几类含氟有机化合物在大气中降解反应微观机理的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着1985年英国科学家首次报道了在南极上空发现臭氧空洞,近三十年来,高空臭氧空洞和温室效应等环境问题日益突出,环境问题已成为当今世界各国普遍关心的重要问题。研究发现氟氯烃(氟利昂,CFCs)是导致臭氧空洞的“罪魁祸首”,不仅如此氟氯烃还会造成温室效应,已在全球范围内被禁止使用。因此,众多的科学研究致力于寻找环境可接受的物质作为它们的替代品。氟代烷烃(HFCs)和氟代醇(HFAs)等含氟有机化合物的结构中不含有Cl和Br原子,其臭氧破坏能力基本为零,被做为CFCs的主要替代品而广泛应用。但是,这些化合物结构中含有C-F键而具有较强的红外吸收能力,以及较长的大气寿命,可能对温室效应有贡献。所以,它们在大气中的降解过程及寿命引起了实验化学家的广泛关注。在大气中,这些化合物的降解过程主要是通过与一些活泼的自由基或原子(如OH自由基或Cl原子)的降解反应。因此,研究它们与OH自由基或Cl原子的反应速率对于估计其大气寿命是非常重要的。本文主要关注的是CH_3OCF_2CF_2OCHO,CF_3CH_2CH_2OH与CF_3CH_2CF_2CH_3三种物质在大气条件下的降解过程。我们采用直接动力学方法与密度泛函理论相结合的方法研究了如下三个反应的微观机理及动力学性质:
     CF_3CH_2CH_2OH+OH→products
     CF_3CH_2CF_2CH_3+Cl→products
     CH_3OCF_2CF_2OCHO+Cl→products本文的主要研究结论如下:
     (1)采用直接动力学方法在BB1K/6-31+G(d,p)水平上研究了CH_3OCF_2CF_2OCHO与Cl原子反应的反应机理,确定了反应物CH_3OCF_2CF_2OCHO的四种可能的稳定构象,由于这四种构象之间的能量差很小,所以它们对总反应速率的贡献在动力学计算中都被考虑在内。对于每一个构象,我们分别研究了发生在-CH_3和-CHO基团上的氢提取反应通道,以及发生在α-C上的取代反应通道。能量及动力学计算结果表明,CH_3OCF_2CF_2OCHO与Cl原子发生取代反应的通道可以被忽略,二者主要发生氢提取反应,且氢提取反应主要发生在CH_3OCF_2CF_2OCHO的-CH_3基团上。此外,计算结果显示RC1对总反应的贡献最大,在较低温度区间RC3次之;随着温度的升高,RC4变得越来越重要,在800K及以上的温度区间,RC1和RC4对总反应做主要贡献。利用改进的变分过渡态理论结合小区率隧道效应校正计算了各氢提取通道在200-2000K温度区间内的ICVT/SCT速率常数,并根据Boltzmann配分函数计算了200-1000K温度区间内总包反应的速率常数(kT),在296K的总反应速率常数为2.69×10~(-13)cm~3molecule~(-1)s~(-1),与已报道的实验值符合的很好,继而拟合了kT在200-1000K温度范围内的四参数速率常数表达式:koverall=7.659×10~(-18)T~(2.178)exp[-768.9(T-60.20)/(T~2+3623.44)]。由于缺少关于反应物以及产物自由基的标准生成焓数据,我们应用等化学键法,估算了反应物及产物自由基的标准生成焓.
     (2)采用了双水平直接动力学的方法对CF_3CH_2CH_2OH与OH自由基反应的微观机理以及动力学性质进行了研究。计算得到了CF_3CH_2CH_2OH分子的五种稳定构象RA-RE,以及与它们相对应的总共三十一条氢提取反应通道,这些氢提取通道都具有“反应物型”的过渡态,以及反应物络合物与产物络合物。计算结果显示,氢提取通道为主要反应通道,且主要发生在α位。应用改进的正则变分过渡态理论并结合小区率隧道效应校正计算了在200-1000K温度区间各反应通道的ICVT/SCT速率常数,并利用波尔兹曼分布计算了包含全部五种构象贡献的总包反应在200-1000K区间内的反应速率常数,计算得到的298K时反应速率常数为4.70×10~(-13)cm~3·molecule~(-1)·s~(-1),与已有的实验值符合的很好,进而给出了拟合的在200-1000K区间内的四参数速率常数表达式koverall=5.155×10~(-13)(T/300)~(1.861)exp[-1135(T-288.5)/(T~2+(2885.5)~2)]。而且,计算结果表明,四参数表达式的数值与计算值间的偏差要小于三参数表达式的数值与计算值间的偏差。此外,两个最稳定的构象RD和RA对总反应的贡献最大。
     (3)采用密度泛函方法M06-2x结合6-31+G(d,p)基组研究了CF_3CH_2CF_2CH_3与Cl原子反应的反应机理。计算获得了CF_3CH_2CF_2CH_3的两种可区分的稳定几何构象RC1和RC2,以及与它们相对应的八条氢提取反应通道和两条取代反应通道。计算结果表明,CF_3CH_2CF_2CH_3与Cl原子反应的取代反应通道可以忽略,二者主要发生氢提取反应。并且,氢提取反应主要发生在-CH_3上。运用改进的正则变分过渡态理论(ICVT)并结合小曲率隧道效应校正(SCT),在M06-2x/6-31+G(d,p)水平上计算了各氢提取通道的速率常数,并由Boltzmann配分函数得到总包反应的速率常数kT,计算获得的总反应速率常数与已有实验数据符合的非常好,进而给出了该反应在200-1000K温度区间内反应速率常数kT(cm~3·molecule~(-1)·s~(-1)的三参数表达式:kT=1.88×10~(-22)T~(3.76)exp(-1780.69/T)。动力学计算结果还显示,构象RC2在低温区间对总反应的贡献较大,而RC1在高温区间对总反应的贡献较大。由于缺少相关反应物及产物自由基标准生成焓值(ΔH_(f,298°))的数据,我们利用等化学键法,估算了在这些物种的标准生成焓.
     对于以上的研究体系,理论计算获得的结果与已有的实验数据符合的很好。因此,本文采用的直接动力学方法结合密度泛函理论(BB1K,M06-2x)研究这一类氢提取反应是有效可信的,这为今后研究类似体系提供了可借鉴的计算方法。本文所获得的产物分支比,较大温度区间内的速率常数表达式,反应物和产物的标准生成焓等微观反应信息也为实验上的进一步研究提供了可参考的资料.
In1985, the discovery of the annual depletion of ozone above the Antarctic was first announced by British scientists. In the past three decades, The atmospheric pollution problems such as acid rain, photochemical smog and gobal warming have become increasingly prominent, and the environment issue has been one of the important issues of common concern. The chlorofluorocarbons (CFCs) has been phased out because of the adverse environmental effects in stratospheric ozone depletion and global warming. The fluorochemicals such as Hydrofluorocarbonns (HFCs) and Hydrofluoroalchohols (HFAs) containing neither chlorine nor bromine do not cause ozone depletion, and thus have been proposed as a new generation alternatives for CFCs and are used in many industrial applications (e.g. cleaning of electronic components, paints, and polymers). Nevertheless, due to the strong infrared radiation (IR) activity of the C-F bonds, they may still contribute to the global warming potentials (GWPs). Short-lived species with low GWPs are regarded as good candidates for CFC replacements. Thus, to evaluate their potential as candidates, the knowledge about their atmospheric lifetimes is very essential. In atmosphere, their main degradation processes are the reactions with OH radical and Cl atom. Thus, to better assess the environmental impact of such species, a theoretical study for their degradation reactions in the atmosphere is very desirable. In this thesis, we have conducted theoretical calculations on the kinetics of the reactions of OH and Cl atom with fluorochemicals. Ab initio and density functional theory combined with the direct dynamics methods have been used to study the following reactions:
     CF3CH2CH2OH+OH→products
     CF3CH2CF2CH3+Cl→products
     CH3OCF2CF2OCHO+Cl→products
     The main results are summarized as follows:
     (1) The hydrogen abstraction reaction of CF3CH2CH2OH+OH has been studied theoretically by dual-level direct dynamics method. The required potential energy surface information for the kinetic calculation was obtained at the MCG3-MPWB//M06-2X/aug-cc-pVDZ level. Five stable conformers of CF3CH2CH2OH have been located. For each conformer, there are three potential H-abstraction sites (Ca, Cβ and-OH), and some of the H atoms can be abstracted by more than one abstraction channel due to the different attack orientations of the incoming OH radical. As a result, thirty-one distinct H-abstraction channels have been identified for the reaction. The individual rate constants for each H-abstraction channel were calculated by the improved canonical transition-state theory with small-curvature tunneling correction (ICVT/SCT), and the overall rate constant was evaluated by the Boltzmann distribution function. It is shown that the calculated rate constant is in good agreement with the available experimental data at298K, and exhibits negative temperature dependence with200-350K. H-abstraction from the α site dominates the reaction at low temperatures, while the contributions from the β and OH abstractions should be taken into account as temperature increases. The fitted four-parameter expressions within200-1000K for the overall rate constants as well as the rate constants from the α, β and OH abstractions were given to provide good estimation for future laboratory investigations. In addition, because of the lack of available experimental data for the product radicals involved in the reactions, their enthalpies of the formation (△Hf,298°) were predicted via isodesmic reaction at the MCG3-MPWB//M06-2X/aug-cc-pVDZ level.
     (2)The mechanism of the CF3CH2CF2CH3+Cl reaction was investigated by the M06-2X method combining with the6-31+G(d,p) basis set (M06-2X/6-31+G(d,p)). There are two distinguishable stable conformers (RC1and RC2) for the reactant CF3CH2CF2CH3, and eight H-abstraction channels as well as two substitution channels were located associated with them. The rate constants for each of the H-abstraction channels were evaluated by the improved canonical variational transition theory (ICVT) with the small-curvature tunneling (SCT) approximation at the M06-2X/6-31+G(d,p) level. The overall rate constant (KT) was obtained by considering the weight factor of each conformer from the Boltzmann distribution function, and the calculated values agree well with the available experimental values. Moreover, the contribution of the two conformers to the whole reaction as well as the site selectivity for each of the conformers were discussed. A three-parameter rate constant-temperature expression for the total reaction within200-1000K was fitted to:KT=1.88×10-22T376exp(-1780.69/7). In addition, because of the lack of available experimental data for the reactant as well as the corresponding product radicals involved in the reactions, their enthalpies of the formation (AHf,298°) were predicted via isodesmic reaction at the M06-2X/6-31+G(d,p) level. The reaction of CH3OCF2CF2OCHO with Cl atom has been investigated theoretically by direct dynamics method. The BB1K hybrid functional in conjunction with the6-31+G(d,p) basis set has been used to optimize the geometries for the stationary points and explore the potential energy surface of the reaction. Four rotation conformers (RC1-4) of CH3OCF2CF2OCHO are identified, and they are all considered in the kinetic calculation. For each conformer, there are two kinds of H-abstraction channels and one displacement channel, and the latter one should be negligible due to involving much higher energy barrier than the former two. The individual rate constants for each H-abstraction channel are evaluated by the improved canonical variational transition-state theory with a small-curvature tunneling correction. The overall rate constant is evaluated by the Boltzmann distribution function, and a fitted four-parameter rate constant expression is obtained over a wide temperature range of200-2,000K. The agreement between the calculated and available experimental value at296K is good. The contribution of each conformer to the title reaction is discussed with respect to the temperature. In addition, because of the lack of available experimental data for the species involved in the reactions, the enthalpies of the formation (△Hf,298°) for he reactant and its product radicals are predicted via isodesmic reaction at the BB1K/6-31+G(d,p) level.
引文
[1]唐有祺.化学动力学和化学反应器原理[M].北京:科学出版社,1974.
    [2]ROWLAND F S, MOLINA M J. Chlorofluoromethanes in the Environment [J]. Reviews of Geophysics and Space Physics,1975,13:1-35.
    [3]吉林大学等.物理化学(下册)[M].北京:人民教育出版社,1979.
    [4]黄仲涛.基本有机化工理论基础[M].北京:化学工业出版社,1980..
    [5]SMITH I W M. Kinetics and dynamics of elementary gas reactions [M]. London, Boston:Butterworths,1980.
    [6]罗孝良.[J].药学通报,1982,17:8.
    [7]WARNATZ J. Combustion Chemistry [M]. New York:Springer-Verlag,1984.
    [8]HUCKNALL D J. Chemistry of Hydrocarbons [M]. London:Chapman and Hall,1985.
    [9]WANG I S Y, KARPLUS M. Dynamics of organic reactions [J]. J. Am. Chem. Soc.,1973,95:8160-8164.
    [10]LEFORESTIER C B. Classical trajectories using the full ab initio potential energy surface H-+CH4→CH4+H-[J]. J. Chem. Phys.,1978,68:4406-4410.
    [11]TRUONG T N, DUNCAN W. A new direct ab initio dynamics method for calculating thermal rate constants from density functional theory [J]. J. Chem. Phys.,1994,101:7408-7414.
    [12]TRUONG T N. A direct ab initio dynamics approach for calculating thermal rate constants using variational transition state theory and multidimensional semiclassicaltunneling methods. An application to the CH4+H←→CH3+H2reaction [J]. J. Chem. Phys.,1994,100:8014-8025.
    [13]TRUHLAR D G. The Reaction Path in Chemistry:Current Approaches and Perspectives [M] Kluwer:Dordrecht,1995.
    [14]GARRETT B C, TRUHLAR D G. Criterion of minimum state density in the transition state theory of bimolecular reactions [J]. J. Chem. Phys.,1979,70: 1593-1598.
    [15]MOLINA M J, ROWLAND F S. Stratospheric sink for chlorofluoromethanes: chlorine atom-catalysed destruction of ozone [J]. Nature,1974,249:810-812.
    [16]FARMAN J C, GARDINER B G, SHANKLIN J D. Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction [J]. Nature,1985,315:207-210.
    [17]World Meteorological Organization. Scientific Assesment of Ozone Depletion:2002; Global Ozone Research and Monitoring Project, Report No.47; World Meteorological Organization:Geneva, Switzerland,2003.
    [18]冯丽霞,王文亮,李琳,王渭娜,罗琼,李前树CH4-nFn(n=1-3)与CH3氢抽提反应微观动力学的理论研究[J].高等学校化学学报,2006,27(9):1733-1737.
    [19]杨静,张绍文,李前树. CHnF4-n与O3吸氢反应途径和速率常数计算[J].高等学校化学学报,2007,28(10):1975-1977.
    [20]ROBEIRO A P C, NIETO DE CASTRO C A, PAI-PANANDIKER R S, MARDOLCAR U V. Relative Permittivities of1,1,1,2,3,3,3-Heptafluoropropane (HFC-227ea),1,1,1,2,3,3-Hexafluoropropane (HFC-236ea), and1,1,1,3,3-Pentafluorobutane (HFC-365mfc) in the Liquid Phase [J]. J. Chem. Eng. Data,2007,52:2041-2049
    [21]周彪,周晓猛,陈涛,周军学,胡利明.三氟甲烷灭火过程中HF生成量的研究[J].高等学校化学学报,2011,32(5):1163-1168.
    [22]Environmental Protection Agency,
    [23]MELLOUKI A, TETON S, BRAS G L. Rate constant for the reaction of OH radical with HFC-365mfc (CF3CH2CF2CH3)[J]. Geophysical Research Letters,1995,22(4):389-392.
    [23]BARRY J, LOCKE G, SCOLLARD D, SIDEBOTTON H, TREACY J, CLERBAUXI C, COLIN R, FRANKLIN J.1,1,1,3,3,-pentafluorobutane (HFC-365mfc):atmospheric degradation and contribution to radiative forcing [J]. Int. J. Chem. Kinet.,1997,29:607-617.
    [25]INOUE Y, KAWASAKI M, WALLINGTON T J, HURLEY M D. Atmospheric chemistry of CF3CH2CF2CH3(HFC-365mfc):Kinetics and mechanism of chlorine atom initiated oxidation, infrared spectrum, and global warming potential [J]. Chemical Physics Letters,2008,462:164-168.
    [26]WATERLAND R L, HURLEY M D, MISNER J A, WALLINGTON T J, MELO S M L, STRONG K, DUMOULIN R, CASTERA L, STOCK N L, MABURY S A, Gas phase UV and IR absorption spectra of CF3CH2CH2OH and F(CF2CF2)xCH2CH2OH (x=2,3,4), J. Fluo. Chem.[J],2005,126:1288-1296.
    [27]HURLEY M D, MISNER J A, BALL J C, WALLINGTON T J, ELLIS D A, MARTIN J W, MABURY S A, SULBAEK ANDERSEN M P, Atmospheric chemistry of CF3CH2CH2OH:kinetics, mechanisms and products of Cl atom and OH radical initiated oxidation in the presence and absence of NOX [J]. J. Phys. Chem. A,2005,109:9816-9826.
    [28]KELLY T, BOSSOUTROT V, MAGNERON I, WIRTZ K, TREACY J, MELLOUKI A, SIDEBOTTOM H, LE BRAS G, A Kinetic and Mechanistic Study of the Reactions of OH Radicals and Cl Atoms with3,3,3-Trifluoropropanol under Atmospheric Conditions [J]. J. Phys. Chem. A,2005,109:347-355.
    [29]JIMENEZ E, ANTINLO M, BALLESTEROS B, MARTINEZ E, ALBALADEJO J, Atmospheric Lifetimes and Global Warming Potentials of CF3CH2CH2OH and CF3(CH2)2CH2OH [J]. Chem. Phys. Chem.,2010,11:4079-4087.
    [30]STEMMLER K, FOLINI D, UBL S, VOLLMER M K, REIMANN S, O' DOHERTY S, GREALLY B R, SIMMONDS P G, MANNING A J. European emissions of HFC-365mfc, a chlorine-free substitute for the foam blowing agents HCFC-141b and CFC-11[J]. Environ. Sci. Technol.,2007,41:1145-1151.
    [31]MARCHIONNI G, VISCAM. Eur. Pat. Appl.,1275678A,2003,(Chem.Abs.138,90675).
    [32]SIANESI D, MARCHIONNI G, DE PASQUALE R J. In Organofluorine Chemistry:Principles and Commercial Applications; Banks, R. E., Ed.; Plenum Press:New York,1994.
    [33]MARCHIONNI G, AJROLDI G, PEZZIN G. In Comprehensive Polymer Science, Second Supplement; Agarwal, S. L., Russom, S., Eds.; Perga-mon:London,1996.
    [34]MARCHIONNI G, GUARDAP A. U.S. Patent,5,744,651,1998.
    [35]SULBACK ANDERSEN M P, HURLEY M D, WALLINGTON T J, et al. Atmospheric Chemistry of CH3O(CF2CF2O)nH3(n=1-3):Kinetics and Mechanism of Oxidation Initiated by Cl Atoms and OH Radicals, IR Spectra, and Global Warming Potentials [J]. J Phys. Chem. A.,2004,108:1964-1972.
    [36]唐敖庆,杨忠志,李前树.量子化学[M].北京:科学出版社,1982.
    [37]徐光宪,黎乐民,王德民.量子化学基本原理和从头计算法[M].北京:科学出版社,1985.
    [38]BORN M, OPPENHEIMER R. Zur Quantentheorie der Molekeln [J]. Annalen der Physik,1927,389:457-484.
    [39]SZABO A, OSTLUND N S. Modern Quantum Chemistry, Introduction to Advanced Electronic Structure Theory [M]. New York:Dover,1996.
    [40]HEAD-GORDON M, POPLE J A, FRISCH M J. MP2energy evaluation by direct methods [J]. Chem. Phys. Lett.,1988,153:503-506.
    [41]POPLE J A, SEEGER R, KRISHNAN R. Variational configuration interaction methods and comparison with perturbation theory [J]. Int. J. Quant. Chem. Symp.,1977,12:149-163.
    [42]BROOKS B R, LAIDIG W D, SAXE P, et al. Analytic Gradient from Correlated Wave Functions via the Two-Particle Density Matrix and the Unitary Group Approach [J]. J. Chem. Phys.,1980,72:4652-4653.
    [43]KRISHNAN R, SCHLEGEL H B, POPLE J A. Derivative studies in configuration-interaction theory [J]. J. Chem. Phys.,1980,72:4654-4655.
    [44]RAGHAVACHARI K, POPLE J A. Calculation of one-electron properties using limited configuration interaction techniques [J]. Int. J. Quantum. Chem.,1981,20:1067-1071.
    [45]POPLE J A, HEAD-GORDON M, RAGHAVACHARI K. Quadratic configuration interaction. A general technique for determining electron correlation energies [J]. J. Chem. Phys.,1987,87:5968-5975.
    [46]SALTER E A, TRUCKS G W, BARTLETT R J. Analytic energy derivatives in many-body methods. I. First derivatives [J]. J. Chem. Phys.,1989,90:1752-1766.
    [47]FORESMAN J B, HEAD-GORDON M, POPLE J A, et al. Toward a systematic molecular orbital theory for excited states [J]. J. Phys. Chem.,1992,96:135-149.
    [48]HOHENBERG P, KOHN W. Inhomogeneous Electron Gas [J]. Phys. Rev.,1964,136:B864-B871
    [49]KOHN W, SHAM L J. Self-Consistent Equations Including Exchange and Correlation Effects [J]. Phys. Rev.,1965,140:1133-1138.
    [50]SLATER J C. Quantum Theory of Molecular and Solids. Vol.4:The Self-Consistent Field For Molecular and Solids [M]. New York:McGraw-Hill,1974.
    [51]PARR R G, YANG W. Density-functional theory of atoms and molecules [M]. Oxford:Oxford Univ. Press,1989.
    [52]SALAHUB R, ZERNER M C. The Challenge of d and f electrons:theory and computation [M]. Washington D C:American Chemical Society,1989.
    [53]LABANOWSKI J K, ANDZELM J W. Density Functional Methods in Chemistry [M]. New York:Springer-Verlag,1991.
    [54]POPLE J A, GILL P M W, JOHNSON B G. Kohn—Sham density-functional theory within a finite basis set [J]. Chem. Phys. Lett.,1992,199:557-560.
    [55]JOHNSON B G, FISCH M J. An implementation of analytic second derivatives of the gradient-corrected density functional energy [J]. J. Chem. Phys.,1994,100:7429-7442.
    [56]ZHAO Y, LYNCH B J, TRUHLAR D G. Development and Assessment of a New Hybrid Density Functional Model for Thermochemical Kinetics [J]. J. Phys. Chem. A.,2004,108:2715-2919.
    [57JBECKE A D. Density-functional exchange-energy approximation with correct asymptotic behavior [J]. Phys. Rev. A.,1988,38:3098-3100.
    [58]PERDEW J P. Density-functional approximation for the correlation energy of the inhomogeneous electron gas [J]. Phys. Rev. B.,1986,33:8822-8824.
    [59]FUKUI K, TACHIBANA A, YAMASHITA K. Toward Chemodynamics [J]. Int. J. Quantum. Chem.,1981,15:621-632.
    [60]FUKUI K. Variational Principles in a Chemical Reaction [J]. Int. J. Quantum. Chem.1981,15:633-642.
    [61]CURTISS L A, RAGHAVACHARI K, REDFERN P C, et al. Gaussian-3(G3) theory for molecules containing first and second-row atoms [J]. J. Chem. Phys.,1998,109:7764-7776.
    [62]CURTISS L A, REDFERN P C, RAGHAVACHARI K, et al. Gaussian-3theory using reduced M(?)ller-Plesset order [J]. J. Chem. Phys.,1999,110:4703-4709.
    [63]FAST P L, TRUHLAR D G. MC-QCISD:Multi-Coefficient Correlation Method Based on Quadratic Configuration Interaction with Single and Double Excitations [J]. J. Phys. Chem. A,2000,104:6111-6116.
    [64]LYNCH B J, ZHAO Y, TRUHLAR D G. The6-31B(d)Basis Set and the BMC-QCISD and BMC-CCSD Multi coefficient Correlation Methods [J]. J. Phys. Chem. A,2005,109:1643-1649.
    [65]GLASSTONE S, LAIDLER K, ERYING H. Theory of Rate Processes [M]. New York:McGraw-Hill,1941.
    [66]JOHNSTON H S. Gas Phase Reaction Rate Theory [M]. New York:Ronald Press Company,1966.
    [67]THUHLAR D G, ISAACSON A D, GARREETT B C. The theory of Chemical Reaction Dynamics, edited by M. Baer [M]. Boca Raton:CRC Press,1985, Vol.4, p.65.
    [68]ATKINS P W. Physical Chemistry [M]. New York:W. H. Freeman and Company,1990.
    [69]WINN J S. Physical Chemistry [M]. New York:Harper Collins College Publishers,1995.
    [70]BILLING G D, MIKKELSEN K V. Introduction to Molecular Dynamics and Chemical Kinetics [M]. Wiley-interscience,1996.
    [71]HASE W L. The criterion of minimum state density in unimolecular rate theory. An application to ethane dissociation [J]. J. Chem. Phys.,1976,64:2442-2449.
    [72]QUACK M, TROE J. Unimolecular processes. V:Maximum free energy criterion for the high pressure limit of dissociation reactions [J]. Ber. Bunsen-Ges. Phys. Chem.,1977,81:329-337.
    [73]GARRETT B C, TRUHLAR D G. Generalized transition state theory. Classical mechanical theory and applications to collinear reactions of hydrogen molecules [J]. J. Phys. Chem.,1979,83:1052-1079.
    [74]GARRETT B C, TRUHLAR D G. Criterion of minimum state density in the transition state theory of bimolecular reactions [J]. J. Chem. Phys.,1979,70:1593-1598.
    [75]HILL T I. An Instruction to Statistical Thermodynamics [M]. Massachusetts: Addison-Wesley,1960, Chap6.
    [76]MAYER J E, MAYER M G. Statistical Mechanics,2nd Ed [M]. New York:John Wiley&Sons,1977, Chap7.
    [77]TRUHLAR D G, GORDON M S. From Force Fields to Dynamics:Classical and Quantal Paths [J]. Science,1990,249:491-498.
    [78]RAJAKUMAR B, BURKHOLDER J B, RAVISHANKARA A R. Rate coefficients for the OH+CFH2CH2OH reaction between238and355K [J]. Phys. Chem. Chem. Phys.,2005,7:2498-2505.
    [79]SELLECAGS R, NIELSEN C J, SOVDE O A, MYHRE G, SUNDET J K, STORDAL F, ISAKEN I S A. Atmospheric gas-phase degradation and global warming potentials of2-fluoroethanol,2,2-difluoroethanol, and2,2,2-trifluoroethanol [J]. Atmos. Environ.,2004,38:6725-6735.
    [80]WANG Y, LIU J Y, LI Z S, WANG L, SUN C C. Theoretical study and rate constant calculation for reaction of CF3CH2OH with OH [J]. J. Comput. Chem.,2007,28:802-810.
    [81]TRUHLAR D G, In The Reaction Path in Chemistry:Current Approaches and Perspectives [M] Dordrecht:Kluwer,1995.
    [82]KLIPPENSTEIN D G. Current Status of Transition-State Theory [J]. J. Phys. Chem.,1996,100:12771-12800.
    [83]HU W P, TRUHLAR D G. Factors Affecting Competitive Ion-Molecule Reactions:ClO-+C2H5Cl and C2D5Cl via E2and SN2Channels [J]. J. Am. Chem. Soc.,1996,118:860-869.
    [84]CHUANG Y-Y, CORCHADO J C, TRUHLAR D G, et al. Mapped Interpolation Scheme for Single-Point Energy Corrections in Reaction Rate Calculations and a Critical Evaluation of Dual-Lev el Reaction Path Dynamics Methods [J]. J. Phys. Chem. A.,1999,103:1140-1149.
    [85]TRUHLAR D G, GARRETT B C. Variational transition-state theory [J]. Acc. Chem. Res.,1980,13:440-448.
    [86]TRUHLAR D G, ISAACSON A D, GARRETT B C. In The Theory of Chemical Reaction Dynamics [M]. Boca Raton:CRC Press,1985.
    [87]TRUHLAR D G, GARRETT B C. Variational Transition State Theory [J]. Annu. Rev. Phys. Chem.,1984,35:159-189.
    [88]LU D H, TRUONG T N, MELISSAS V S, et al. POLYRATE4:A new version of a computer program for the calculation of chemical reaction rates for polyatomics [J]. Comput. Phys. Commun.,1992,71:235-262.
    [89]LIU Y P, LYNCH G C, TRUONG T N, et al. Molecular modeling of the kinetic isotope effect for the [1,5]-sigmatropic rearrangement of cis-1,3-pentadiene [J]. J. Am. Chem. Soc.,1993,115:2408-2415.
    [90]IUPAC [DB]. http://www.iupac.Org/reports/1999/7110minkin/i.html.
    [91]ZHAO Y, TRUHLAR D G. The M06suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements:two new functionals and systematic testing of four M06-class functionals and12other functionals [J]. Theor. Chem. Acc.,2008,120:215-241.
    [92]ZHENG J J, ZHAO Y, TRUHLAR D G. The DBH24/08Database and Its Use to Assess Electronic Structure Model Chemistries for Chemical Reaction Barrier Heights [J]. J. Chem. Theory. Comput.,2009,5:808-821.
    [93]CI C G, YU H B, WAN S Q, LIU J Y, SUN C C. Theoretical Studies on Mechanism and Kinetics of the Hydrogen-Abstraction Reaction of CF3CH2CHO with OH Radicals, Bulletin of the Korean Chemical Society [J],2011,32(4):1187-1194.
    [94]HOU C, CI C G, JIN T Y, WANG Y X, LIU J Y. MECHANISM AND KINETICS OF THE CH3CH2C(O)OCH2CH3+OH REACTION:A THEORETICAL STUDY [J]. J. Theory. Comput. Chem.,2011,10:691-709.
    [95]AYALA P Y, SCHLEGEL H B. Identification and treatment of internal rotation in normal mode vibrational analysis [J]. J. Chem. Phys.,1998,108:2314-2325.
    [96]LEE T Y, TAYLOR P R. A diagnostic for determining the quality of single-reference electron correlation methods [J]. Int. J. Quant. Chem.,1989,36:199-207.
    [97]RIENSTRA-KIRACOFE J C, ALLEN W D, SCHAEFER III H F. The C2H5+O2Reaction Mechanism:High-Level ab Initio Characterizations [J]. J. Phys. Chem. A,2000,104:9823-9840.
    [98]CHUANG Y-Y, CORCHADO J C, TRUHLAR D G, et al. Mapped Interpolation Scheme for Single-Point Energy Corrections in Reaction Rate Calculations and a Critical Evaluation of Dual-Lev el Reaction Path Dynamics Methods [J]. J. Phys. Chem. A.,1999,103:1140-1149.
    [99]ZHAO Y, TRUHLAR D G. MLGAUSS-Version2.0; University of Minnesota: Minneapolis,2005.
    [100]FRISCH M J, TRUCKS G W, SCHLEGEL H B, et al. GAUSSIAN03, Revision C.2, Gaussian Inc., Pittsburgh, PA,2003.
    [101]FRISCH M J, TRUCKS G W, SCHLEGEL H B, et al. GAUSSIAN09, Revision A.1, Gaussian, Inc., Wallingford CT,2009.
    [102]GARRETT B C, TRUHLAR D G, GREV R S, et al. Improved treatment of threshold contributions in variational transition-state theory [J]. J. Phys. Chem.,1980,84:1730-1748.
    [103]PITZER K S, GWINN W D. Energy Levels and Thermodynamic Functions for Molecules with Internal Rotation I. Rigid Frame with Attached Tops [J]. J. Chem. Phys.,1942,10:428-440.
    [104]PITZER K S. Energy Levels and Thermodynamic Functions for Molecules with Internal Rotation:II. Unsymmetrical Tops Attached to a Rigid Frame [J]. J. Chem. Phys.,1946,14:239-243.
    [105]TRUHLAR D G. A simple approximation for the vibrational partition function of a hindered internal rotation [J]. J. Comput. Chem.,1991,12:266-270.
    [106]CHUANG Y-Y, TRUHLAR D G. Statistical thermodynamics of bond torsional modes [J]. J. Chem. Phys.,2000,112:1221-1228.
    [107]CHUANG Y-Y, TRUHLAR D G. erratum:"Statistical Thermodynamics of Bond Torsion Modes"[J]. J. Chem. Phys.,2004,121:7036.
    [108]CHUANG Y-Y, TRUHLAR D G. Erratum:"Statistical thermodynamics of bond torsional modes"[J]. J. Chem. Phys.,2006,124:179903.
    [109]ZHENG J J, TRUHLAR D G. Kinetics of Hydrogen-Transfer Isomerizations of Butoxyl Radicals [J]. Phys. Chem. Chem. Phys.,2010,12:7782-7793.
    [110]CORCHADO J C, CHUANG Y Y, FAST P L, et al. POLYRATE, version9.7; University of Minnesota:Minneapolis, MN,2007.
    [111]HATIPOGLU A, CINAR Z. A QSAR study on the kinetics of the reactions of aliphatic alcohols with the photogenerated hydroxyl radicals [J]. J. Mol. Stru.(Theochem),2003,631:189-207.
    [112]GALANO A, ALVAREZ-ID ABOY J R, BRAVO-PEREZ G, RUIZ-SANTOYO M E. Gas phase reactions of C1-C4alcohols with the OH radical:A quantum mechanical approach [J]. Phys. Chem. Chem. Phys.,2002,4:4648-4662.
    [113]WU C W, LEE Y P, XU S C, LIN M C. Experimental and Theoretical Studies of Rate Coefficients for the Reaction O(3P)+C2H5OH at High Temperatures [J]. J. Phys. Chem. A,2007,111:6693-6703.
    [114]Gonzalez-Garcia N, A. Gonzalez-Lafont, J.M. Lluch, Variational Transition-State Theory Study of the Dimethyl Sulfoxide (DMSO) and OH Reaction [J]. J. Phys. Chem. A,2006,110:798-808.
    [115]NIST Chemistry Webbook [DB]. Linstrom P. J. and Mallard W. G., Eds., Available from:http://webbook.Nist.Gov/chemistry.
    [116]FERNANDEZ-RAMOS A, ELLINGSON B A, MEANA-PANEDA R, MARQUES J M C, TRUHLAR D G. Symmetry Numbers and Chemical Reaction Rates [J]. Theor. Chem. Account,2007,118:813-826.
    [117]GEORGIEVSKII Y, KLIPPENSTEIN S J, Long-range transition state theory [J]. J. Chem. Phys.,2005,122:194103.
    [118]GREENWALD E E, NORTH S W, GEORGIEVSKIIY, KLIPPENSTEIN S J, A Two Transition State Model for Radical-Molecule Reactions:A Case Study of the Addition of OH to C2H4[J]. J. Phys. Chem. A,2005,109:6031-6044.
    [119]王永霞,高红,王钦,刘靖尧,CF3CH2CH3+OH的反应机理及动力学性质的理论研究[J].高等学校化学学报,2010,30(6):1240-1245.
    [120]HAMMIT J K, CAMM F, CONNELL P S, MOOZ W E, WOLF K A, WUEBBLES D J, BAMEZAI A. Future emission scenarios for chemicals that may deplete stratospheric ozone [J]. Nature,1987,330:711-716.
    [121]HANEL R A, CONRATH B J, KUNDE V G, et al. The Nimbus4Infrared Spectroscopy Experiment1. Calibrated Thermal Emission Spectra [J]. J. Geophys. Res.,1972,77:2629-2641.
    [122]TUCKER S C, TRUHLAR D G, in New Theoretical Concepts for Understanding Organic Reactions, Bertran J, Csizmadia I G,(Eds.), Advanced Study Institute, Kluwer:Dordrecht, Netherlands,1989, pp.291-346.
    [123]GARRETT B C, TRUHLAR D G. Critical tests of variational transition state theory and semiclassical tunneling methods for hydrogen and deuterium atom transfer reactions and use of the semiclassical calculations to interpret the overbarrier and tunneling dynamics [J]. J. Phys. Chem.,1991,95:10374-10379.
    [124]BECKE AD. Density-functional thermochemistry. III. The role of exact exchange [J]. J. Chem. Phys.,1993,98:5648-5652.
    [125]冯华升,田宇,孙竹芳,王文军,胡志彪,谢伦嘉.2-苄基-2-乙氧羰基环戊烷氧离子差向异构化的密度泛函研究[J].高等学校化学学报,2009,30(11(Suppl.)):58-61.
    [126]WU N N,LIU H X, DUAN X M, LIU J Y. Theoretical Study of CH3CH=CH2+O(1D) Reaction:Mechanism and Kinetics [J]. CHEMICAL RESEARCH IN CHINESE UNIVERSITES,2012,28(1):147-152.
    [127]JU L P, HAN K L, ZHANG Z H. Global dynamics and transition state theories: Comparative study of reaction rate constants for gas-phase chemical reactions [J]. J. Comput. Chem.,2009,30:305-316.
    [128]YU H B, CUI F C, WANG Y X, LIU H X, LIU J Y.[J]. J Theor Comp Chem,2011,10(02):231-244.
    [129]ZHAO Y, LYNCH B J, TRUHLAR D G. Development and Assessment of a New Hybrid Density Functional Model for Thermochemical Kinetics [J]. J. Phys. Chem. A.,2004,108:2715-2919.
    [130]BECKE A D. Density-functional exchange-energy approximation with correct asymptotic behavior [J]. Phys. Rev. A.,1988,38:3098-3100.
    [131JBECKE A D, Density-functional thermochemistry.Ⅳ. A new dynamical correlation functional and implications for exact-exchange mixing [J]. J. Chem. Phys.,1996,104:1040-1046.
    [132]ZHAO Y, GONZALES-GARCIA N, TRUHLAR D G. Benchmark Database of Barrier Heights for Heavy Atom Transfer, Nucleophilic Substitution, Association, and Unimolecular Reactions and Its Use to Test Theoretical Methods [J]. J. Phys. Chem. A,2005,109:2012-2018.
    [133]PARVEEN S, CHANDRA A K. Theoretical Studies on Kinetics and Reactivity of the Gas-Phase Addition and H-Abstraction Reactions of Pyridine with Atomic Chlorine [J]. J Phys Chem A,2009,113:177-183.
    [134]GAO H, WANG Y X, LIU J Y, YANG L, LI Z S, SUN C C. Direct Dynamics Study of the Hydrogen-Abstraction Reaction of1,1,2,2,3-Fluorinated Propane with the Hydroxyl Radical [J]. J. Phys. Chem. A,2008,112:4176-4185.
    [135]HEMELSOET K, MORAN D, SPEYBROECK V V, WAROQUIER M, RADOM L. An Assessment of Theoretical Procedures for Predicting the Thermochemistry and Kinetics of Hydrogen Abstraction by Methyl Radical from Benzene [J]. J. Phys. Chem. A,2006,110:8942-8951.
    [136]ELLINGSON B A, LYNCH V A, MIELKE S L, TRUHLAR D G. Statistical thermodynamics of bond torsional modes:Tests of separable, almost-separable, and improved Pitzer-Gwinn approximations [J]. J Chem Phys,2006,125:084305.