基于新型环保制冷剂的独立式燃气机热泵系统理论及实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
节能和环保等问题日益受到国际社会的广泛关注,也成为制冷热泵行业的研究热点。独立式燃气机热泵系统是以天然气或其他清洁能源为一次能源输入,为建筑物提供冷、热、生活热水及系统自备电的节能环保新系统。本文主要针对独立式燃气机热泵系统及新型环保制冷剂进行了理论和实验研究。
     在新型环保制冷剂方面,采用热工性能优异、市场可获得性、低GWP以及ODP为零的环保制冷剂,并对具有可燃性的环保制冷剂进行了惰化及爆炸极限实验研究。本文对阻燃制冷剂与可燃组元DME、R32、R152a、R290形成的二元混合物在常温常压下进行了爆炸极限实验研究,得到了混合物的爆炸上、下限以及阻燃剂的最小惰化浓度。在此基础上,应用基团贡献法和燃烧学相关理论对上述阻燃制冷剂的抑制系数进行了计算分析,并提出了计算阻燃制冷剂最小惰化浓度的理论估算公式。通过理论估算值和实验测量值之间对比分析可知:在可燃制冷剂火焰传播速度测量(计算)准确前提下,理论估算值和实验结果基本吻合。理论估算公式对可燃制冷剂的理论分析、实验研究以及实际应用等具有重要的指导意义。
     建立了工质循环性能实验系统,对通过理论分析获得的一种HCFC-22替代制冷剂和一种中高温制冷剂在此实验台上进行了循环性能实验研究。实验结果表明:替代制冷剂充灌HCFC-22系统中,其在相同工况下的制冷量、压比、排气温度以及制冷性能系数均比HCFC-22优异,两者压缩机功率接近,是一种较为理想的HCFC-22替代物;中高温制冷剂充灌HFC-134a系统中,可获得高于80℃的热水,其排气温度为95.3℃、排气压力为1.93MPa、压比小于6.0。在蒸发器进水温度44℃、冷凝器出水温度80℃时,系统性能系数达到2.92。
     在独立式燃气机热泵供能系统方面。基于替代HFC-134a的新型环保制冷剂,进行了制冷、制热性能实验研究,并对影响独立式燃气机热泵系统的因素(制冷工况——蒸发器进水流量、蒸发器进水温度以及燃气发动机转速等;制热工况——冷凝器进水流量、冷凝器进水温度、燃气发动机转速以及蒸发温度等)进行了定量和定性分析,为独立式燃气机热泵系统的示范及进一步的推广应用奠定了基础。制冷和制热工况性能实验结果表明:独立式燃气机热泵系统应用新型环保制冷剂可获得较高的性能系数(COP)和一次能源利用率(PER)。
As the international community pays more and more attention to the energy conservation and environmental protection, which is also becoming a research focus in the refrigeration and heat pump industry. The independent gas engine driven heat pump system (IGEHP) used natural gas or other clean energy as an independent energy input could provide the heating, cooling, hot water and autonomous power supply system. This article has mainly carried out the theoretical and experimental research on the independent gas engine driven heat pump system and new environment-friendly refrigerants.
     In the aspect of refrigerant, a series of new environment-friendly refrigerants with advantages of thermo-physical properties, market availability, lower global warming potential (GWP) and zero ozone depletion potential (ODP) were adopt. At the same time, the explosion limits of binary mixtures which include nonflammable refrigerants and flammable refrigerants DME, R32, R152a and R290s has been experimentally studied under the conditions of 290~295K and 101.325KPa (one atmosphere pressure, 760mm Hg). Furthermore, parameters of upper flammability limit (UFL), lower flammability limit (LFL) and minimum inert concentration (MIC) of nonflammable refrigerants were also obtained. On this basis, the inhibition coefficient of nonflammable refrigerants was analyzed and a novel equation of predicting the minimum inert concentration of nonflammable refrigerant has been proposed by analyzing the group contribution method and the theory of combustion in binary mixtures. Comparative analysis of the theoretical calculated values and experimental data, the result demonstrates that the theoretical data are in good agreement with experimental results under the condition of flammable refrigerants flame propagate velocity and the stoichiometric concentration exactly, and the novel equation is an excellent tool to analyze the minimum inerting concentration of nonflammable refrigerant. The theoretical results have significance on flammability experimental, theoretical research and the security application.
     The refrigerants cycle performance test-bed was built up, and performances of two mixture refrigerants (alternative for HCFC-22 and moderately-high temperature refrigerant) have been carried out in this water-to-water cycle performance heat pump system. The results show that the alternative mixture refrigerant can directly charge into the HCFC-22 heat pump system, and the performance of cooling capacity, pressure ratio, discharge temperature and coefficient of performance (COP) are better than that of HCFC-22, on the other hand, the compressor power between the alternative mixture refrigerant and HCFC-22 are close to each other. Therefore, this proposed environment- friendly refrigerant is an excellent alternative refrigerant for HCFC-22; The moderately-high temperature refrigerant charged into HFC-134a heat pump system could obtain above 80℃hot water, and the discharge temperature, condenser pressure and the pressure ratio was just 95.3℃, 19.3MPa and 6.0, respectively. The COP of this mixture refrigerant M2 was above 2.92 under the condition of evaporator water inlet temperature 44℃and condenser water outlet temperature 80℃.
     In the independent gas engine driven heat pump system scheme, the cooling and heating performance of independent gas engine driven heat pump using new environment-friendly mixture refrigerant (alternative for HFC-134a) has been experimentally studied. Furthermore, several effected factors (cooling model: evaporator water inlet flow rate, evaporator water inlet temperature and gas engine speeds; heating model: condenser water inlet flow rate, condenser water inlet temperature, gas engine speeds and evaporator temperature) on the independent gas engine driven heat pump system have been qualitatively and quantitatively analysed. The experimental results have laid out a foundation of demonstration and further popularization and application of IGEHP. Finally, the independent gas engine driven heat pump system could obtain better coefficient of performance (COP) and primary energy ratio (PER) using new environment-friendly mixture refrigerant.
引文
[1] BP世界能源统计,2010
    [2]胡军军,天然气发动机应用技术研究及其经济型分析:[博士后工作报告],上海;上海交通大学,2004
    [3]王信茂,2010我国电力供需形式分析预测,电气工业,2010,4:5~7
    [4]中华人民共和国国家统计局,2010年中国统计年鉴,北京:中国统计出版社,2010
    [5] Montreal Protocol on Substance that Deplete the Ozone Layer, Assessment Report of the Rigid and Flexible Foams Technical Options Committee, 2006
    [6]何国庚,刘璇斐,R290在小型空调器中替代R22的优势与问题及其解决措施,制冷与空调,2008,8(2):58~62
    [7] Ross J. Salawitch,Ozone depletion: A greenhouse warming connection, Nature,1998, 392:551~552
    [8]张剑波,左澎,冯金敏,氟利昂替代品降解物三氟乙酸的环境影响,环境科学进展,1997,7(5):132~136
    [9]朱明善,CFC和HCFC的替代制冷剂研究态势,化工进展,1993,9:43~45
    [10] Devotta S., Waghmare A. V., Sawant N. N., et al.,Alternatives to HCFC-22 for air conditioners,Applied Thermal Engineering, 2001, 21:703~715
    [11] Purkayastha B., Bansal P. K.,An experimental study on HC290 and a commercial liquefied petroleum gas (LPG) mix as suitable replacements for HCFC22,International Journal of Refrigeration, 1998, 21:3~17
    [12]史琳,韩礼钟,朱明善,HCFC-22替代制冷剂THR03的试验研究,暖通空调,2000,30(2):1~4 [13史琳,赵晓宇,韩礼钟等,HCFC-22的替代物THR03的研究,工程热物理学报,1999,20(5):538~541
    [14]王怀信,李海龙,马利敏,碳氢化合物/阻燃剂混合工质替代HCFC22的研究,工程热物理学报,2003,24(1):13~15
    [15]韩晓红,朱志伟,孙洁等,新型三元混合制冷剂R32/R125/R161替代制冷剂R407C的进行了实验研究,浙江大学学报(工学版),2007,41(2):337~341
    [16]赵力,张启,丁国良,一种非共沸混合工质的循环特性分析,工程热物理学报,2004,25(1):31~33
    [17] Yang Zhao, Ma Yitai, Li Yie, et al., The performance of some substitutes for HCFC22 under varying operating conditions, Applied Thermal Engineering, 1999, 19:801~806
    [18] Yang Zhao, Ma Yitai, Li Ye, New alternatives for R22, Energy, 1997, 22(7): 669~676
    [19] Yang Zhao, Tian Guansan, Zhao Yi, et al., Performance and dynamic flammability of R32/R134a mixture in water-to-water heat pumps, Energy, 2002, 27: 127~134
    [20] Ki-Jung Park, Dongsoo Jung, Performance of heat pumps charged with R170/R290 mixture, Applied Energy, 2009, 86:2598~2603
    [21] Ki-Jung Park, Taebeom Seo, Dongsoo Jung, Performance of alternative refrigerants for residential air-conditioning applications, Applied Energy, 2007, 84:985~991
    [22] Ki-Jung Park, Yun-Bo Shim, Dongsoo Jung, Performance of R433A for replacing HCFC22 used in residential air-conditioners and heat pump, Applied Energy, 2008, 85:596~900
    [23] Ki-Jung Park, Dongsoo Jung, Thermodynamic performance of HFCF22 alternative refrigerants for residential air-conditioning applications, Energy and Buildings, 2007, 39:675~680
    [24] C. Aprea, R. Mastrullo, C. Renno, et al., An evaluation of R22 substitutes performances regulating continuously the compressor refrigeration capacity, Applied Thermal Engineering, 2004, 24:127~139
    [25] C. Aprea, A. Greco, An exergetic analysis of R22 substitutes, Applied Thermal Engineering, 2002, 22:1455~1469
    [26] C. Aprea, A. Greco, An experimental evaluation of the greenhouse effect in R22 substitutes, Energy Conversion and Management, 1998, 39(9):877~887 [27 C. Aprea, A. Maiorino, An experimental investigation of the global environmental impact of the R22 retrofit with R422D, Energy, 2011, 36:1161~1170
    [28] Dongsoo Jung, Chunkun Park, Byungjin Park, Capillary tube selection for HCFC22 alternatives, International Journal of Refrigeration, 1999, 22:604~614
    [29] Cecilia Gabrielii, Lennart Vamling, Changes in optimal design of a dry-expansion evaporator when replacing R22 with R407C, International Journal of Refrigeration, 1998, 21:518~534
    [30] Y.S. Chang, M.S. Kim, S.T. Ro, Performance and heat transfer characteristics of hydrocarbon refrigerants in a heat pump system, International Journal of Refrigeration, 2000, 23:232~242
    [31] S. Karagoz, M. Yilmaz, O. Comakli, et al., R134a and various mixtures of R22/R134a as an alternative to R22 in vapour compression heat pumps, Energy conversion and Management, 2004, 45:181~196
    [32] D.Y. Lee, Y. Ahn, Y. Kin, et al., Experimental investigation on the drop-in performance fo R407C as a substitute for R22 in a screw chiller with shell-and-tube heat exchangers, International Journal of Refrigeration, 2002, 25:575~585
    [33] W. Chen, A comparative study on the performance and environmental characteristics of R410A and R22 residential air conditioners, Applied Thermal Engineering, 2008, 28:1~7
    [34] A. Rosato, A.W. Mauro, R. Mastrullo, et al., Experiments during flow boilingof a R22 drop-in: R422D adiabatic pressure gradients, Energy conversion and Management, 2009, 50:2613~2621
    [35] M. Fatouh, Talaat A. Ibrahim, A. Mostafa, Performance assessment of a direct expansion air conditioner working with R407C as an R22 alternative, Applied Thermal Engineering, 2010, 30:127~133
    [36] Halimic E, Ross D, Agnew B, et al., A comparision of the operating performance of alternative refrigerants, Applied Thermal Engineering, 2003,23: 1441~1451
    [37]谢英柏,燃气机热泵总能系统的理论分析与实验研究:[博士学位论文],保定;华北电力大学,2002
    [38] P.E Montagnon,AIL Ruckloy, The festical hall heat pump. JInst Fuel, 1953, 1:318~321
    [39]张世刚,燃气机热泵仿真与优化匹配:[博士学位论文],天津;天津大学,2003
    [40]陈轶光,内燃机热泵独立供能系统的理论模拟与实验研究:[博士学位论文],天津;天津大学,2010
    [41] T.Miyairi, Introduction to small gas engine-driven heat pumps in Japan– history and marketing. ASHRAE Transactions, 1989, 95:975~984
    [42] Tadashi, Fukuda, Present condition and future perspective of gas engine heat pump in Japan. Proceedings of the 3rd international energy agency heat pump conference, Tokyo, Japan, March, 1990
    [43] Sakata S., Development and market trend of gas engine heat pumps in Japan. Proceedings of the 3rd international energy agency heat pump conference, heat pumps for energy efficiency and environmental progress, 1993
    [44] J. Wurm, J. A. Kinast, History and status of engine-driven heat pump developments in the U.S., ASHRAE Transactions, 1987, 93:997~1005
    [45]赫贝特.尤特曼著,耿惠彬译,热泵(第三卷)燃气机和柴油机热泵在建筑业的应用。北京:机械工业出版社,1989
    [46]许鹰,秦朝葵,天然气发动机驱动制冷系统及发动机余热的利用技术,能源技术,2002,23(4):162~167
    [47]杨昭,张世刚,谢英柏,燃气机驱动压缩式水-水热泵系统实验研究,工程热物理学会2002年学术会议,2002:226~231
    [48]程珩,燃气机热泵的实验研究及电力燃气负荷季节调整:[硕士学位论文],天津;天津大学,2003
    [49]郭斌,杨昭,程珩等,天然气正逆联合循环动力及经济性匹配研究,天然气工业,2005,25(11):126~128。
    [50]顾安忠,黄震,张荣荣等,燃气机热泵机组的研制与实验研究,制冷技术,2005,4:21~29
    [51]张荣荣,李书泽,鲁雪生等,燃气机驱动空气-水热泵机组的供热性能研究,建筑热能通风空调,2005,24(2):1~4
    [52]张荣荣,鲁雪生,李书泽等,燃气机热泵的能耗与运行费用分析,哈尔滨工业大学学报,2006,38(8):1243~1246
    [53]张荣荣,李书泽,林文胜等,燃气机热泵供暖过程的计算与分析,太阳能学报,2005,26(3):349~353
    [54] R. R. Zhang, X. S. Lu, S. Z. Li, et al, Analysis on the heating performance of a gas engine driven air to water heat pump based on a steady-state model, Energy Conversion and Management,2005,46:1714~1730
    [55]徐振军,杨昭,具有湿处理功能的燃气机热泵节能分析,吉林大学学报(工学版),2008,38(Sup.2):34~38
    [56] Z.J. Xu, Z. Yang, Saving energy in the heat-pump air conditioning system driven by gas engine, Energy and Buildings, 2009, 41:206~211
    [57]徐振军,杨昭,不结霜燃气机热泵的建模和性能分析,天津大学学报,2009,42(2):101~104
    [58]方筝,杨昭,陈轶光,燃气机热泵冷热电三联供系统热经济学分析,热能动力工程,2009,24(5):597~603
    [59]方筝,杨昭,刘运陶等,燃气机热泵机组隔声装置降噪研究,振动与冲击,2009,28(5)192~198
    [60]谢英柏,马一太,杨昭等,燃气机热泵的热电冷三联供系统分析,工程热物理学报,2002,23(3):283~285
    [61] Ying-Lin Li, Xiao-Song Zhang, Liang Cai, A novel parallel-type hybrid- power gas engine-driven heat pump system, International Journal of Refrigeration, 2007, 30:1134~1142
    [62]李应林,张小松,吴薇,基于混合动力燃气热泵的独立供能系统,东南大学学报(自然科学版),2008,38(6):1011~1016
    [63]李应林,张小松,混合动力燃气热泵空调系统的能量分析模型,暖通空调,2006,36(11):11~17
    [64]蔡亮,张小松,李应林,混合动力燃气热泵空调系统及其技术分析,中国工程热物理学会工程热力学与能源利用学术会议论文集,重庆,2006:433~439
    [65]蔡亮,张小松,李应林,混合动力燃气热泵空调系统及其关键技术的探讨,中国工程热物理学会工程热力学与能源利用学术会议论文集,重庆,2006:283~287
    [66]杨昭,张世刚,刘斌等,燃气热泵及其它供热空调系统的能源利用分析评价,太阳能学报,2001,22(2):171~175
    [67]马一太,刘胜春,管海清等,燃气机冷水机组热经济性分析,流体机械,2005,33(9):59~61
    [68]黄剑光,赵兰萍,陈汝东,沼气型燃气热泵的可行性研究,Fluid Machinery, 2008,36(02):80~82
    [69]徐振军,杨昭,沼气机热泵复合式空调系统数值计算与能耗分析,农业机械学报,2008,39(9):118~121
    [70]吴集迎,沼气发动机驱动的热泵能源利用率计算,可再生能源,2007,25(5):49~52
    [71]吴集迎,沼气热泵系统设计机器经济性分析,农业机械学报,2006,37(12):114~117
    [72] Yang Z, Haibo Z, Wu Z. Technical and economic analysis of gas engine driven heat pump in China. International Journal of Global Energy Issues, 2003, 20(3):223~232
    [73]邓建强,李文良,张早校,燃气热泵系统生命周期评价,西安交通大学学报,2006,40(11):125~1262
    [74]刘万福,马一太,杨昭等,内燃机拖动地源热泵系统的实验研究,工程热物理学报,2002,23:9~12
    [75]马一太,谢英柏,杨昭等,燃气机热泵变负荷特性的试验研究,热科学与技术,2003,2(3):199~203
    [76] Zhiwei Lian, Seong-ryong Park, Wei Huang, et al., Conception of combination of gas-engine-driven heat pump and water-loop heat pump system, International Journal of Refrigeration, 2005, 28:810~819
    [77]杨昭,程珩,张世刚等,燃气压缩式热泵空调系统的实验研究,工程热物理学报,2003,24(6):920~922
    [78]杨昭,赵海波,徐振军等,燃气机热泵全年性能优化研究,工程热物理学报,2008,29(2):187~190
    [79] E. Elgendy, J. Schmidt, A. Khailil et al, Performance of a gas engine heat pump (GEHP) using R410A for heating and cooling applications, Energy, 2010, 35:4941~4948
    [80] E. Elgendy, J. Schmidt, Experimental study of gas engine driven air to water heat pump in cooling mode, Energy, 2010, 35:2461~2467
    [81] E. Elgendy, J. Schmidt, A. Khailil et al, Performance of a gas engine heat pump for hot water supply systems, Energy, 2011, 36(5):2883~2889
    [82] Howe L.A., Radermacher R., Herold K.E., Combined cycles for engine driven heat pumps, International Journal of Refrigeration, 1989; 12(1):21~28.
    [83] Yagyu S, Fujishima I, Corey J, et al., Design, simulation and test results of a heat-assisted three-cylinder Stirling heat pump(C-3), Proceeding of 32nd IECEC 1997, 2:1033~1038
    [84] Yagyu S, Fujishima I, Fukuyama Y, et al., Performance characteristics of a gas engine driven Stirling heat pump, Am Inst Aeronau Astronaut, 2000:85~91
    [85] Zhi-Gao Sun,A combined heat and cold system driven by a gas industrial engine, Energy Conversion and Management, 2007, 48:366~369
    [86]邓建强,李文良,张早校,家用燃气热泵系统变环境温度性能分析,西安交通大学学报,2007,41(1):28~31
    [87]李应林,张小松,殷勇高等,燃气驱动冷热水机组变转速运行实验研究,东南大学学报(自然科学版),2005,35(2):298~301
    [88]田贯三,付林,江亿,用天然气烟气废热作为低温热源热泵循环的分析,太阳能学报,2003,24(4):472~476
    [89] Aysegul Gungor, Zafer Erbay, Arif Hepbasli, Exergetic analysis and evaluation of a new application of gas engine heat pumps (GEHPs) for food drying processes, Applied Energy, 2011, 88:882~891
    [90] Aysegul Gungor, Zafer Erbay, Arif Hepbasli. Exergoeconomic analyses of a gas engine heat pump drier and food drying process, Applied Energy, 2011, 88(8): 2677~2684
    [91] Yiguang Chen, Zhao Yang, Xi Wu, et al., Theoretical simulation and experimental research on the system of air source energy independence driven by internal-combustion engine, Energy and Buildings, 2011, 43(6):1351~1358
    [92]李玉,黄冲,何世辉等,燃气热泵(GHP)系统热泵运行时的数值模拟研究,流体机械,2008,36(5):63~67
    [93]李玉,黄冲,何世辉等,燃气热泵(GHP)系统制冷工况的数值模拟与分析,工程热物理学报,2008,29(3):447~450
    [94] Sepehr Sanaye, Mahmood Chahartaghi, Thermal modeling and operating tests for the gas engine-driven heat pump systems, Energy, 2010, 35:351~363
    [95]崔国栋,张薇,赵远扬等,双管路燃气热泵(GEHP)系统仿真与实验研究,制冷学报,2009,30(1):43~48
    [96] R.W. Rasmussen, J.W. MacAthur, E.W. Grald, et al., Performance of energy-driven heat pumps under cycling conditions, ASHRAE Trans, 1987, 93(2):1078~1090
    [97] Zhao Yang, Shigang Zhang, Haibo Zhao, Optimization study of combined refrigeration cycles driven by an engine, Applied Energy, 2003, 76:379~389
    [98] Van Rij, Mindert L.D., Computer model of gas engine driven compression heat pump used for field evaluation, Proceedings of the 1986 International gas Research Conference, 1987:638~647
    [99]谢英柏,赵成,刘春涛等,热源温度对VM循环燃气热泵性能系数的影响,流体机械,2008,36(11):83~85
    [100]李书泽,天然气发动机驱动热泵系统模糊控制研究:[博士学位论文],上海;上海交通大学,2005
    [101]李书泽,张荣荣,张武高等,燃气机热泵系统中的串级模糊控制,上海交通大学学报,2005,39(8):1261~1265
    [102] Shuze Li, Wugao Zhang, Rongrong Zhang, et al., Cascade fuzzy control for gas engine driven heat pump, Energy Conversion and Management, 2005, 46: 1757 ~ 1766
    [103] Yang Zhao, Zhao Haibo, Fang Zheng, Modeling and dynamic control simulation of unitary gas engine heat pump, Energy Conversion and Management, 2007, 48:3146~3153
    [104]杨昭,刘斌,张世刚等,单元式空气-空气型燃气压缩式热泵空调系统控制研究,太阳能学报,2003,24(4):493~496
    [105]杜明星,杨昭,胡静,水-水燃气机热泵控制系统的研究,建筑热能通风空调,2007,26(5):11~14
    [106]赵毅,燃气压缩式水-水热泵机组智能控制的仿真研究:[硕士学位论文],天津;天津大学,2002
    [107]徐振军,杨昭,张金亮,燃气机热泵控制系统实验研究,热泵技术与工程,2007,1:57~60
    [108]徐振军,杨昭,方筝,燃气发动机调速控制与试验,农业机械学报,2008,39(12):7~9
    [109]徐振军,独立供能内燃机热泵系统及其控制特性的实验研究:[博士学位论文],天津;天津大学,2009
    [110]王明涛,杨昭,燃气机热泵变容量控制仿真,天津大学学报,2011,44(3):272~276
    [111]王明涛,燃气机热泵自动控制系统的研究:[博士学位论文],天津;天津大学,2011
    [112]程珩,燃气机热泵系统变容量调节的研究:[博士学位论文],天津;天津大学,2006
    [113]王磊,沈胜强,师新广,燃气机热泵控制系统实验研究,河南科学,2008,26(5):591~594
    [114]冀英杰,燃气热泵末端系统变流量控制研究:[硕士学位论文],天津;天津大学,2009
    [115]任勇,内燃机独立供能系统性能及冷冻水变流量研究:[博士学位论文],天津;天津大学,2009
    [116]任勇,杨昭,内燃机独立供能系统的性能实验,天津大学学报,2011,44(1):29~35
    [117] H.F. Coward, G.W. Jones, Limits of flammability of gases and vapors, US Bureau of Mines, Bulletin 503, Washington, DC,1952
    [118] M. G. Zabetakis, Flammability characterfistics of combustible gases and vapours, US Bureau of Mines, Bulletin 627, Washington, DC,1965
    [119] ASTM E681-94, Standard test method or concentration limits of flammability of chemicals, American Society for Testing and Materials, Philadelphia, 1994
    [120]陈欣,毕胜山,吴江涛,二甲醚、甲烷及二甲醚/甲烷混合物的爆炸极限实验研究,工程热物理学报,2009,30(8):1267~1270
    [121] K.L. Cashdollar, M. Hertzberg, 20-Liter explosibility test chamber for dusts and gases, Review of Scientific Instrumentation, 1982, 56:596~602
    [122] A. Takahashi, Y. Urano, K. Tokuhashi, et al., Effect of vessel size and shape on experimental flammability limits of gases, Journal of Hazardous Materials, 2003, 105:27~37
    [123]张锐,新型替代制冷剂爆炸极限理论与实验研究:[硕士学位论文],杭州;浙江大学,2005
    [124]张可,吴江涛,高辉等,爆炸极限实验系统研制及二甲醚/HFC125的可燃性研究,西安交通大学学报,2010,44(7):28~32
    [125]洪荣华,陈琪,陈光明等,一种新型替代制冷剂爆炸极限的实验研究,浙江大学学报(工学版),2008,42(4):712~714
    [126]中华人民共和国国家技术监督局,GB/T12474~90,空气中可燃气体爆炸极限测定方法,中华人民共和国国家标准,北京:中国标准出版社,1990-09-10
    [127]陈光明,王海鹰,王勤等,测试方法对可燃性制冷剂爆炸极限影响的研究,浙江大学学报(工学版),2007,41(12):2098~2102
    [128]张锐,陈光明,R502新型替代制冷剂爆炸极限实验研究,爆炸与冲击,2005,25(2):189~192
    [129]李振明,公茂琼,吴剑峰等,三元混合物的爆炸极限实验,低温工程,2010, 2:1~3
    [130] Li Zhengming, Gong Maoqiong, Wu Jianfeng et al., Flammability limits of refrigerant mixtures with 1,1,2,2-tetrafluoroethane, Experimental Thermal and Fluid Science, 2011, 35(6):1209~1213
    [131] Yang Zhao, Liu Bin, Zhao Haibo, Experimental study of the inert effect of R134a and R227ea on explosive limits of the flammable refrigerants, Experimental Thermal and Fluid Science, 2004, 28(6):557~563
    [132]田贯三,马一太,杨昭,含有阻燃组元的可燃制冷剂爆炸极限的研究,爆炸与冲击,2003,23(3):225~229
    [133]杨昭,田贯三,李汛等,含R227ea制冷剂燃爆特性的研究,工程热物理学报,2001,22(4):420~422
    [134]张奎,低GWP可燃制冷剂燃爆惰化的理论和实验研究:[硕士学位论文],天津;天津大学,2010
    [135]许世海,熊云,刘晓,液体燃料的性质及应用,北京:中国石化出版社,2010
    [136]童景山,李敬,流体热物性计算,北京:清华大学出版社,1982:94-99
    [137]卢捷,多元混合气体爆炸特性与安全控制研究:[博士学位论文],北京;北京理工大学,2003
    [138]孙英英,碳氢燃料超燃火焰与性能的实验研究:[博士学位论文],合肥;中国科学技术大学,2000
    [139]杜志明,蔡瑞娇,燃烧理论与火的科学,北京:北京理工大学出版社,1991
    [140] J.H. Van’t Hoff, Etudes de Dynamique chimique Amsterdan, P12, 1884
    [141] N.N. Semenov, Z. Russ, Fiz-Khim, O-va, 60:241, 1928
    [142]冯长根,热爆炸理论,北京:科学出版社,1988
    [143] M.G. Zabetakis, Flammability characteristics of combustible gases and vapours, US Bureau of Mines, Bulletin 627, Washington, DC, 1965
    [144] A.A. Shimy, Calculating flammability characteristics of hydrocarbons and alcohols, Fire Technology, 1970, 6(2):135~139
    [145] C.J. Hilado, A method for estimating limits of flammability, Journal of Fire and Flammability, 1975, 6(2):130~139
    [146] C.J. Hilado, H.J. Cumming, The HC value: A method for estimating the flammability of mixture of combustible gases, Fire Technology, 1977, 13(3):195~198
    [147] C.J. Hilado, H.J. Cumming, Limits of flammability of organic chemicals, Journal of Fire and Flammability, 1979,10:252~260
    [148] T. Suzuki, Note: empirical relationship between lower flammability limits and standard enthalpies of organic compounds, Fire and Materials, 1994, 18:333~336.
    [149] T. Suzuki, K. Koide, Short communication: correlation between ypper flammability limits and thermochemical properties of organic compounds, Fire and Materials, 1994, 18:393~397
    [150] H. Le Chaterlier, O. Boundourd, Limits of flammability of gaseous mixtures, Bull, Soc. Chim., 1898, 19: 483~488
    [151] H.F. Coward, G.W. Jones, Limits of flammability of gases and vapors, US Bureau of Mines, Bulletin 503, 1952
    [152] F.T. Bondhurtha, Industrial explosion, prevention and protection, 1980, New York: Mc-Graw-Hill
    [153] D.A. Crowl, J.F. Louvar, Chemical process safety foundamentals with applications, 1990, Englewood Cliffs, NJ: Prentice Hall
    [154] M.G. Zavetakis, S. Lambitis, G.S. Scott, Flame temperaturesof limit mixtures, 7th Symposium (International) on Combustion, 1959, 484
    [155] S. Kondo, Y. Urano, K. Takizawa, et al., Flammability limits of multi- fluorinated compounds, Fire Safety Journal, 2006, 41:46~56
    [156] S. Kondo, Y. Urano, K. Tokuhashi, et al., Prediction of flammability of gases by using F-number analysis, Journal of Hazardous Materials, 2001, 82:113~128
    [157] S. Kondo, A. Takizawa, K. Tokuhashi, et al., RF number as a new indes for assessing combustion hazard of flammabile gases, Journal of Hazardous Materials, 2002, 93:259~267
    [158] S. Kondo, A. Takizawa, K. Tokuhashi, Experimental exploration of discrepancies in F-number correlation of flammability limits, Journal of Hazardous Materials, 2003, A100:27~36
    [159]田贯三,可燃制冷剂爆炸理论与燃烧爆炸抑制机理的研究:[博士学位论文],天津;天津大学,2000
    [160] High M.S.,Danner, R.R., Prediction of upper flammability limit by a group contribution method, Industrial & Engineering Chemistry Research, 1987, 26 (7):1395~1399
    [161] K.J. Liekhus, I.A. Zlochower, K.L. Cashdollar, et al., Flammability of gas mixtures containing volatile organic compounds and hydrogen, Journal of Loss Prevention in the Process Industires, 2000, 13(3-5):377~384
    [162] F. Gharagheizi, A new grop contribution-based model for estimation of lower flammability limit of pure compounds, Journal of Hazardous Materials, 2009; 170:595~604
    [163] F. Gharagheizi, Quantitative structure-property relationship for prediction of lower flammability limit of pure compounds, Energy Fuels, 2008; 22:3037~3039
    [164] F. Gharagheizi, Prediction of upper flammability limit percent of pure compounds from their molecular structures, Journal of Hazardous Materials, 2009, 167:507~510
    [165] F. Gharagheizi, New neural network group contribution medel for estimation of lower flammability limit temperature of pure compounds, Industrial & Engineering Chemistry Research, 2009; 48:7406~7416
    [166] W.H. Seaton, Group contribution method for predicting the lower and the upper flammable limits of vapors in air, Journal of Hazardous Materials, 1991, 27: 169~185
    [167] T. Noto, V. Babushok, A. Hamins, et al., Inhibition effectiveness of halogenated compounds, Combustion and Flame, 1998, 112:147~160
    [168] V. Babushok, W. Tsang, G.T. Linteris, et al., Chemical limits to flame inhibition, Combustion and Flame, 1998, 115:551~560
    [169] Su Yi, Gu Yongwei, Reck Gene, et al., Laser-induced fluorescence of CF2 from a CH4 flame and H2 flame with addition of HCFC-22 and HFC-134a, Combustion and Flame, 1998, 113:236~241
    [170] V. Babushok, T. Noto, D.R.F. Burgess, et al., Inhibitor influence on the bistablity of a CSTR, Combustion and Flame, 1997, 108: 61~70
    [171] R.G. Hynes, J.C. Mackie, A.R. Masri, Inhibition of premixed hydrogen-air flames by 2-H heptafluoropropane, Combustion and Flame, 1998, 113:554~565
    [172] W.A. Roser, H. Wise, J. Miller, Seventh symposium (international) on combustion, butter worth, London, 1959:175
    [173] N. Kim, K. Maruta, A numerical study on propagation of premixed flames in small tubes, Combustion and Flame, 2006, 146(1-2):283~301
    [174] H. Anthony, B. Paul, Supperssion of ignition over a heated metal surface, Combustion and flame.1998, 112:161~170
    [175]彭继军,R22替代及工质泄漏扩散危险性理论分析与实验研究:[博士学位论文],天津;天津大学,2006
    [176] F. De Rossi,A.W. Mauro,M. Musto et al., Long-period food storage household vertical freezer: Refrigerant charge influence on working conditions during steady operation, Internationaol Journal of Refrigeration. 2011, 34(5):1305~1314
    [177] A. Kheiri,M. Feidt,R. Boussehain et al., Refrigerant charge reduction: On a new design optimization criterion for compact heat exchangers, Internationaol Journal of Refrigeration. 2011, 34(6):1462~1470
    [178] Honghyun Cho,Changgi Ryu,Yongchan Kim et al., Effect of refrigerant charge amount on the performance of a transcritical CO2 heat pump, Internationaol Journal of Refrigeration. 2005, 28(8):1266~1273
    [179] F. Poggi,H. Macchi-Tejeda,D. Leducq et al., Refrigerant charge in refrigerating systems and strategies of charge reduction, Internationaol Journal of Refrigeration. 2008, 31:353~370
    [180] Pega Hrnjak, Andy D. Litch, Microchannel heat exchangers for charge minimization in air-cooled ammonia condensers and chillers, International Journal of Refrigeration, 2008, 31:658~668.
    [181] Primal Fernando, Bjorn Palm, Per Lundqvist and so on, Propane heat pump with low refrigerant charge: design and laboratory tests, International Journal of Refrigeration, 2004, 27:761~773
    [182] Alberto Cavallini, Enrico Da Riva, Davide Del Col, Performance of a large capacity propane heat pump with low charge heat exchangers, International Journal of Refrigeration, 2010, 33:242~250
    [183]马一太,王伟,制冷剂替代及延续技术,制冷学报,2010,5:11~18
    [184]马一太,田华,李敏霞等,水平管降膜蒸发器管外流动机理研究,2010年中国工程热物理学会学术年会,2010,11,南京
    [185]张运刚,宋小春,郭武强,从入门到精通—西门子S7-200PLC技术与应用,北京:人民邮电出版社,2007
    [186]谢克明,夏路易,可编程控制器原理与程序设计,北京:电子工业出版社,2002
    [187]宫淑贞,王冬青,徐世许,可编程控制原理及应用,北京:人民邮电出版社,2002
    [188]刘南希,史琳,韩礼钟等,高温工质HTR01水源热泵机组的研究,暖通空调,2004,34(8)48~52
    [189]薛志方,朱秋兰,卢苇等,采用中高温工质HTR02的水源热泵机组的性能试验,流体机械,2005,33(9):35~39
    [190]陈军,史琳,朱秋兰等,高温工质用于木材干燥除湿的试验研究,Fluid Machinery, 2006,34(03):62~64
    [191]昝成,史琳,零ODP的中高温热泵工质HTR04实验研究,工程热物理学报,2007,28(6):919~921
    [192]朱秋兰,史琳,韩礼钟等,中高温热泵新工质HTR02实验研究,工程热物理学报,2005,26(2):208~210
    [193]刘原卿,史琳,中高温水源热泵的稳态模拟研究,华北电力大学学报,2007,34(2):35~40
    [194]刘原卿,史琳,朱秋兰,中高温工质在蒸发器中的换热模拟分析,工程热物理学报,2006,27(1):33~36
    [195] Liu Naxi, Shi Lin, Han Lizhong, Zhu Mingshan, Moderately high temperature water source heat-pumps using a near-azeotropic refrigerant mixture, Applied Energy, 2005, 80:435~447
    [196] Shengjun Zhang, Huaixin Wang, Tao Guo, Experimental investigation of moderately high temperature water source heat pump with non-azeotropic refrigerant mixtures, Applied Energy, 2011, 87(5):1554~1561
    [197] Lisheng Pan, Huanxin Wang, Qingying Chen, et al., Theoretical and experimental study on several refrigerants of moderately high temperature heat pump, Applied Thermal Engineering, 2011, 31(11-12):1886~1893
    [198] Zhang Shengjun,Wang Huaixin,Guo Tao,Performance comparison andparametric optimization of subcritical organic rankine cycle (ORC) and transcritical power cycle system for low-temperature geothermal power generation, Applied Energy, 2011, 88:2740~2754
    [199]马利敏,王怀信,李海龙等,中高温热泵工质的理论研究,工程热物理学报,2003,24(5):737~740
    [200]赵力,张启,中高温地热热泵系统的实验研究,工程热物理学报,2002,23(6):669~671
    [201]赵力,张启,涂光备,一种新型工质在热泵、空调工况下的实验分析,化工学报,2002,53(9):984~988
    [202]赵力,张启,丁国良,一种地热热泵的新型工质实验分析,太阳能学报,2002,23(6):679~684
    [203]赵力,涂光备,张启,混合工质用于地热热泵系统的实验研究,太阳能学报,2001,22(3):241~245
    [204] Gao Pan, Zhao Li, Investigation on incomplete condensation of non- azeotropic working fluids in high temperature heat pumps, Energy Conversion and Management, 2006, 47:1884~1893
    [205] Li T X, Guo K H, Wang R Z. High temperature hot water heat pump with non-zaeotropic refrigerant mixture HCFC-22/HCFC-141b, Energy Conversion and Management, 2002, 43:2033-2040
    [206]李廷勋,郭开华,王如竹等,非共沸混合制冷剂R22/R141b高温热泵实验研究,化工学报,2005,53(5):542~545
    [207] B. Rakhesh, G. Venkatarathnam, S. Srinivasa Murthy, Performance comparison of HFC227 and CFC114 in compression heat pumps, Applied Thermal Engineering, 2003, 23:1559~1566
    [208] J. Steven Brown, Claudio Zilio, Alberto Cavallini, The fluorinated olenfin R-1234ze(Z) as a high-temperature heat pumping refrigerant, International Journal of Refrigeration, 2009, 32:1412~1422
    [209] A. Nuntaphan, C. Chansena, T. Kiatsiriroat, Performance analysis of solar water heater combined with heat pump using refrigerant mixture, Applied Energy, 2009, 86(5):748~756
    [210] J.L. Yu, Z. Xu, G.L. Tian, A thermpdynamic analysis of a transcitical cycle with refrigerant mixture R32/R290 for a small heat pump water heater, Energy and Buildings, 2010, 42:2431~2436
    [211] K. Wang, F. Cao, Z.W. Xing, Development and experimental validation of a high-temperature heat pump for heat recovery and building heating, Energy and Buildings, 2009, 41:732~737
    [212] S. Minetto, Theoretical and experimental analysis of a CO2 heat pump for domestic hot water, International Journal of Refrigeration, 2011, 34:742~751
    [213] R. Yokoyama, T. Wakui, J. Kamakari, et al., Performance analysis of a CO2 heat pump water heating system under a daily change in a standardized demand, Energy, 2010, 35(2): 718~728
    [214] R. Yokoyama, T. Shimizu, K. Ito, et al., Influence of ambient temperatures on performance of a CO2 heat pump water heating system, Energy, 2007, 32:388~398
    [215] M. Kim, Y.J. Baik, S.R. Park, et al., Design of a high temperature production heat pump system using geothermal water at moderate temperature, Current Applied Physics, 2010, 10:S117~S122
    [216]方筝,空气源自备电燃气机热泵系统理论实验研究:[博士学位论文],天津;天津大学,2009
    [217]郑贤德,制冷原理与装置,北京:机械工业出版社,2006