompose CFCs and recover the byproducts as resource.
     Factsage was used for thermodynamic analysises. Reactions of CFC-12 with bunkers such as methane, liquefied petrol gas (LPG), carbon monoxide and hydrogen were simulated under different temperature and pressure to figure out the equilibrium compositions and product distribution. It was found that using four fuels mentioned above CFC-12 could be completely transferred to HF, HCl and CO2, and that chemical potential and equilibrium constant were higher than those without any fuel. Among the four fuels, LPG exerted the best performance and desired equilibrium composition, and therefore was selected as the optimum fuel to decompose CFC-12. Thermodynamic analysises indicated that CFC-12 has a low stability and could be easily cracked under certain conditions. Among many influencing factors, temperature is the most important one that would influence the equilibrium distribution of products after crack. Element Cl mainly existed in form of Cl2 with a few Cl when temperature was less than 1400K, and mainly in form of Cl when temperature was higher than 1950K. Most of element F existed in form of CF4. Exceeding 1900K, CF2 also played an important role, and at 2500K F was mainly distributed in CF4 and CF2. When water existed in the reaction system, relative lower temperature was favorable to selectively form HF, HCl and CO2. Pressure exhibited only smaller influence on the decomposition of CFC-12, and therefore would not be considered for further studies.
     Density functional theory (DFT) was used for reaction mechanism research. A residue reaction mechanism involving 46 species and 388 reactions was proposed to model the reaction of CFC-12 and LPG based on references. All the elemental reactions were confirmed through calculation of quantum chemistry. Calculation at DFT LDA/PWC(DNP) level was conducted using commercial software Materials Studio. Finally,113 possible decomposition pathways of CFC-12 were selected based low energy barrier (<10kcal/mol). This confirmed from theory that many reaction pathways of low energy barrier existed in the LPG combustion field of CFC-12, and they crossed and interacted to provide a netted system of reaction pathways. This netted system of low energy barrier provided the guarantee to quickly and completely decompose CFC-12 as result of the residues produced in LPG combustion field. Hydrocarbon like CH3, CH2 and carbene exerted strong reactivity with the CFC-12 and its fraction, and effectively increased the decomposition pathways of low energy barrier. This confirmed the priority to select LPG as combustion fuel of CFC-12. The proposed mechanism indicated that HCl was mainly formed in the first half of the reaction system based on pathways of residue reaction, while most of HF was formed in the second half of the reaction system based on pathways of hydrolysis. It was also found that CFC-12 inhibited the combustion of LPG, while pathways of hydrolysis promoted the combustion. Presence of water was favorable to decompose CFC-12.
     Experimental researches were carried out to investigate the combustion characteristics of LPG and the basic laws governing the decomposition of CFC-12. Experimental results were completely in agreements with the theoretical studies. Combustion rate of mixture of LPG and air were dramatically influenced by CFC-12 and H2O. CFC-12 seriously inhibited the combustion with maximum rate decrease of 77.4%. Influence of water on combustion was similar as that of CFC-12 but with a relative lower inhibition. Experiments confirmed that decomposition of CFC-12 in LPG combustion field was a fast dynamic reaction without accumulation of transition products.
     Because of the strong inhibition of CFC-12 on LPG combustion, in order to increase the proficiency of CFC-12 decomposition, LPG combustion field should be controlled to make it stable. Experimental results indicated that CHRFPPF technology could solve this problem better. CHRFPPF technology was realized by replacing single-annulus-rotational-fluent combustor with double-annulus-rotational-fluent combustor. Smaller amount of water steam was favorable to decompose CFC-12. Water concentration of 14g/Nm3-20g/Nm3 was favorable, and unfavorable when exceeding 20g/Nm3. Water steam bubbled into the pre-mixed air under room temperature could reach the desired efficiency.
     Element F could be recovered in form of CaF2 from CFC-12 by adding CaCl2 into the absorbent to deposit F from HF. By the separation of CaF2, CFC-12 could be resourced. It was found from experiments that most of the deposits were CaCO3 and CaF2-The conditions of making deposits to meet the standard of high quality fluorite mines were to make pH of absorbent less than 3.0, and add CaCl2 as 2.5 times as the theoretical stoichiometry.
     Parameters of CHRFPPF technology were optimized using experiments. Pre-mixture were fed into the inside annulus while second air flow fed into outside annulus, the ratio of first to second air flow was 0.4:0.6, and first air flow was wetted by bubbling water before mixing. Under optimum conditions, ratio of CFC/LPG reached 2.02 and the decomposition rate of CFC could be more than 99.9%. This CFC/LPG value was 18.8% higher than the best reported value. Furthermore, the electric heat fuses were removed from the combustor to simplify the equipment and reduce the energy consumption.
     Fluent was used to simulate the eddy-dissipation reaction model occurred in either ejected or rotational fluent in double-annulus-fluent combustor. Results indicated that combustion occurred in rotational fluent generated fire flame smaller than that occurred in ejected fluent. Rotational fluent were more favorable to reduce the combustor size and cost. Strong eddies caused by rotational fluent distributed the temperature and product concentrations more evenly, and therefore promote the decomposition of CFC-12. Radial and axial distribution of velocity in rotational fluent made the decomposition rate in fully mixed fluent a little smaller than that in partially mixed fluent. The simulation results were consistent with our experiment studies.
     According to the requirement of CHRFPPF technology, the 2kg/h pilot-scale equipment was designed to decompose CFC-12. This equipment could be operated stably, and reached the design capacity and the decomposition efficiency higher than 99.9%. Based on the experimental researches and theoretical analysises, our research objectives have been realized; and sound bases were provided for further industry application.
引文
[1]M.J.Molina, F.S.Rowland. Stratospheric Sink for Clorefluoremethanes:Chlorine Atomic-Analysed Destruction of Ozone [J]. Nature,1974,249:810-812
    [2]Manney G L. Chemical Depletion of Ozone in the Arctic Lower Stratosphere during Winter 1992-1993.Nature.1994,370:42
    [3]周秀骥.中国地区臭氧总量变化与青藏高原低值中心[J].科学通报.1995.40(15):1396-1398
    [4]Rowland F S and Molina M J. Ozone Depletion:20 Years After the Alarm[J]. Chemical & Engineering News, 1974, Aug15:8
    [5]Houghton J T, Ding Y, Griggs D J, et al. Climate Change 2001:the Scientific Basis [M]. Cambridge: Cambridge University Press,2001
    [6]徐建华,胡建信,张剑波.中国ODS的排放及其对温室效应的贡献[J].中国环境科学,2003,23(4):363-366
    [7]游英,周道生.环境保护与CFCs禁用问题[J].扬州工学院学报.1991,12:63-69
    [8]马臻,华伟明,高滋.氟利昂催化分解研究进展[J].化学通报,2001(6):339-344
    [9]防止氟利昂污染环境全国首家ODS回收中心落户武汉[EB/OL].http://finance.sina.com.cn/ roll/20060823/0527877144.shtml 2006.8.23
    [10]关于进一步开展空调维修行业全氯氟烃和消防行业哈龙回收申报登记制度及建立信息交换平台的通告沪环保控[2009]32号[EB/OL].http://www.sepb.gov.cn/news.jsp?intKeyValue=17151
    [11]山东省召开报废汽车回收拆解和氟利昂回收工作会议[EB/OL].http://www.sdetn.gov.cn/ portal/jmzn/jnjp/webinfo/2008/06/1214440642610949.htm 2008.6.25
    [12]关于进一步做好汽车维修行业CFC-12制冷剂回收利用工作的通知闽运管车辆[2007]29号[EB/OL].http://www.fjysgl.gov.cn/show.aspx?id=2331
    [13]中国将提前成温室气体排放最大国[N].参考消息,2007-4-20:第八版
    [14]冯永恭.有机氟工业[M].上海:上海科技出版社.1992:140-155
    [15]裘玉平.氟里昂-12的特点与使用[J].汽车运输.1991,5:16
    [16]Tian Senlin; Chatacterization of sorption Mechanisms of VOCs with organobentonites Using a LSER Approach[J]. Environmental Science & Technology.2004,38:489-495
    [17]徐向东.特定氟利昂(CFC)对环境的影响及对策[J].冷藏技术.1993,1:36-44
    [18]姜安玺.空气污染控制[M].北京:化学工业出版社,2003:116-118
    [19]倪玉霞.氟里昂燃烧前预混合水解资源化初步实验研究[D硕士].昆明:昆明理工大学,2006:4-17
    [20]Chapman S. A theory of upper atmospheric ozone.Mem Meteoral Soc[J].1930.3:103-125
    [21]邝生鲁.化学工程师技术全书[M].北京:化学工业山版社,2002:1110-1111
    [22]周任君.青藏高原上空臭氧的变化及其气候效应[D博士].北京:中国科学技术大学.2005:4
    [23]郑有飞,钱晶.紫外辐射增加对人类疾病的影响研究[J].气象科技.1999.2:10-13
    [24]王树华氟化工的安全技术和环境保护[M]北京:化学工业出版社,2005
    [25]The Montreal Protocol on Substance That Deplete the Ozone Layer.2000[EB/OL]. http://www.unep.org/ozone/pdf?Montreal-Protocol2000.pdf
    [26]国家环保总局,国家发展改革委,商务部,海关总署,国家质检总局.关于禁止生产销售、进出口以氯氟烃(CFCs)物质为制冷剂、发泡剂的家用电器产品的公告2007.5
    [27]中国将以务实态度积极履约[N].中国环境报,2007-7-3:第一版
    [28]国家环境保护总局《2008年中国环境状况公报》北京2009
    [29]Trukshin I G, Sheremetev S K, Bapabanov V G. PΦ,2049085[P],1995-11-27
    [30]Barabanov V G. Nikiforov B L. J Fluorine Chem.1999.96:7.
    [31]杨远良涂中强CFCs, HCFCs类制冷工质的替代评述与展望[J].洁净与空调技术CC&AC,2006年(4):10-12
    [32]Garry D H, Richard D E.Atmospheric Chemical Reactivity and Ozone-Forming Potentials of Potential CFC Replacements[J].Environmental Science & Technology.1997.31 (2):327-336
    [33]L. S nitkjaer, F.K.E ggert.Use of a Ternary Blend in Existing Domestic CFC-12 Appliances[J]. International Refrigeration Conference-Energy Eficiency and New Refrigerants. Purdue, USA.,1992:631-640
    [34]S.M.Sami, J.Schnotale,and J.G. Smale.An Experimental Investigation of Ternary Refrigerant Blends Performance Proposed as Substitutes for CFC-12. Interna tional Refrigeration Conference-Energy Eficiency and New Refrigerants. Purdue, USA.,1992:651-660
    [35]杨昭,马一太,吕灿仁一种新的替代R12的三元混合工质的试验研究[J].制冷学报,1993(3):7-10
    [36]吴之春.混合工质替代R12的理论分析与实验研究[D博士].天津:天津大学,1995
    [37]刘咸定、刘志刚等,近共沸混合工质HFC152a/HCFC22冰箱的研究[J].制冷学报,1991;3:1-9
    [38]Ma Yitai, Weijie, YangZhao, Lu Canren Investigation of using nonazeotropic refrigerant mixture as the replacement of R12[J]. Interna tional Refrigeration Conference-Energy Eficiency and New Refrigerants. Purdue, USA.,1992,669-676
    [39]捷列先科,巴拉巴洛夫.俄罗斯ODS替代品现状与发展[J].氟化工.2006.13(2):4-6
    [40]张早校.氯氟烃的再生分解与破坏技术分析[J].环境保护.2002(3):22-24
    [41]Masahiro Tajima, Miki Niwa, Yasushi Fujii, Decomposition of chlorofluorocarbons in the presence of water over zeolite catalyst[J]. Applied Catalysis B:Environmental 1996, (9):167-177
    [42]Committee of Decomposition of Ozone Layer Depletion Compounds. Technology of Decomposition of Ozone Layer Depletion Compounds,1991:43
    [43]Gregory A. Vogel, Alan S. Goldfarb, Robert E. Der. Incinerator and cement kiln capacity for hazardous waste treatment[J]. Nuclear and Chemical Waste Management.1987.7(1):53-57
    [44]CFC's destroyed in cement manufacture[J]. Applied Catalysis B:Environmental.1997.13(2):N13
    [45]缪培碧译.在水泥窑中销毁氟利昂[J].国外建材译丛.1997,1:49-52
    [46]胡春华译.国外利用水泥窑的氟里昂分解装置概略[J].湖北林业科技.2001,3:50-51
    [47]M Taralunga, J Mijoin, P Magnoux. Catalytic destruction of chlorinated POPs-Catalytic oxidation of chlorobenzene over PtHFAU catalysts[J].Applied Catalysis B:Environmental.2005.60(3-4):163-171
    [48]Q Dai, X Wang, G Lu.Low-temperature catalytic combustion of trichloroethylene over cerium oxide and catalyst deactivation[J].Applied Catalysis B:Environmental.2008.81(3-4):192-202
    [49]A C Gluhoi, N Bogdanchikova, B E Nieuwenhuys.The effect of different types of additives on the catalytic activity of Au/Al2O3 in propene total oxidation:transition metal oxides and ceria [J].Journal of Catalysis.2005.229(l):154-162
    [50]张纪领,尹燕华,张志梅,et a1.新型霍加拉特催化剂催化燃烧性能研究[J].舰船防化.2008.(2):1-7
    [51]R W van den Brink, R Louw, P Mulder.Increased combustion rate of chlorobenzene on Pt/γ-Al2O3 in binary mixtures with hydrocarbons and with carbon monoxide[J].Applied Catalysis B: Environmental.2000.25(4):229-237
    [52]黎维彬,龚浩.催化燃烧去除VOCs污染物的最新进展[J].物理化学学报.2010.26(4):885-894
    [53]Iwaki H,Katagiri H. Wastepaper gasification with CO2 or steam using catalysts of molten carbonates[J]. Applied CatalysisA:General,2004,270(1):237-243
    [54]Barrioa V L.Schaub G,Rohde M,etal.Reactor mode tosimulatecatalyticpartialoxidation and steam reforming of methane.comparison of temperature profiles and strategies for hot spotminimization[J].Int J HydrogenEnergy,2007,32(10-11):1421-1428
    [55]Kimihiko Sugiura,Keishi Minami,Makoto Yamauchi,etal.Gasification characteristics of organic waster by molten salt[J]. Journal of Power Sources,2007,171:228-236
    [56]Wang Hua, He Fang. A technology of reducing greenhouse gasemissions[JJ.Journal of Kunming University of ScineceandTechonlogy,2004,29(4):43-49
    [57]Xin Jia-yu, Wang Hua, He Fang, etal. Thermodynamic and equilibrium composition analysis of using iron oxide as an oxygen carrier innonflame combustion technology [J]. Journal of Natural Gas Chemistry,2005,14(4):248-253
    [58]Gerard E.Bertolini J F.Value recovery from plastics waste by pyrolysis in molten salts[J]. Conservation & Recycling,1987,10 (4):331-343
    [59]Peter C H, Kenneth G F, Timothy D F, etal. Treatment of solid wastes with molten salt oxidation[J].Waste Management,2000,20 (5):363-368
    [60]Kimihiko S, Keishi M, Makoto Y, etal. Gasification characteristics of organic waste by molten salt[J]. Journal of Power Sources,2007,171(1):228-236
    [61]Bjrn B, Ehud G. Feasibility of acritical molten salt reactor for waste transformation [J].Progress in Nuclear Energy,2008,50(2):236-241
    [62]Chien Y C,Wang H P,Lin K S,etal.Fate of bromine inpyrolysis of printed circuit boardwastes[J].Chemosphere, 2000,40(4):383-387
    [63]Gong J, Hiroyuki I, Norio A, etal. Study on the gasification of waste paper/carbon dioxide catalyzed by molten carbonate salts[J].Energy,2005,30 (7):1192-1203
    [64]118 Yang H C, Cho Y J, Eun H C. Destruction of chlorinated organic solvents in a two-stagemoltensaltoxidationreactorsystem[J].Chem Eng Sci,2007,62(18):5137-5143
    [65]邹金宝.熔融碱(盐)分解CFC-12研究[D硕士].昆明:昆明理工大学,2009
    [66]熔融盐在废弃物处理中的应用研究进展[J];工业安全与环保.2009.35(1).39-40
    [67]邹金宝,宁平,高红等.熔融碱法处理CFC-12的研究[J].环境保护科学,2009.35(5):5-7
    [68]高红,宁平,邹金宝等.熔融碱吸收高浓度CFC-12废气的研究[J].武汉理工大学学报.2010.32(13).1-3
    [69]Hai Yu,Eric M. Kennedy, Adesoji A, et al. A review of CFC and halon treatment technologies-The nature and role of catalysts [J]; Catalysis Surveys from Asia.10 (1).2006.40-54
    [70]Jacob. E,USP 4935212[P].1990-6-19
    [71]Masahiro Tajima,Miki Niwa,Yasushi Fujii.et al.Decomposition of chlorofluorocarbons on TiO2-ZrO2[J]. Applied Catalysis B:Environmatal 1997 (12):263-276
    [72]Hideo Nagata, Taijiro Takakura, Shizuka Tashiro; Catalytic oxidative decomposition of chlorofluorocarbons(CFCs) in the presence of hydrocarbons[J]; Applied Catalysis B:Environmatal 1994 (5): 23-31
    [73]Meltem Ocal, Marek Maciejewski, Alfons Baiker.Conversion of CC12F2 (CFC-12) in the presence and absence of H2 on sol-gel derived Pd/Al2O3 catalysts[J]; Applied Catalysis B:Environmental,21(4),1999,279-289
    [74]Hideo Nagata, Norihito Kita, Haruki Mori. Hydrolysis of Dichlorodifluoromethane (CFC-12) over Alumina-Zirconia Catalysts[J]. KAGAKU KOGAKU RONBUNSHU,2009,35 (3):293-296
    [75]Masahiro Tajima.Miki Niwa,Yasushi Fujii,et al.Decomposition of Chlorofluorocarbons in the Presence of Water Over Zeolite Catalyst[J]. Applied Catalysis B:Environmatal 1996.9 (1-4):167-177
    [76]Okazaki S. Kurosaki A. EP:0412456A2[P],1991.
    [77]Okazaki S, Kurosaki A. US:5118492[P],1992
    [78]Yusaku Takita,Tatsumi Ishihara. Catalytic decomposition of CFCs[J]. Catalysis Surveys from Japan.1998. (2): 165-173
    [79]G Li, I Tatsumi, M Yoshihiko, et al.Catalytic decomposition of HCFC22 (CHC1F2)[J]. Applied Catalysis B: Environmental.1996.9(1-4):239-249
    [80]Masahiro Tajima, Miki Niwa, Yasushi Fujii,et al.Decomposition of chlorofluorocarbons on TiO2-ZrO2[J].Applied Catalysis B:Environmental.1997.12(4):263-276
    [81]Masahiro Tajima, Miki Niwa, Yasushi Fujii,et al.Decomposition of chlorofluorocarbons on W/TiO2-ZrO2[J].Applied Catalysis B:Environmental.1997.14(1-2):97-103
    [82]Hongxia Zhang, Ching Fai Ng, Suk Yin Lai. Catalytic decomposition of chlorodifluoromethane (HCFC-22) over platinum supported on TiO2-ZrO2 mixed oxides[J]. Applied Catalysis B:Environmental.2005. 55(4):301-307
    [83]马臻.氟里昂-12的催化分解[D硕士].上海:复旦大学,2001
    [84]刘天成.Zr02基固体酸碱催化水解低浓度氟里昂的研究[D博士].昆明:昆明理工大学,2010:11-12
    [85]Swati Karmakar,Howard L Greene. An Investigation of CFC12 Decomposition on TiO2 Catalyst[J]. Journai of Catalysis,1995,151:394-406
    [86]C F Ng, S Shan, S Y Lai. Catalytic decomposition of CFC-12 on transition metal chloride promoted y-alumina[J].Applied Catalysis B:Environmental.1998.16(3):209-217
    [87]X Fu, W A Zeltner, Q Yang, et al.Catalytic Hydrolysis of Dichlorodifluoromethane (CFC-12) on Sol-Gel-Derived Titania Unmodified and Modified with H2SO4[J]. Journal of Catalysis,1997.168(2):482-490
    [88]G.M Bickle, T Suzuki, Y Mitarai. Catalytic destruction of chlorofluorocarbons and toxic chlorinated hydrocarbons [J].Applied Catalysis B:Environmental.1994.4(2-3):141-153
    [89]林春生.微波等离子体技术分解氟利昂[J].化学装置.2001.(1):41-42
    [90]穆焕文.用等离子体化学对氟利昂及含氟废料等进行无害化处理[J].有机氟工业.2003(3):56-58
    [91]水野光一.用等离子法分解氟利昂[J].低温与特气.1990.(3):53-54
    [92]陈登云王小如,陈薇等.氟里昂(CCl2F2)对电感耦合等离子体(ICP)放电特性的影响[J].光谱学与光谱分析.1998.18(3):319-324
    [93]陈登云王小如,贺红军等.应用ICP消解氟里昂的优越性及其处理效率的初步研究[J].化学学 报.1999.57:1136-1141
    [94]Oda T. Decomposition of gaseous organic contaminants by surface discharge induced plasma [C].Chemical plasma processing[A].IEEE Transaction on IA.1996.(32):118
    [95]胡辉,李胜利,杨长河等.放电等离子体处理挥发性有机物的研究进展[J].高电压技术.2002.28(3):43-45
    [96]G.H.deng,Y.Zhang,Y.Yu. Decomposition of gaseous CF2ClBr by cold plasma method[J].Journal of Environmatal Science.1997.(1):95-99.
    [97]A.Gal,A.Ogata,S Futamura,et al.Mechanism of the Dissociation of chlorofluorocarbons during Nonthermal plasma Processing in Nitrogen at Atmospheric Pressure[J]. Journal of Physical Chemistry A.2003(107): 8859-8866
    [98]侯健,韩功元,张振满等.氟利昂-12的常压DBD降解[J].复旦学报(自科版).上海.1999.38(6):627-630
    [99]Hidetoshi Sekiguchi,Kazunori Yamagata. Effect of liquid film on decomposition of CFC-12 using dielectric barrier discharge[J].2004.457(1):34-38
    [100]Eliasson B, Koge]schatz U. Nonequilibrium volume plasma chemical processing[J] IEEE Transaction on Plasma Science.1991.19(16):1063-1077.
    [101]Y F Wang,W J Lee,C Y Hsien. Decomposition of dichlorodifluoromethane by adding hydrogen in a cold plasma system[J].EST.1999(33):2234-2240
    [102]Jasinski Mariusz,Mizeraczyk Jerzy,Zakrzewski Zenon,et al. CFC-11 destruction by microwave torch generated atmospheric-pressure nitrogen discharge[J]. Journal of Physics D:Applied Physics.2002.35(18):2274
    [103]Y Ko,G S Yang,DPY Chang,et al.Microwave plasma conversion of volatile organic compounds[J]. Postprints, UC Davis.2003:1-17
    [104]Osamu Tsuji, TakeshiMinaguchi, Hirohiko Nakano. Stabilization of chlorofluorocarbons (CFCs) by plasma copolymerization with hydrocarbon monomers[J]. Thin Solid Films.2001.390 (1-2):159-164
    [105]A. Ogata, H.-H. Kim, S.-M. Oh. Evidence for direct activation of solid surface by plasma discharge on CFC decomposition [J].2006.506:373-377
    [106]H. Altan, B.L. Yua, S.A. Alfano, R.R. Alfano.Terahertz (THz) spectroscopy of Freon-11 (CC13F, CFC-11) atroom temperature[J]. Chemical Physics Letters 2006.427.241-245
    [107]Seyed Salehkoutahi, Carroll A Quarles. Additivity of k X-ray yield of chlorine in CHClF2, CCl2F2, C2Cl2F4, and CCl3F[J]. Journal of Electron Spectroscopy and Related Phenomena,1988,46(2):349-355
    [108]Zakharenko. V. S and Parmon. V. N; Photoadsorption and Photocatalytic Processes Affecting the Composition of the Earth's Atmosphere:Ⅱ. Dark and Photostimulated Adsorption of Freon 22 (CHF2C1) on MgO[J]; Kinetics and Catalysis; 2000,6:756-759
    [109]M.Y Melnikov., D.V Baskakov, V. I Feldman. Spectral Characteristics and Transformations of Intermediates in Irradiated Freon 11, Freon 113, and Freon 113a[J]; High Energy Chemistry; 2002(5):309-315
    [110]王桂琴.用超声波分解氟利昂[J].氯碱工业.1994.(6):50
    [111]K Hirai,Y Nagata,Y Maeda. Decomposition of chlorofluorocarbons and hydrofluorocarbons in water by ultrasonic irradiation[J].Ultrasonics Sonnochemistry.1996(3):s205-s207
    [112]Md Azhar Uddin, Eric M Kennedy, Bogdan Z. Gas-phase reaction of CCl2F2 (CFC-12) with methane[J]. Chemosphere,2003,53 (9):1189-1191
    [113]周贤红.CFC分解新技术[J].化工经济技术信息.1994,2:38-41
    [114]汪帆,杨文琴.二氟一氯甲烷(F22)的常温化学降解[J].曲靖师范学院学报.2003.22(3):10-13
    [115]A. Wiersma, E. J. A. X. van de Sandt, M. Makkee, et al.Process for the selective hydrogenolysis of CCl2F2 (CFC-12) into CH2F2 (HFC-32)[J].Catalysis Today.1996.27(1):257-264
    [116]M Ocal, M Maciejewski, A Baiker,et al.Conversion of CC12F2 (CFC-12) in the presence and absence of H2 on sol-gel derived Pd/Al2O3 catalysts[J].Applied Catalysis B:Environmental.1999..21(4):279-289
    [117]E.J.E.J.A.X. van de Sandt, A. Wiersma, M. Makkee, et al.Palladium black as model catalyst in the hydrogenolysis of CC12F2 (CFC-12) into CH2F2 (HFC-32)[J].Applied Catalysis A:General.1997.155(1):59-73
    [118]李猷,曹育才.氯氟烃加氢脱氯催化剂的研究进展[J].化工进展,2004,23(1):47-50.
    [119]S. Chandra Shekar, K.S. Rama Rao, E. Sahle-Demessie. Characterization of palladium supported on γ-Al2O3 catalysts in hydrodechlorination of CC12F2[J]; Applied Catalysis A:General,294(2),2005,235-243
    [120]L. Delannoy, J. M. Giraudon, P. Granger, et al. Group VI transition metal carbides as alternatives in the hydrodechlorination of chlorofluorocarbons[J].Catalysis Today.2000.59(3):231-240
    [121]A. Morato, C. Alonso, F. Medina, et al. Conversion under hydrogen of dichlorodifluoromethane and chlorodifluoromethane over nickel catalysts[J]; Applied Catalysis B:Environmental,1999,23(2-3),175-185
    [122]A. Morato, C. Alonso, F. Medina,et al. Conversion under hydrogen of dichlorodifluoromethane and chlorodifluoromethane over nickel catalysts[J]. Applied Catalysis B:Environmental.1999.23(2):175-185
    [123]M. Bonarowska, J.Pielaszek, V A Semikolenov, et al. Pd-Au/Sibunit carbon catalysts:characterization and catalytic activity in hydrodechlorination of dichlorodifluoromethane (CFC-12)[J].Journal of Catalysis A.2002(209):528-538
    [124]Ryuichiro Ohnishi, Wen-Liang Wang, Masaru Ichikawa. Selective hydrodechlorination of CFC-113 on Bi-and Ti-modified palladium catalysts[J].Applied Catalysis A:General,1994.113(1):29-41
    [125]张建君,许茂乾.CFC-12的催化加氢研究[J].宁夏大学学报(自然科学版).2001.22(2):211-212
    [126]J. Krishna Murthy, S. Chandra Shekar, V. Siva Kumar, et al. Effect of tungsten addition to Pd/ZrO2 system in the hydrodechlorination activity of CCl2F2[J];Journal of Molecular Catalysis A:Chemical,223(1-2),2004, 347-351
    [127]M. Bonarowska, A. Malinowski, W. Juszczyk,Hydrodechlorination of CC12F2 (CFC-12) over silica-supported palladium-gold catalysts[J];Applied Catalysis B:Environmental,30(1-2),2001,187-193
    [128]Michiel Makkee, Andre Wiersma, Emile J. A. X. van de Sandt, et al. Development of a palladium on activated carbon for a conceptual process in the selective hydrogenolysis of CCl2F2 (CFC-12) into CH2F2 (HFC-32) [J]. Catalysis Today,55 (1-2),2000,125-137
    [129]S. Chandra Shekhar, J. Krishna Murthy, Studies on the modifications of Pd/Al2O3 and Pd/C systems to design highly active catalysts for hydrodechlorination of CFC-12 to HFC-32[J];Applied Catalysis A:General, 2004,271 (1-2):95-101
    [130]Parag P. Kulkarni, Subodh S. Deshmukh, Vladimir I. Kovalchuk. Hydrodechlorination of dichlorodifluoromethane on carbon-supported Group Ⅷ noble metal catalysts[J].Catalysis Letters.1999. 61(3-4):161-166
    [131]W Juszczyk, A Malinowski, Z Karpinski. Hydrodechlorination of CCl2F2 (CFC-12) over γ-alumina supported palladium catalysts[J].Applied Catalysis A:General.1998.166(2):311-319
    [132]A Venu Gopal, K S Rama Rao, P S Sai Prasad, et al. Effect of method of preparation on the dismutation activity of CC12F2 over Cr2O3-MgO-Al2O3 catalysts [J]; Studies in Surface Science and Catalysis.1998.113: 405-417
    [133]N Sonoyama,T Sakata.Electrochemical Decomposition of CFC-12 Using Gas Diffusion Electrodes[J]. Environmental Science & Technology.1998.32 (3):375-378
    [134]G. Filardo, A. Galia, S. Gambino,et al. Supercritical-fluid extraction of chlorofluoroalkanes from rigid polyurethane foams[J]. The Journal of Supercritical Fluids.1996.9(4):234-237
    [135]Nagata. H,Takakura. T, Kishida. M, Mizuno. K,Tamori. Y, Wakabayshi. K; Chem.Lett[M].1993:1545
    [136]WM.Randall Seeker.Waste combustion[J].Twenty-Third Symposium (International) on Combustion. 1990.23:867-885
    [137]Fawzy El-Mahallawy, Saad El-Din Habik. Combustion Fundamentals [J]. Fundamentals and Technology of Combustion.2002:1-75
    [138]Charles K,Westbrook, Frederick L. Dryer. Chemical kinetic modeling of hydrocarbon combustion [J]. Progress in Energy and Combustion Science.1984.10(1):1-57
    [139]V.Ya. Basevich. Chemical kinetics in the combustion processes:A detailed kinetics mechanism and its implementation [J]. Progress in Energy and Combustion Science.1987.13(3):199-248
    [140]M.V.Petrova,F.A.Williams. A small detailed chemical-kinetic mechanism for hydrocarbon combustion[J]. Combustion and Flame.2006.144 (3):526-544
    [141]William J. Pitz, Charles K. Westbrook, William M. Proscia. A comprehensive chemical kinetic reaction mechanism for the oxidation of N-butane[J]. Symposium (International) on Combustion.1985.20(1):831-843
    [142]V. Ya. Basevich, S. M. Kogarko. Verification of methane combustion mechanism[J]. Russian Chemical Bulletin.1979.28(6):1316-1318
    [143]L. Douglas Smoot.A DECADE OF COMBUSTION RESEARCH [J]. Prog. Energy Combust. Sci.1997.23: 203-232
    [144]R Rota, F Bonini, A Servida.et al, Analysis of detailed kinetic schemes for combustion processes:Application to a methane-ethane mixture [J]. Chemical Engineering Science.1994.49(24):4211-4221
    [145]Charles K,Westbrook,Frederick L Dryer. Chemical kinetics and modeling of combustion processes [J]. Symposium (International) on Combustion.1981.18(1):749-767
    [146]G P Smith, D M Golden, M Frenklach,et al., GRI-Mech 3.0 [EB/OL]. http://www.me.berkeley. edu/gri_mech/
    [147]R Ahsan. Choudhuri, S R Gollahalli. Combustion characteristics of hydrogen-hydrocarbon hybrid fuels[J]. International Journal of Hydrogen Energy.2000.25:451-462
    [148]K M Leung, R P Lindstedt. Detailed kinetic modeling of C1-C3 alkane diffusion flames[J]. Combustion and Flame.1995.102(1):129-160
    [149]J F Griffiths, K J Hughes, M schreiber, et al. A unified Approach to the Reduced Kinetic Modeling of Alkane Combustion[J]. Combustion and Flame,1994,99(3):533-540。
    [150]Jincai zheng, weiying Yang, David L Miller, et al. A Skeletal Chemical Kinetic Model for HCCI Combustion Process. In:SAE PaDer 2002.2002.01-0423
    [151]Turfinyi T. Applications of sensitivity analysis to combustion chemistry [J]. Reliability Engineering and System Safety.1997.57(l):41-48.
    [152]A G Gaydon,H G Wolfhard.Flame Their Structure Radiation and Temperature(fourth edition)[M]. LONDON.Chapman&Hall LTD.1979
    [153]Wenhua YANG, Robert J. Kee. The Effect of Monodispersed Water Mists on the Structure, Burning Velocity, and Extinction Behavior of Freely Propagating, Stoichiometric, Premixed, Methane-Air Flames [J]. Combustion and Flame.2002.130:322-335
    L 154] R.Borghi and M.Destriau.Combustion and flames:chemical and physical principles.Editions Technip,1998.
    L 155] S.R.Turns.An introduction to combustion:concepts and applications. WCB/McGraw-Hill,2000
    [156]D Veynante,L Vervisch.Turbulent combustion modeling [J].Prog.Energy Combustion Science. 2002.28:193-266,
    [157]R.Hilbert,F.Tap,H.El-Rabbii,and D.Thevenin.Impact of detailed chemistry and transport models on turbulent combustions imulations [J].Porg.Energy Combustion Science.2004.30:61-117
    [158]Weber E J.Vandaveer F E.Gas Burner Design[A].Gas Engineers Handbook[M].Industrial Press.New York.1965:12/193-12/210
    [159]International workshop on measurement and computation of turbulent non-premixed flames[EB/OL].http://www.ca.sandia.gov/tnf/abstract.html.
    [160]Gregory T. Linteris, Fumiaki Takahashi, Viswanath R. Katta. Cup-burner flame extinguishment by CF3Br and Br2[J]. Combustion and Flame.2007.149 (1):91-103
    [161]Ishizuka S, Michikami L, Takashi H, et al.Flame Speeds in Combustible Vortex Rings [J]. Combustion and Flame.1998,113:542-553
    [162]John L Graham, Douglas L Hall, Barry Dellinger.Laboratory investigation of the thermal degradation of a mixture of hazardous organic compounds.1[J]. Environmental Science & Technology.1986.20(7):703-710
    [163]南亘,藤井宏束,金熙睿.フロソ類の燃烧分解翅理(Combustion Decomposition Treatment of Freon.(in Japanese)[J]. KAGAKU KOGAKU RONBUNSHU.2006,32 (2):190-195
    [164]JinxingRen,QunyinGu,FangqinLi,etal.Study on the low NOx emission in coal-fired power plants with staged-air combustion[C].The Fifth Intenrational SymPosium on Coal Combustion. Najning.China.2003.194-196.
    [165]ZhengQili,Ruisun,Zhixinwan,et al.Gas-particle flow and combustion in the near-burner zone of the swirl-stabilized pulverized coal bunrer[J].Combustion Science and Techonolgy.2003(175):1979-2014.
    [166]牛万虎,杨国旗.WSF型旋流燃烧器特点及调整实践[J].西北电力技术.2002(6):24-26
    [167]吴碧君,刘晓勤.燃煤锅炉低NOx燃烧器的类型及其发展[J].电力环境保护,2004.20(3):24-27
    [168]聂其红,吴少华,孙绍增等.国内外煤粉燃烧低NOx控制技术的研究现状[J].哈尔滨工业大学学报.2002.34(6):826-831.
    [169]辛仲峥,徐连锁,尚君明.蒙达公司DRB型燃烧器存在的问题及改进[J].内蒙古电力技术.2004.2(4):54-56.
    [170]赵贺,覃一宁.MBEL低NOx轴向涡流燃煤燃烧器在大型火电厂的应用[J].东北电力技术.2003(1):25-27.
    [171]王磊,吴少华,李争起等.中心风对径向浓淡旋流煤粉燃烧器燃烧的影响[J].动力工程.2000.20(2):615-619.
    [172]Hee Dong Jang. Flame synthesis of ceramic powders[J]. Powder technology.2001.119:102-108
    [173]Maegaret S.Wooldridge, Prog. A numerical analysis of growth of non-spherical silica particles in a counterflow diffusion flame[J].Energy Combustion Science.1998.24:63-87
    [174]Drew L'esperance, Bradley A Williams, James W Fleming. Intermediate species profiles in low pressure premixed flames inhibited by fluoromethanes[J]. Combustion and Flame.1999.117(4):709-731
    [175]Eder S., Xavier, Willian R.,et al.Ab initio thermodynamic study of the reaction of CF2Cl2 and CHF2Cl CFCs species with OH radical[J], Chemical Physics Letters.2007.448 (4):164-172
    [176]Karine Le Bris,Kimberly Strong,Stella M.L. Melo,et al., Structure and conformational analysis of CFC-113 by density functional theory calculations and FTIR spectroscopy[J], Journal of Molecular Spectroscopy.2007. 243 (2):142-147
    [177]Karim El Marrouni; Hakima Abou-Rachid and Serge Kaliaguine.Density functional theory kinetic assessment of hydrogen abstraction from hydrocarbons by O2[J]. Journal of Molecular Structure:THEOCHEM.2004. 681(1-3):89-98
    [178]Jing-yao Liu, Ze-sheng Li, Zhen-wen Dai,et al., Density functional theory direct dynamics study on the hydrogen abstraction reaction of CF3CHFCF3+OH→CF3CFCF3+H2O[J]. Chemical Physics Letters.2002. 362(1-2):39-46
    [179]Kai-Shen Diao, Fang Wang, Hai-jun Wang. Ab initio theoretical study of the interactions between CFCs and CO2[J]. Journal of Molecular Structure:THEOCHEM.2009.913(1-3):195-199
    [180]Mattsson Ann E, Peter A Schultz, Michael P Desjarlais,et al., Designing meaningful density functional theory calculations in materials science—a primer[J], Modelling and Simulation in Materials Science and Engineering.2005.13(1):
    [181]R S Zhu, M C Lin. A computational study on the decomposition of NH4ClO4:Comparison of the gas-phase and condensed-phase results[J]. Chemical Physics Letters.2006.431:272-277
    [182]R S Zhu, M.C.Lin. CH3NO2 decomposition/isomerization mechanism and product branching ratios:An ab initio chemical kinetic study [J]. Chemical Physics Letters.2009.478:11-16
    [183]A F Jalbouta, F Nazarib, L Turkerc.et al. Gaussian-based computations in molecular science[J]. Journal of Molecular Structure (Theochem).2004.671:1-21
    [184]T N Truong, W Duncan. A new direct ab initio dynamics method for calculating thermal rate constants from density functional theory [J]. J.Chem.Phys.,1994,101:7408-7414.
    [185]王玲.单分子反应理论研究和势能面的构建[D博士].大连:中国科学院研究生院(大连化学物理研究所),2006
    [186]田燕.大气化学中若干自由基反应机理的量子化学研究[D博士].北京:中国科学技术大学研究生院.2007
    [187]杨磊.几类与大气污染相关的化学反应动力学性质的理论研究[D博士].长春:吉林大学,2008
    [188]臭氧危机尚未结束[J].高桥石化,2007年(4):56
    [189]《环境科学大辞典》编委会.《环境科学大辞典》[M].北京:中国环境科学出版社.2008
    [190]中国逐步淘汰消耗臭氧层物质国家方案(1999年修订稿)
    [191]《化学化工大辞典》编委会.化学化工大辞典(上)[M].北京:化学工业出版社,2003:551
    [192]李季.城市生活垃圾热解燃烧特性和氯转化机理[D博士].北京:中国科学院过程控制工程研究所,2003
    [193]孟韵,张军营等.煤燃烧过程中有害痕量元素形态分布的化学热力学平衡分析[J].燃料化学学报.2005,33(1):28-32
    [194]Argent,B, Thompson,D. Thermodynamic equilibrium study of trace element mobilization during air-blown gasification conditions[J]. Fuel.2002.81:75-89
    [195]关键.新型近零排放煤气化集成利用系统的机理研究[D博士],杭州:浙江大学,2007
    [196]AM Torres-Huerta,JR Vargas-Garcia, MA Dominguez-Crespo, et al.Thermodynamic study of CVD-ZrO2 phase diagrams[J]. Journal of Alloys and Compounds.2009.483(1-2):394-398
    [197]In-Ho Jung, Dae-Hoon Kang, Woo-Jin Park, et al.Thermodynamic modeling of the Mg-Si-Sn system[J]. Calphad.2007.31(2):192-200
    [198]Ana Kostov, Dragana Zivkovic.Thermodynamic analysis of alloys Ti-Al, Ti-V, Al-V and Ti-Al-V[J]. Journal of Alloys and Compounds.2008.460(1-2):164-171
    [199]Jian Guan, Qinhui Wang, Xiaomin Li,et al.Thermodynamic analysis of a biomass anaerobic gasification process for hydrogen production with sufficient CaO[J]. Renewable Energy.2007.32(15):2502-2515
    [200]Premrudee Kanchanapiya, Takeo Sakano, Chikao Kanaoka,et al.Characteristics of slag, fly ash and deposited particles during melting of dewatered sewage sludge in a pilot plant[J]. Journal of Environmental Management. 2006.79(2):163-172
    [201]X Li,J. R. Grace. Equilibrium modeling of gasification:a free energy minimization approach and its application to a circulating fluidized bed coal gasifier[J], Fuel,2001.80:195-207
    [202]Zhaoping Zhong. Study on Pollutants Emission Characteristic of Coal Gasification in a Fluidized Bed Test Rig[C]. Proceedings of FBC2005 18th Intemational Conference on Fluidized Bed Combustion. Ottawa,Canada,2005-78070
    [203]Wen Ruimei, Deng Shouquan. Measurement of As、P and S in the Waste Gas and Water Exhausted from Semiconductor Process By High-temperature Hydrogen Reduction Gas Chromatography[J]. Journal of Chromatographic Science.2003.41:367-370
    [204]Wen Ruimei, Liang junwu.Abatement of waste gases and water during the processes of semiconductor fabrication[J].Environmental Science&Technology.2002.14(4):482-499
    [205]闻瑞梅等InP-H2-KBH4体系中磷的热力学分析,检测及治理[J].应用基础与工程科学学报. 1994.2(4):282-286
    [206]C.W. Bale, E. Belisle; P. Chartrand,et al. FactSage thermochemical software and databases—recent developments[J].Calphad,2009.33(2):295-311
    [207]C.W.Bale,P.Chartrand,S.A.Degterov, et al. FactSage Thermochemical Software and Databases[J]. Calphad.2002.26 (2):189-228
    [208]曹战民,宋晓艳,乔芝郁.热力学模拟计算软件FactSage及其应用[J].稀有金属,2008,32(2):216-219
    [209]Ana Kostov, Bernd Friedrich, Dragana Zivkovic. Predicting thermodynamic properties in Ti-Al binary system by FactSage[J]. Computational Materials Science.2006.37 (3):355-360
    [210]L.Shang, I.H.Jung, S.Yue, et al. An investigation of formation of second phases in microalloyed, AZ31 Mg alloys with Ca, Sr and Ce[J].Journal of Alloys and Compounds.2010.492(1-2):173-183
    [211]J.C. van Dyk, S. Melzer, A. Sobiecki.Mineral matter transformation during Sasol-Lurgi fixed bed dry bottom gasification-utilization of HT-XRD and FactSage modeling[J]. Minerals Engineering.2006.19(10): 1126-1135
    [212]J.C. van Dyk, F.B. Waanders, S.A. Benson,et al. Viscosity predictions of the slag composition of gasified coal, utilizing FactSage equilibrium modeling[J]. Fuel.2009.88(1):67-74
    [213]Hanxu LI, Ninomiya Yoshihiko, Zhongbing Dong,et al. Application of the FactSage to Predict the Ash Melting Behavior in Reducing Conditions[J]. Chinese Journal of Chemical Engineering.2006.14(6):784-789
    [214]Ana Kostov, Bernd Friedrich, Dragana Zivkovic. Predicting thermodynamic properties in Ti-Al binary system by FactSage[J]. Computational Materials Science.2006.37(3):355-360
    [215]Diaz-Soraoano M. Martinez-Tarazona M R. Trace element evaporation during coal gasification based on a thermodynamic equilibrium calculation approach[J]. Fuel,2002,82(2):137-145
    [216]许志宏,王乐珊.无机热化学数据库[M].北京:科学出版社.1987.53-74
    [217]White W B, Johnson S M,Dantzig G B. Chemical Equilibrium in complex mixtures [J]. The Journal of Chemical Physics,1958,28(5):751-755
    [218]金克新,赵传钧,马沛生等.化工热力学[M],天津:天津大学出版社,1990
    [219]Scharn D, Germeroth L, Schneider-Mergener J,etal. Sequential nucleophilic substitution on halogenated triazines, pyrimidines, and purines:a novel approach to cyclic peptidomimetics[J]. The Journal of Organic Chemistry.2001,66(2):507-513.
    [220]B. A. Priimenko, N. I. Romanenko, N. A. Klyuev, etal.Electrophilic and nucleophilic substitution reactions in the series of 3-methylxanthine and its derivatives [J].1984,20 (8):924-927
    [222]John A.Dean. Lange's Handbook of Chemistry(15th edition) [M].McGraw-Hill Inc.1998
    [223]R.G.Parr,W.Yang.Density-Functional Theory of Atoms and Molecules[M],Oxford University. Oxford Press,1989.
    [224]J.K..Labanowski,J.W.Andzelm,eds,Density Functional Methods in Chemistry[M].New York Springer-Verlag,1991.
    [225]W.Kohn,L.J.Sham,Self-Consistent Equations Including Exchange and Correlation Effects[J], Phys. Rev.1965,140,A1133.
    [226]Labanowski,J.K.;Andzelm,J.W.eds,Density Functional Methods in Chemistry, Springer-Verlag:New York,1991.
    [227]帅治刚,邵久书.理论化学原理与应用[M].北京:科学出版社,2008
    [228]P.Hohenberg.W.Kohn, Inhomogeneous Electron Gas, Phys.Rev., B864,136,1964
    [229]TRUHLAR D G,GORDON M S,STECKLER R.Potential Energy Surfaces for Polyatomic Reaction Dynamics[J].Chem.Rev.,1987,87:217-236.
    [230]Fukui K,Variational Principles in a Chemical Reaction[J].Int.J.Quantum.Chem.1981.15:633-642.
    [231]Fukui K,Tachibana A,Yamashita K,Toward Chemodynamics[J].Int.J.Quantum. Chem.,1981.15:621-632.
    [232]M.I. Strelkova, A.A. Safonov, L.P. Sukhanov,et al.,Low temperature n-butane oxidation skeletal mechanism, based on multilevel approach[J]. Combustion and Flame.2010.157(4):641-652
    [233]Detailed and simplified kinetic models of n -dodecane oxidation:The role of fuel cracking in aliphatic hydrocarbon combustion[J].Proceedings of the Combustion Institute.2009.32 (1):403-410
    [234]John M. Simmie. Detailed chemical kinetic models for the combustion of hydrocarbon fuels[J]..Progress in Energy and Combustion Science.2003.29(6):599-634
    [235]S.M. Sarathy,M.J. Thomson,C. Togbe,et al., An experimental and kinetic modeling study of n -butanol combustion[J]. Combustion and Flame.2009.156 (4):852-864
    [236]Binbin Wang, Rong Qiu and Yong Jiang. Effects of Hydrogen Enhancement in LPG/Air Premixed Flame[J]. Acta Physico-Chimica Sinica.2008.24 (7):1137-1142
    [237]Fabien Halter, Christian Chauveau and Iskender Gokalp.Characterization of the effects of hydrogen addition in premixed methane/air flames [J]. International Journal of Hydrogen Energy.2007.32(13):2585-2592
    [238]M.V.Petrova,F.A.Williams. A small detailed chemical-kinetic mechanism for hydrocarbon combustion[J]. Combustion and Flame.2006.144 (3):526-544
    [239]William J. Pitz, Charles K. Westbrook, William M. Proscia. A comprehensive chemical kinetic reaction mechanism for the oxidation of N-butane[J]. Symposium (International) on Combustion.1985.20(1):831-843
    [240]Charles K,Westbrook, Frederick L. Dryer. Chemical kinetic modeling of hydrocarbon combustion [J]. Progress in Energy and Combustion Science.1984.10(1):1-57
    [241]V.Ya. Basevich. Chemical kinetics in the combustion processes:A detailed kinetics mechanism and its implementation [J]. Progress in Energy and Combustion Science.1987.13(3):199-248
    [242]R Rota, F Bonini, A Servida.et al.,Analysis of detailed kinetic schemes for combustion processes:Application to a methane-ethane mixture[J]. Chemical Engineering Science.1994.49(24):4211-4221
    [243]Charles K,Westbrook,Frederick L Dryer. Chemical kinetics and modeling of combustion processes [J]. Symposium (International) on Combustion.1981.18(1):749-767
    [244]Gregory P. Smith, David M. Golden, Michael Frenklach,et al., GRI-Mech 3.0 [EB/OL]. http://www.me.berkeley.edu/gri_mech/
    [245]Griffiths J F, Hughes K J, schreiber M, et al. A unified Approach to the Reduced Kinetic Modeling of Alkane Combustion[J]. Combustion and Flame,1994,99(3):533-540。
    [246]Jincai zheng, weiying Yang, David L Miller, et al. A Skeletal Chemical Kinetic Model for HCCI Combustion Process. In:SAE PaDer 2002.2002.01-0423
    [247]刘海峰,闫华,刘志勇等.丁烯自由基和O2反应机理的理论研究[J].化学学报.2007.65(18)
    [248]William J. Pitz, Charles K. Westbrook, William M. Proscia,et al. A comprehensive chemical kinetic reaction mechanism for the oxidation of N-butane [J].Symposium (International) on Combustion.1985.20(1):831-843
    [249]TRUHLAR D G,The Reaction Path in Chemistry,Current Approaches and Perspectives,Kluwer Academic,The Netherlands,1995.
    [250]Wenfeng Han, Eric M. Kennedy, Sazal K. Kundu,et al., Experimental and chemical kinetic study of the pyrolysis of trifluoroethane and the reaction of trifluoromethane with methane[J]. Journal of Fluorine Chemistry.2010.131(7):751-760
    [251]Ya-Feng Wang, Wen-Jhy Lee, Chuh-Yung Chen,et al., Reaction Mechanisms in Both a CC12F2/O2/Ar and a CC12F2/H2/Ar RF Plasma Environment[J]. Plasma Chemistry and Plasma Processing.2000.20 (4):469-494
    [252]Carole Womeldorf, William Grosshandler. Flame extinction limits in CH2F2/air mixtures[J]. Combustion and Flame.1999.118(1):25-36
    [253]Veronique Dias, Jacques Vandooren.Experimental and modeling study of a lean premixed iso-butene/hydrogen/oxygen/argon flame[J]. Fuel.2010. (89):2633-2639
    [254]高义德,冉琴CC12 (A^1B1)自由基不同振动态的猝灭动力学[J].化学学报.2002.60(2)
    [255]S.Hayashi, K. Kawashima, N. Ozawa.Studies of CF2 radical and O atom in oxygen/fluorocarbon plasmas by laser-induced fluorescence[J]. Science and Technology of Advanced Materials.2001.2 (3):555-561
    [256]Eder S. Xavier, Willian R. Rocha, Julio C.S. Da Silva,et al.Ab initio thermodynamic study of the reaction of CF2C12 and CHF2C1 CFCs species with OH radical[J]. Chemical Physics Letters.2007.448 (4):164-172
    [257]Hong Gao,Ying Wang,Su-Qin Wan,et al. Theoretical investigation of the hydrogen abstraction from CF3CH2CF3 by OH radicals, F, and C1 atoms:A dual-level direct dynamics study[J]. Journal of Molecular Structure:THEOCHEM.2009.913 (1):107-116
    [258]Karine Le Bris.Kimberly Strong.Stella M.L. Melo,et al. Structure and conformational analysis of CFC-113 by density functional theory calculations and FTIR spectroscopy[J]. Journal of Molecular Spectroscopy.2007. 243 (2):142-147
    [259]C. C. Perry, G. M. Wolfe, A. J. Wagner,et al. Chemical Reactions in CF2C12/Water (Ice) Films Induced by X-ray Radiation [J]. J. Phys. Chem. B.2003.107:12740-12751
    [260]N.L. Ma, Kai-Chung Lau, Siu-Hung Chien,et al. Thermochemistry of hydrochlorofluoromethanes revisited:a theoretical study with the Gaussian-3 (G3) procedure[J]. Chemical Physics Letters.1999.(311):275-280
    [261]Joachim Urban. Optimal sub-millimeter bands for passive limb observations of stratospheric HBr, BrO, HOC1, and HO2 from space[J]. Journal of Quantitative Spectroscopy & Radiative Transfer.2003.76:145-178
    [262]Andreas Nolle, Christopher Krumscheid, Horst Heydtmann. Determination of quantum yields in the UV photolysis of COF2 and COFC1[J].Chemical Physics Letters.1999.299:561-565
    [263]Sergei Skokov, Kirk A. Peterson, Joel M. Perturbative inversion of the HOC1 potential energy surface via singular value decomposition[J].Bowman. Chemical Physics Letters.1999.312:494-502
    [264]A.F. Jalbout, X.H. Li, M. Solimannejad. Thermochemical stability of the HO2-HOC1 complex[J]. Chemical Physics Letters.2006.420:204-208
    [265]Abraham F. Jalbout, Mohammad Solimannejad.Reliability of gaussian based ab initio methods in the calculations of HC1O and HOC1 decomposition channels[J]. Journal of Molecular Structure (Theochem). 2003.626:87-90
    [266]Juan Zhao, Yan Xu, Daguang Yue,et al. Quasi-classical trajectory study of the reaction H+FO→OH+F [J]. Chemical Physics Letters.2009.471:160-162
    [267]A.M. Kosmas, E. Drougas Quasiclassical trajectory calculations of the diatom-diatom reaction OH+Cl2→HOC1+Cl using two model potential energy surfaces[J]. Chemical Physics.1998.229:233-244
    [268]E. Ranzi, T. Faravelli, A. Goldaniga, et al. Pyrolysis and oxidation of unsaturated C2 and C3 species[J].Experimental Thermal and Fluid Science.2000.21(1):71-78
    [269]John M. Simmie. Detailed chemical kinetic models for the combustion of hydrocarbon fuels[J]. Progress in Energy and Combustion Science.2003.29:599-634
    [270]Eder S. Xavier, Willian R. Rocha, Julio C.S. Da Silva. Ab initio thermodynamic study of the reaction of CF2C12 and CHF2C1 CFCs species with OH radical [J]. Chemical Physics Letters.2007.448:164-172
    [271]JIAN WANG, YI-HONG DING, SHAO-WEN ZHANG,et al.Theoretical Study on the Methyl Radical with Chlorinated Methyl Radicals CH3-nCln (n=1,2,3) and CC12 [J]. Journal of Computational Chemistry. 2006.28(5):865-876
    [272]V. Ya. Basevich, S. M. Kogarko. Verification of methane combustion mechanism[J]. Russian Chemical Bulletin.1979.28(6):1316-1318
    [273]Gregory T. Linteris, Fumiaki Takahashi, Viswanath R. Katta. Cup-burner flame extinguishment by CF 3 Br and Br 2[J]. Combustion and Flame.2007.149 (1):91-103
    [274]Carole Womeldorf, William Grosshandler. Flame extinction limits in CH2F2/air mixtures [J]. Combustion and Flame.1999.118(1):25-36
    [275]V. Babushok, W. Tsang, G. T. Linteris, D. Reinelt. Chemical limits to flame inhibition [J]. Combustion and Flame.1998.115(4):551-560
    [276]F. A. Williams. Progress in knowledge of flamelet structure and extinction [J]. Progress in Energy and Combustion Science.2000..26(4-6):657-682
    [277]B.A. Williams, J.W. Fleming. CF3Br and other suppressants:Differences in effects on flame structure [J]. Proceedings of the Combustion Institute.2002.29(1):345-351.
    [278]M. Bundy, A. Hamins, K.Y. Lee. Suppression limits of low strain rate non-premixed methane flames [J].Combustion and Flame.2003.133 (3):299-310.
    [279]Mounir Alliche, Pierre Haldenwang, Salah Chikh,et al. Extinction conditions of a premixed flame in a channel[J]. Combustion and Flame.2010.157:1060-1070
    [280]Yufang Liu, Huiyan Meng, Ke-Li Han.Theoretical study of the stereo dynamics of the reaction C1+ C3H8→C3H7+HC1[J]. Chemical Physics.2005.309:223-230
    [281]K. M. Leung, R. P. Lindstedt. Detailed kinetic modeling of C1-C3 alkane diffusion flames[J].Combustion and Flame.1995.102(1):129-160
    [282]XiaoMeng Zhou, Jun Qin, GuangXuan Liao. Effects of water mist addition on kerosene pool fire [J]. Chinese Science Bulletin.2008.53(20):3240-3246
    [283]Wenhua YANG, Robert J. Kee. The Effect of Monodispersed Water Mists on the Structure, Burning Velocity, and Extinction Behavior of Freely Propagating, Stoichiometric, Premixed, Methane-Air Flames [J]. Combustion and Flame.2002.130:322-335
    [284]马臻.氟里昂-12的催化分解[D硕士].上海:复旦大学,2001:1-2
    [285]GB/T7372-1987工业用二氟二氯甲烷[S].
    [286]GB 7484-87水质氟化物的测定离子选择电极法[S].
    [287]邝生鲁.化学工程师技术全书[M].北京:化学工业山版社,2002
    [288]ASTM:D 3588-98. Standard Practice for Calculating Heat Value, Compressibility Factor, and Relative Density of Gaseous Fuels [S].
    [289]Daniel P Y Chang,Nelson W Sorbo,Law C K,et al.Relationships between laboratory and pilot--scale combustion of some chlorinated hydrocarbons[J]. Environmental Progress.1989.8(3):152-162.
    [290]Stry W J,Felske J D,Ashgriz N.Dmplet combustion of chlorinated benzenes,alkanes and their mixtures in a dry atmosphere[J].Environmental Engineering Science.2003.20(2):125-133.
    [291]G. Granta, J. Brentonb, D. Drysdale.Fire suppression by water sprays [J]. Progress in Energy and Combustion Science.2000.26:79-130
    [292]Mawhinney JR, Solomon, R. Water mist fire suppression systems[A]. In:Cote AE, editor-in-chief. Fire protection handbook [M].18th ed., sect.6/chap. National Fire Protection Association.1997:6/216-6/248.
    [293]Nils Hansen, James A. Miller, Tina Kasper,et al. Benzene formation in premixed fuel-rich 1,3-butadiene flames [J].Proceedings of the Combustion Institute.2009.32(1):623-630
    [294]岑可法,姚强,骆仲泱等著.高等燃烧学[M].杭州.浙江大学出版社.2002:620
    [295]Charles S. McEnally, Lisa D. Pfefferle, Burak Atakan,et al. Studies of aromatic hydrocarbon formation mechanisms in flames:Progress towards closing the fuel gap[J].Progress in Energy and Combustion Science. 2006.32(3):247-294
    [296]G P Prado, M L Lee, R A Hites, et al. Soot and hydrocarbon formation in a turbulent diffusion flame[A]. Symposium (International) on Combustion[C].1977.16(1):649-661
    [297]Wernberg F J.The First Half-Million Years of Combustion Research and Today's Burning Problems[A].Progress in Energy and Combustion Science[C].1975:17-31
    [298]Andrew Lock, Alejandro M. Briones, Suresh K. Aggarwal,et al. Liftoff and extinction characteristics of fuel-and air-stream-diluted methane-air flames[J].Combustion and Flame.2007.149:340-352
    [299]CLAVIN P,GARCIA P J.The influence of the temperature dependence of diffusivifies on the dynamics of flame fronts[J].J Mec Theor Appl.1983.2:245-263.
    [300]宋权斌.多旋流合成气燃烧室燃烧特性的实验研究[D博士].北京:中国科学院研究生院(工程热物理研究所),2009
    [301]赵黛青,夏亮,山下博史.旋转流中预混合火焰的高速传播现象-Ⅰ.稳燃特性及燃烧效率的提高[J].过程工 程学报.2007.7(3):457-461
    [302]夏亮,赵黛青,山下博史.旋转流中预混合火焰的高速传播现象-Ⅱ.点火位置与燃烧过程[J].过程工程学报.2007.7(3):462-466
    [303]Alessio Frassoldati, Alberto Cuoci, Tiziano Faravelli, et al. An experimental and kinetic modeling study of n-propanol and iso-propanol combustion[J]. Combustion and Flame.2010.157(1):2-16
    [304]杨炜平,张健.旋流燃烧室内丙烷湍流燃烧的数值模拟[J].燃烧科学与技术.2007.13(6):503-509
    [305]王文丽,周力行,李荣先.环缝燃料进口的丙烷一空气旋流扩散燃烧的数值模拟[J].中国电机工程学报.2006.26(9):45-49
    [306]葛冰,臧述升,顾欣.加湿对钝体燃烧器火焰内部速度场的影响[A].中国工程热物理学会学术会议论文集[C].2001.上海:1092-1099
    [307]V. Ya. Basevich, S. M. Kogarko. Comparison of blow-off limits for various types of stabilizers [J]. Combustion Explosion and Shock Waves,1971.7(4):496-498
    [308]Moore N, Martin D. Flame Propagation in Vortex Flow[J]. Fuel,1953.32:393-394.
    [309]McCormack P. Combustible Vortex Rings[J]. Proc. R. Irish Acad.:Sect. A,1971,71:73-83.
    [310]Ishizuka S. On the Flame Propagation in a Rotating Flow Filed[J]. Combustion and Flame.1990,82: 176-190.
    [311]Ishizuka S, Hirano T. Aerodynamic Structure of the Propagating Flame in a Rotating Combustible Mixture[J]. Nensho-no-Kagaku-to-Gijutu,1994,2:15-26(in Japanese).
    [312]Hasegawa T, Michikami S, Nomura T, et al. Flame Development along a Straight Vortex [J]. Combustion and Flame.2002,129:294-304.
    [313]Asato K, Takeuchi Y, Kawamura T. Fluid Dynamics Efects of Flame Propagation in a Vortex Ring [A]. Proceedings of the Eleventh Australasian Fluid Mechanics Conference[C]. Hobart:University of Tasmania,1992.167-170.
    [314]Zhao D Q, Yamashita H. A Numerical Study on Premixed Flame Propagation in a Swirling Flow [J]. Collect. Mech. Inst. Japan (B),2001,67(662):2001-2010.
    [315]D.C. Haworth.Progress in Probability Density Function Methods for Turbulent Reacting Flows[J].Progress in Energy and Combustion Science,2010.36:168-259
    [316]Y. Huang,and V. Yang, Dynamics and Stability of Lean-premixed Swirl-stabilized Combustion.Progress in Energy and Combustion Science,2009.35:293-364
    [317]B. F. Magnussen and B. H. Hjertager. On mathematical models of turbulent combustion with special emphasis on soot formation and combustion,16th Symposium (International) on Combustion[C]. The Combustion Institute,1976.
    [318]Sergei A. Filatyev, James F. Driscoll, Campbell D. Carter,et al. Measured properties of turbulent premixed flames for model assessment, including burning velocities,stretch rates, and surface densities[J].Combustion and Flame.2005.141:1-21
    [319]Zheng Qili,Rui sun,Zhixin Wan.et al. Gas-Particle flow and combustion in the near-burner zone of the swirl-stabilized pulverized coal bunrer[Jl. Combustion Science and Techonolgy.2003. (175):1979-2014.
    [320]H. Huang;A. Buekens. Chlorinated dioxins and furans as trace products of combustion:Some theoretical aspects [J]. Toxicological & Environmental Chemistry.2000.74 (3):179-193
    [321]Philip H. Taylor, Dieter Lenoir.Chloroaromatic formation in incineration processes [J].The Science of The Total Environment.2001..269(1-3):1-24
    [322]Arndt Joedicke,Norbert Peters, Mohy Mansour. The stabilization mechanism and structure of turbulent hydrocarbon lifted flames [J]. Proceedings of the Combustion Institute.2005.30 (1):901-909
    [323]S. C. Saxena,C. K. Jotshi. MANAGEMENT AND COMBUSTION OF HAZARDOUS WASTES[J]. Pro& Energy Combusr. Sci.1996.22:401-425.
    [324]顾玮伦,杜云峰.旋流燃烧器的稳燃及其结构优化分析[J].锅炉制造.2007(1):17-19
    [325]赵振宙,赵振宁,孙辉.旋流燃烧器数值模拟和优化改造[J].锅炉技术.2006.37(4):49-54
    [326]贾雁群,王贵武,张健,等.液化石油气混空气工程技术问题的探讨[J].煤气与热力.2006.26(7):11-12
    [327]中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.《燃气燃烧器具安全技术条件(征求意见稿)》.2009.9.10.
    [328]JB/T10192-2000小型焚烧炉技术条件[S]
    [329]GB16914-2003燃气燃烧器具安全技术条件[S]
    [330]TSG GB003-2006燃气燃烧器安全技术规定(征求意见稿)[S]
    [331]SH.T3113-2000石油化工管式炉燃烧器工程技术条件[S]
    [332]GB 17905-2008家用燃气燃烧器具安全管理规则[S]..
    [333]CJ/T3075.1-1998.燃气燃烧器具实验室-技术通则[S].
    [334]CJ/T3075.2-1998.燃气燃烧器具实验室-试验装置和仪器[S]
    [335]GB/T 16914-2003燃气燃烧器具安全技术条件[S]
    [336]GB 18484-2001.危险废物焚烧污染控制标准[S].
    [337]GB/T 2988-2004高铝砖[S].
    [338]HG/J12-88化学工业炉燃烧器设计规定[S].
    [339]HG/T 20682-2005化学工业炉燃料燃烧设计计算规定[S]
    [340]HG/T 20541-2006化学工业炉结构设计规定[S].
    [341]HG/T 20683-2005化学工业炉耐火、隔热材料设计选用规定[S].
    [342]GB/T 16618-1996工业炉窑保温技术通则[S].