液化气体瞬时泄漏产生两相云团演化机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代工业和社会环境中储存、运输或使用着大量的危险液化气体介质,这些介质通常不是有毒就易燃易爆,被加压以液态形式存在。密封这些液化气体介质的容器一旦因为意外事故发生破坏就会引发泄漏事故,其中瞬时泄漏由于危害最大且往往会伴随蒸气爆炸最危险。尽管目前学术界的相关研究已取得了可观的成果,但对事故后果演化机理仍不清晰,因此研究液化气体瞬时爆炸性蒸发产生的云团演化过程的机理和特征规律,可以为科学应对此类事故提供理论依据;成功预测云团的变化过程,对事故继发灾难的防范具有决定性的价值。
     本文针对液化气体爆炸性瞬时泄漏产生的蒸气云演化的机理进行了研究。以过热理论为基础,把崩裂形成的液滴群作为切入点,将液体汽化潜热、饱和蒸气压等物性参数考虑到液滴表面蒸发计算中,完善了描述液滴蒸发的传热传质计算,按照时间发展建立了描述液化气体瞬时泄漏产生的蒸气云演化理论模型。采用计算流体力学(CFD)方法,依据液化气体瞬时泄漏产生的蒸气云演化理论模型,建立了瞬时泄漏产生的云团演化数值模拟模型。对Pettitt在1990年进行的小尺度玻璃容器瞬时破坏后的液体瞬时泄漏的小尺度试验进行了数值模拟,并与试验数据进行了对比分析,验证了本文所建立的理论模型和数值模拟模型的科学性及优越性。该模型可以预测云团演化过程中从微观到宏观的物理变化,并优越于之前学者所建立的模型。
     以氟利昂为研究介质的瞬时泄漏产生蒸气云演化过程的数值模拟计算结果表明,氟利昂的瞬时泄漏并不激烈,云团膨胀速度较为平稳。进一步对云团宏观尺寸、云团内介质浓度和温度分布变化以及微观上液滴群的停留轨迹、液滴浓度分布以及蒸发速度等参数的研究结果显示,云团演化的最初大约0.4 s以内可以被定义为初始膨胀阶段,该阶段有云团快速膨胀同时温度下降、介质和温度分布区域不均匀化等特征。
     本文还以液氯和液氨作为典型毒性危险液化气体介质、液化石油气作为典型的易燃易爆危险介质,在相同条件下进行了瞬时泄漏爆炸数值模拟计算,并从宏观云团和微观液滴两个方面进行了结果分析。结果表明这三种介质云团在演化过程中云团温度的变化趋势和介质浓度的分布变化规律与氟利昂云团类似,但由于这三种介质室温条件下过热度均远大于氟利昂,所以云团的直径增长在最初0.4 s内的初始膨胀都比氟利昂云团明显。而且通过对比发现影响温度下降幅度的重要参数是汽化潜热,在该阶段里,液滴大量气化造成云团温度下降是重要特征。
     本文还根据国家相关部门对危险介质的伤害极限规定,对液氯和液氨这两种以毒性为主的危险介质发生瞬时泄漏后,预测了在不同标准浓度下的介质云团影响范围直径。并通过分析可以得到,与液氨相比液氯瞬时泄漏产生的云团毒性大,持续时间长,影响范围广,对环境的伤害更严重;对于易燃易爆的液化石油气,根据可燃极限范围,预测了液化石油气云团的爆燃后果云团中可燃区域的大致演化过程以及云团最大可燃直径的变化范围。
     本文的研究成果不仅在理论上发展了液化气体瞬时产生蒸气云的演化机理,数值模拟计算结果也丰富了蒸气云的演化中关于介质输运、热量传递和相变过程的变化规律,为国外同领域的科研提供新的参考数据,并为我国特种设备爆炸事故后果的预测与预案的制订提供理论和应用依据。
It is usual in industry or common life that certain dangerous materials are stored as liquid form in pressurized containers. These materials are often toxic, flammable, or both. Herein, any accidental release can results in potentially disastrous consequences. Although not the most common one, instantaneous flashing release is the most severe mode, which often has explosive characteristics. Although some relevant studies for this issue have been done, some mechanisms of the accidents evolution are not clear and there still are lots of problems. The study for the evolution of two-phase cloud by release can provides scientific basis for the optimal design of the safety system, and it is critical to predict these release by reliable tool.
     The study on the mechanism of the two-phase cloud evolution from an instantaneous release was presented in this paper. On the basis of super-heat theory, more properties including the phase change latent and saturated vapor pressure were considered in the calculation of the droplets evaporation, with which the model of the heat and mass transfer between droplets and gas-phase. The model for the prediction of cloud expansion was built by the Computational Fluid Dynamics (CFD) approach, and this model was used for the simulation of the small scale instantaneous release by Pettitt in 1990. To validate the optimal performance and scientific properties of model, the averaged velocity of droplets from the calculations of Freon cloud was used to directly compare with experimental data. The model can provides the variation of the microscopic and macroscopic physical change in cloud expansion, and the performance of this model is better than some relevant research before.
     The simulated results of the Freon release indicate that the expansion of Freon cloud is not violent, and the some important calculated results including cloud size, the distribution of species concentration and temperature, droplets residence and evaporation rate indicated that the first about 0.4 s can be identified as the cloud formation stage, and some phenomena including rapid increasing of cloud size, sharp decreasing of temperature, the distribution of species concentration and temperature tend to inhomogeneous is the stage characteristics of this initial expansion process.
     The dispersion process of different dangerous materials including liquefied chlorine, liquefied ammonia and liquefied petroleum gas were simulated by successful model in same condition to analysis the characteristics of the expansion process. By the comprehensive analysis of calculated results about droplets and cloud, the simulated results indicate that the law of the cloud evolution is similar with Freon cloud, although the superheat of these three materials is much bigger than Freon’s. Because of the violent phase change, the expansion and the decreasing of temperature is more significant than Freon cloud. It is found that the phase change latent is an important factor for the initial cooling.
     The further analysis of the release consequence was made for three dangerous materials by the reference of damage criterion of each material. According to criterion published by governmental institute, the range of toxic influence of chlorine and ammonia cloud from instantaneous release was predicted. The simulated results show that the chlorine cloud is more dangerous than ammonia’s, and the evolution of flammable zone and size of LPG cloud was also presented in this paper.
     The work presented in this paper develops the evolution mechanism of two-phase cloud from an instantaneous release of liquefied gases. This paper not only rich the mechanism of cloud evolution, but also provides a reliable tool and theoretical basis for the prediction of consequences of vapor explosion accidents and relevant safety system.
引文
[1]李冬梅,重大危险源分辨、辨识与危险性评估的研究,天津理工大学,2008
    [2] H. L G.R. Astbury, A review of the properties and hazards of some alternative fuels, process safety and environment protection, 2008, 86: 397~414
    [3] H. Lonsdale, Ammonia Tank Failure—South Africa, Vol. 17, Ammonia Plant Safety, AIChE, 1975, 126~131
    [4] F. I. Khan, S. A. Abbasi, Models for domino effect and analysis in the chemical process industries, Process Saf. Prog, 1998, (17): 107~123
    [5] Tasneem Abbasi. Abbasi S.A. The boiling liquid expanding vapour explosion (BLEVE): Mechanism, consequence assessment, management, Journal of Hazardous Materials, 2007, 141:489~19
    [6]霍然,火灾爆炸预防控制工程学,北京,机械工业出版社,2007
    [7]北川徹三,爆炸事故的分析,北京,化学工业出版社,1984
    [8]崔辉,吸入性毒物泄散事故危害性分析与应急预案集成研究,中南大学,2009
    [9] G. M. Makhviladze, S. E. Yakush, Modelling of formation and combustion of accidentally released fuel clouds, Process Safety and Environmental Protection, 83(B2): 171–177
    [10] A. G. Venetsanos, T. Huld, etc, Source, dispersion and combustion modeling of an accidental release of hydrogen in an urban environment, Journal of Hazardous Materials A , 2003, 105: 1-25
    [11] Center for Chemical Process Safety, Guidelines for Evaluating the Characteristics of Vapor Cloud Explosions Flash Fire, and BLEVE’s, New York, American Institute for Chemical Engineers, 1994, 157-180
    [12] CCPS, Guidelines for Consequence Analysis of Chemical Release, Center for Chemical Process Safety, American Institute of Chemical Engineers, New York, 1999
    [13]潘旭海,事故性泄漏动力学过程理论与试验研究,南京工业大学,2004
    [14]陈思凝,沸腾液体膨胀蒸气爆炸(BLEVE)动力演化机理的小尺寸模拟试验研究,中国科学技术大学,2007
    [15] A. M. Birk, M. H. Cunningham, The boiling liquid expanding vapor explosion, [J]. Loss Prev. Process Ind, 1999, 7: 474-480
    [16] R. C. Reid, Some theories on boiling liquid expending vapor explosion, Fire,1980, 19(5): 525-529
    [17]俞昌铭,压力陡降及容积加热条件下气—液两相系统瞬态分析,工程热物理学报,1995,15(2):205-209
    [18] M.A. Aamir, A.P. Watkins, Numerical analysis of depressurisation of highly pressurized liquid propane, International Journal of Heat and Fluid Flow, 2000, 21: 420–431
    [19] I. R. M. Leslie, A. M. Birk, State of the art review of pressure liquefied gas container failure modes and associated projectile hazards, Journal of Hazardous Materials, 1991, 28(6): 329-365
    [20] C. A. McDevitt, C. K. Chan, F. R. Steward, K. N. Tennakore, Initiation step of boiling liquid expanding vapor explosion, Journal of Hazardous Materials, 1990, 25: 169-180
    [21] D. M. Deaves etc, Modeling of catastrophic flashing releases, Journal of Hazardous Materials, 2001, A88: 1-32
    [22] S. Gilham, B. H. Mitchell, P. Woodburn, D. M. Deaves, Modelling of catastrophic flashing releases of liquid, HSE, Contract Research Report CRR 250/1999, HSE Books, 1999
    [23] R.K.Calay, A.E.Holdo, Modelling the dispersion of flashing jets using CFD, Journal of Hazardous Materials, 2008, 154: 1198-1209
    [24] Nail Suleiman Khabeev, Simulation of vapour explosions, Applied Energy, 1999, 64: 317-321
    [25] Andrew Riddle etc, Comparisons between FLUENT and ADMS for atmospheric dispersion modeling, Atmospheric Environment, 2004, 38: 1029–1038
    [26] Kazuo Matsuura, Numerical simulation of leaking hydrogen dispersion behavior in a partially open space, International Journal of Hydrogen Energy, 2008
    [27] A.G. Venetsanos etc, CFD modelling of hydrogen release, dispersion and combustion for automotive scenarios, Journal of Loss Prevention in the Process Industries 21, 2008, 21: 162–184
    [28]劳动部职业安全卫生与锅炉压力容器监察局,国内外劳动安全卫生典型重大伤亡事故案例,北京:中国检察出版社,1994,1371-1576
    [29]刘贯学,中国特大事故警示录,北京:中国劳动出版社,1995,289-293
    [30] Donald L. Ermak, Henry C. Goldwire, William J. Hogan, Results of 40-m3LNGs Pills onto water, Heavy Gas and Risk Assessment-11, 1983, 183-179
    [31] J. S. Puttoek and D. R. Blaekmore, Field experiments on dense gas dispersion,Journal of Hazardous Materials, 1982, (6): 13-41
    [32] J. McQUAID, Objectives and design of the phase 1 heavy gas dispersion trials, Journal of Hazardous Materials, 1985, 11: l-33
    [33] Hanna S. R. and Drivas P. J. Guidelines for use of vapour cloud dispersion models, Second Edition,New York: Center for Chemical Process Safety, AIChE, 1996
    [34] J. S. Puttoek and D. R. Blaekmore, Field experiments on dense gas dispersion, Journal of Hazardous Materials, 1982, 6: 13-41
    [35] J. McQuaid, Design of the Thorney Island continuous release trials, Journal of Hazardous Materials, 1987, 16: l-8
    [36] ]P. W. M. Brighton and A. J. Prinee, over all properties of the heavy gas clouds in the Thorney Island Phase2 trials, Journal of Hazardous Materials, 1987, 16: 103-138
    [37] D. M. Johnson, M. J. Pritchard, Large scale experimental study of boiling liquid expending vapor explosions (BLEVEs), in: Proceeding of the 14th International LNG/LPG Conference and Exhibition, Amsterdam, 4-7, December 1991
    [38] Glenn Nigel Pettitt, characterization of two phases, U.K. South Bank Polytechnic, 1990
    [39] Dancer D and Saller D W. Pressure and temperature response of liquid gases in contained and pressure vessels which are subjected to accidental heat input .Journal of Hazardous Materials, 1990 , 25: 3-18
    [40] Hadjis-ophocleous GV , Sousa A CM and Venart J E S, Mathematical modeling of LPG tanks subjected to full partial fire engulfment , International Journal for Numerical Methods in Engineering , 1990 , 30 :629-646
    [41] Venart, J.E.S, Sollows, K. F, te al, Boiling liquid compressed bubble explosion: experiments/models, ASME FED, 1993, 333
    [42] A. M. Birk, An experimented investigation of a cylindrical vessel engulfed in fire wirh a burning relief valve fare present, Am. Soc. Mech. Eng. Proc. Of the 1988 Natl. Heat Tranfer Conf, 1988
    [43] Craig Douglas K., Janet S. Davis, Doan J. Hansen, et al. Alternative guideline limits for chemicals without environmental response planning guidelines. American Industrial Hygiene Association Journal, 1995, 56: 919-925
    [44]化工部化工劳动保护研究所,重要有毒物质泄露扩散模型研究,化工劳动保护(安全技术与管理分册),1996,3-91
    [45] Pan Xuhai, Jiang Juncheng. Numerical Analysis of Diffusion Process of Flammable and Toxic Gases Discharging Accident, Li Shengcai, Jing Guoxun. Progress in Safety Science and Technology, Beijing, Chemical Industry Press. 2000, 297-301
    [46]潘旭海,蒋军成,化学危险性气体泄漏扩散模拟及其影响因素,南京化工大学学报,2001,23 (1):19-22
    [47]潘旭海,蒋军成,事故泄漏源模型研究与分析,南京工业大学学报, 2002,24 (1):105-110
    [48]潘旭海,蒋军成,重气云团瞬时泄漏扩散的数值模拟研究,化学工程,2003,31 (1):35-39
    [49]潘旭海,蒋军成,液氯泄漏事故模拟分析,工业安全与环保,2003,29 (3): 30-32
    [50] Jiang Juncheng, Wang Baoquan, Pan Xuhai. Accidents Analysis and Safety Evaluation Based on Catastrophe Theory, Li Shengcai, Jing Guoxun. Progress in Safety Science and Technology, Beijing: Chemical Industry Press, 2000, 41- 46
    [51]蒋军成,潘旭海,一种描述重气泄漏扩散过程的新型模型,南京工业大学学报,2002,24 (1):41-46
    [52]邢志祥,蒋军成,16MnR钢容器在高温(火灾)条件下的力学响应,天然气工业,2003,23 (5):109-111
    [53]邢志祥,蒋军成.喷射火焰对容器表面热辐射计算.安全与环境工程,2003,10(3):71-73
    [54]邢志祥,蒋军成,液化石油气储罐在火灾作用下爆破失效的预测,中国锅炉压力容器安全,2004,20 (1):15-17
    [55]李萍,丁钰,翁培奋,气液两相流泄漏扩散的数值模拟,应用力学学报,2006,23(2):182-186
    [56] R. C. Reid, Superheated liquids, Am. Scientists, 1976, (64): 146-156
    [57] Blackmore D. R.,Herman M. N. and Woodward J. L, Heavy gas dispersion models. Journal of Hazardous Materials,1982,6:107-128
    [58] Wheatley C. J, and Webber D. M, Aspeets of the dispersion of dense-than-air vapours relevant to gas cloud explosions, Report EUR 9592EN, Commission of the European Communities, Brussels, 1984
    [59] Britter R. E. and McQuaid J. Workbook on the dispersion of dense gases. HSE Contract Research Report No.17/1988, Sheffield, U.K.1988
    [60] Zeman O. The dynamics and modeling of heavier-than-air, cold gas releases.Atmosphere Environment, 1982, 16:741-751
    [61] Ermak D. L, User’s Manual for SLAB: an atmosphere dispersion model for denser-than-air releases, UCRL-MA-105607, Lawrence Livermore National Laboratory, Livermore, CA, 1990
    [62] Wurtz J., Bartzis J., Venetsanos A., Andron opouloss., Statharas J., Nijsing R, A dense vapour dispersion code package for applications in the chemical and process industry. Journal of Hazardous Materials, 1996, 46:273-284
    [63]魏利军,重气扩散过程的数值模拟,北京化工大学,2000
    [64]化工部化工劳动保护研究所,“八五”国家科技攻关课题“重要毒物泄漏扩散模型和监控技术研究”研究报告,劳动部科技办公室,1995
    [65]许伯彦等,液态LPG燃料喷射过程的数值解析及可视化试验,内燃机学报,2009,27(2):146-152
    [66] Cant R.S, Dawes W.N, Savill A.M, Advanced CFD and modeling of accidental explosions, Annu. Rev. Fluid Mech, 2004. 36:97-119
    [67] R.C.Reid, Possible mechanism for pressurized-liquid tank explosions or BLEVEs, Science, 1979, 203: 1263-1265
    [68] Moodie K. Experiments and modeling: An overview with particular reference to fire engulfment, Journal of Hazardous Materials, 1988, (20):149-175
    [69] Venart J. E. S, Experiments on the physical modeling of LPG tank cars under accident conditions. Int. Conf. storage and transport of LPG and LNG, Brugge, 1984,33-41
    [70] Birk A. M. An experimental investigation of a cylindrical vessel engulfed in fire with a burning relief valve flare present. Am. Soc. Mech. Eng. Proc. of the national Heat Transfer Conf, 1988,125-135
    [71] Dag Bjerketvedt, Jan Roar Bakke, KeesvanWingerden, Gas Explosion Handbook, Journal of Hazardous Materials, 1997, (52):1-150
    [72]姜巍巍等,BLEVE火球热辐射及其影响评价模型介绍,工业安全与环保,2007,33(5)23-24
    [73]马晓茜等,液化天然气BLEVE机理研究及其事故后果评价,华南理工大学学报,2007,35(10):189-193
    [74] A.M.Birk, Blast overpressures from medium scale BLEVE tests, Journal of loss prevention in the process industries, 2007, 54, 195-206
    [75] Birk A.M. and Cunningham M.H., The boiling liquids expanding vapour expanding explosion, Journal of Loss Prevention in the Process Industries, 1994,7(6):121-145
    [76] Birk A.M. and Cunningham M.H., Hazards from propane BLEVEs: an updata and proposal for emergency responds, Journal of loss prevention in the process industries, 1996,9(2): 245-272
    [77] Kielec D.J and Biek A.M., Analysis of tank deformation from fire induced ruptures and BLEVEs of 400L tanks, ASME PVP, 1996,333
    [78] Kielec D.J and Biek A.M., Analysis of fire-induced ruptures of 400L propane tanks, Journal of Pressure Vessel Technology, 1997, 119(3): 145-172
    [79] Leslie R.M. and Birk A.M., State of the art review of pressure liquefied gas container failure modes and associated projectile hazards, Journal of Hazards Materials, 1990, 25: 3-18
    [80] Prugh R.W., Quantitative evaluations of‘BLEVE’hazards, Journal of Loss Prevention in the Process Industries, 1991, 3(1): 15-25
    [81] Pietersen C.M., Analysis of the LPG-Disaster in Mexico City, Journal of Hazardous Materials, 1988, (20): 85-107
    [82] Ye Z. and Birk A.M., Transient vertical jet fire releases from thermally ruptured propane tanks, ASME PVP, 1996, 333
    [83] J.M.P. Schmelzer, Kinetic and thermodynamic theories of nucleation, Materials Physics and Mechanics, 2003, 6:21–33
    [84]俞昌銘,J.E.S.Venart,熊音,一种冷爆炸现象的物理数学分析初探,工程热物理学报,1995,(16):354-357
    [85] A.M.Birk, M.H.Cunningham Liquid temperature stratification and its effect on BLEVE and their hazards, Journal of Hazardous Materials, 1996, (48) :219-237
    [86] M. A. Aamir, A. P. Watkins, Numerical analysis of depressurization of highly pressurized liquid propane, Int. J. Heat Flow, 2000, (21) : 420-431
    [87] Gabriele Landucci, Experimental and analytical investigation of thermal coating effectiveness for 3m3 LPG tanks engulfed by fire, Journal of Hazardous Materials 2009, 161: 1182–1192
    [88] Asis Giri and Hyun Sun Park, Analysis of bubble dynamics in explosive boiling of droplet with fine fragmentation, Experimental Thermal and Fluid Science, 2005, 29: 295–303
    [89] G.A.Pinhasi, A.Ullmann, 1D plane numerical model for boiling liquid expanding vapor explosion(BLEVE), International journal of heat and mass transfer, 2007, 4780-4795
    [90] Fluent, Fluent 6.3 Users Guide, Lebanon, New Hampshire, USA: Fluent Inc. 2006
    [91]王福军,计算流体力学分析—CFD软件原理与应用,北京,清华大学出版社,2004
    [92]韩占忠,王敬,兰小平,FLUENT流体工程仿真计算实例与应用,北京,北京理工大学出版社,2004
    [93] Anon.Fluent 6.0:Indusrtial-strength CFD.Chemical Engineering World, 2001, 36(12):82-87
    [94] Hong-Chul Park and Ki-Taek Byun, Explosive boiling of liquid droplets at their superheat limits, Chemical Engineering Science, 2005, 60:1809– 1821
    [95] M. Shusser, Explosive boiling of a liquid droplet, International Journal of Multiphase Flow 1999, 25: 1561-1573
    [96] M. Shusser etc, Stability of rapidly evaporating droplets and liquid shells, International Journal of Multiphase Flow ,2001, 27: 299-345
    [97]刘伟民等,低压闪蒸液滴形态和温度变化的研究,工程热物理学报,2007,28(6):957-960
    [98]苏凌宇,刘卫东,负压环境下燃料液滴蒸发过程的试验和理论研究,国防科学技术大学,2004
    [99]鲁钟祺,两相流与沸腾传热,北京,清华大学出版社,147-153
    [100] A. M. Birk, Scale effects with fire exposure of pressure-liquefied gas tanks, J. Loss Prev. Process Ind. 1995, 8: 275-290
    [101] Makhviladze and Yakush, Large-scale unconfined fires and explosions, Proceedings of the combustion institute, 2002, (29): 195-210
    [102] Johnson, D.M., Large scale experimental study of Boiling Liquid Expanding Vapor Explosions (BLEVES), Journal of Hazardous Materials, 1990, 1-28
    [103]孙博,开敞空间可燃气云爆炸研究,大连理工大学,2000
    [104]潘旭海,蒋军成.重(特)大泄漏事故统计分析及事故模式研究.化学工业与工程,2002,19(3):249
    [105]刘光启,马连湘,刘杰主编,化学化工物性数据手册(有机卷),北京,机械工业出版社,2002
    [106]中华人民共和国卫生部,GBZ 2.1-2007,中华人民共和国国家职业卫生标准,2007
    [107]中华人民共和国卫生部,GBZ 1,中华人民共和国国家职业卫生标准(工业企业设计卫生标准),2010
    [108] Fotis Rigas etc, Simulation of Coyote series trials—Part II:A computational approach to ignition and combustion of flammable vapor clouds, Chemical Engineering Science, 2006, 61: 1444-1452
    [109] A.G.Venetsanos, Source, dispersion and combustion modeling of an accidental release of hydrogen in an urban environment, Journal of Hazardous Materials, 2003, 31(1): 1-25
    [110]国家石油和化学工业局,SH3063,石油化工企业可燃气和有毒气体检测报警设计规范,1999
    [111]国家环境保护局科技标准司,GB 16297,中华人民共和国国家标准(大气污染物综合排放标准),1996