流动沸腾临界热流密度的流体模化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
临界热流密度(critical heat flux, CHF)是加热壁面温度飞升引起烧毁前所能承受的最大热流密度。CHF是锅炉、核反应堆等的热工水力工况研究中的重要课题之一。CHF可分为池沸腾CHF和流动沸腾CHF两种,本文的研究内容属于流动沸腾CHF的范畴。与池沸腾CHF不同的是,流动沸腾的CHF明显受到工质流动状态的影响,机理更为复杂。由于目前理论模型的局限,还无法用较精确的数学模型对CHF进行描述,实验是CHF的主要研究方法。以水作为工质进行CHF的实验研究,突出的缺点是由于水的高潜热和高的压力和温度,对实验系统提出了非常苛刻的要求,且实验花费巨大。运用CHF的流体模化技术,用实验压力、温度和气化潜热都低很多的制冷工质代替水进行CHF实验研究,不仅可以克服上述缺点,而且便于使用各种先进的测试设备,对CHF现象展开深入系统的研究。由于R134a的绿色环保品质,较低的实验压力、温度及气化潜热等,使其成为一种较理想的流体模化工质。本文的主要研究内容为:采用模化工质R134a对水在目前锅炉水冷壁、核反应堆蒸汽发生器中常见的流道形式,包括竖直管、水平管及螺旋管中的流动沸腾CHF进行流体模化研究,以加深对现有CHF流体模化方法在上述不同类型流道中的适用效果的清晰认识,并在此基础上发展更高精度的适用于这些流道的基于R134a和水的流动沸腾CHF流体模化技术。
     本文首先对现有的流动沸腾CHF流体模化方法进行了综述,分别阐述了到目前为止比较成功的CHF流体模化模型:Ahmad模型、Katto模型、鲁钟琪模型和Stevens-Kirby模型的发展过程,对这些模型的求解思路进行了详细分析,对各模型需要满足的模化相似条件包括几何相似、水力相似、热力相似及流量相似进行了分析比较,进而详细阐述了运用这些模型进行流体模化分析的计算方法。对R134a和水之间的CHF流体模化物性参数进行了详细的计算分析,分别得出了Ahmad模型、Katto模型和鲁钟琪模型在不同工况下的流量模化因子和CHF模化因子,将计算结果制成了查询表,为有效利用现有的流动沸腾CHF数据对目前的流体模型进行模化效果评价,以及通过CHF模化实验对现有的流体模化方法进行模化效果验证等提供了极大的便利。
     在对目前的流动沸腾CHF流体模化方法进行检验评价时,获得准确的R134a管内流动沸腾CHF数据对于验证结果的有效性无疑具有关键的作用,因而在进行R134a的流动沸腾CHF实验时,确保CHF实验数据的准确性至关重要。本文的实验研究是在山东大学制冷与低温研究所的汽液两相流动与沸腾传热实验台上进行的。在保证尽量小的温度、压力、质量流量、电流、电压等参数测量误差的基础上,设计进行了比较精确的热平衡实验,利用纯液相水的加热循环来进行热损失的精确标定,避开了复杂且误差较高的两相流参数计算,保证实验获得的流动沸腾CHF数据更加可靠;利用Agilent3498数据采集系统配合计算机编程的方法制定了判断CHF发生的控制程序,对CHF的发生进行准确的判断和记录。本文的实验研究获得了大量R134a在竖直圆管、水平圆管以及卧式螺旋管内的流动沸腾CHF数据,为对现有的流动沸腾CHF流体模化技术进行分析与评价,提供了较准确可靠的数据支持。
     进行竖直圆管内流动沸腾的CHF流体模化研究,对竖直管内的CHF参数趋势进行了简单分析,得出了实验工况下竖直管内CHF的主要影响因素。在进行现有CHF流体模化方法对于竖直圆管内流动沸腾CHF流体模化效果的分析评价时,用来与本实验R134a的CHF数据进行模化对比分析的水的CHF数据,一部分直接来自现有水的CHF实验,另一部分由Bowring的经典CHF预测关联式计算得出。本文给出了满足CHF流体模化相似条件下沸腾数随各模型流量模化参数变化的趋势图,研究结果表明目前比较成功的CHF流体模化方法基本上适用于竖直圆管内R134a与水之间的CHF流体模化。
     进行水平圆管内的CHF流体模化研究,分析探讨了水平圆管内CHF的参数趋势,对Ahmad模型、Katto模型、鲁钟琪模型和Stevens-Kirby模型应用于水平圆管内流动沸腾CHF的流体模化效果进行检验与评价,分析探讨了质量流速、液气密度比、入口干度等参数的变化对各模型计算精度的影响规律。在分析各模型流体模化效果的基础上,结合水平圆管内的分层现象对CHF的影响,重点论述了水平圆管内流动沸腾CHF流体模化新方法的发展思路,新方法在Katto模型的基础上,引入反映水平圆管内流动沸腾分层现象的修正的弗雷德数,提出了CHF流体模化的新流量相似准则数,数据分析结果表明,应用新方法对实验参数范围内水平圆管流动沸腾CHF的模化精度在+25%左右。
     同直管相比,以螺旋管为代表的曲线管具有传热效率高、结构紧凑的优点是近年来发展的新型换热设备。分别运用Ahmad模型、Katto模型、鲁钟琪模型和Stevens-Kirby模型对卧式螺旋管内R134a与水的CHF数据进行流体模化分析,给出了不同CHF模化相似条件下R134a与水在“沸腾数—CHF流量模化参数”坐标下的数据对比,得出了不同参数范围内各模型对于卧式螺旋管CHF的流体模化计算偏差。分析发现卧式螺旋管CHF的流量模化因子受质量流量、压力及入口干度等参数的影响比较明显,通过对实验数据的回归分析,本研究提出了卧式螺旋管CHF流量模化因子的经验关联式,发展了卧式螺旋管内流动沸腾CHF的流体模化新方法。计算结果表明,采用新模化方法对实验参数范围内卧式螺旋管CHF的流体模化计算偏差在士20%以内。
     总之,本文在实验研究的基础上,对目前的流动沸腾CHF流体模化方法应用于竖直圆管、水平圆管和卧式螺旋管的CHF流体模化效果进行了综合分析与评价,发展了新的分别适用于水平圆管和卧式螺旋管流动沸腾CHF的流体模化方法,为采用低潜热工质深入进行流动沸腾的CHF实验研究提供了有力支持。
The critical heat flux (CHF) is the maximum heat flux beyond which the burnout of the heating wall may occur resulted from a steep jump of wall temperature. The research and exploration to CHF is an important subject in the field of thermal-hydraulic conditions for boilers, nuclear reactors, and many other thermal systems of higher heat fluxes. The CHF is divided into two basic types which are the pool boiling CHF and the flow boiling CHF. The present study belongs to the category of the flow boiling CHF. What differentiates the flow boiling CHF from the pool boiling CHF is the more complex mechanism of flow boiling CHF which is subject to the specific flowing conditions. For the deficiencies of current theoretical models and the less accurate description to the CHF with present mathematical equations, the experimental approach is the main ways to understand the CHF characteristics and mechanism. The distinct shortcomings of CHF experiment using water as the working fluid are the very stringent requirements to the experiment system and the great expense to run the system due to the high latent heat, high pressure and temperature of water. By applying the fluid-to-fluid modeling techniques and conducting CHF experiments using refrigerants with much lower pressure, temperature and latent heat of vaporization as the working fluid, it can not only overcome the above-mentioned difficulties, but also facilitate further and intensive research on the CHF phenomenon by employing the many advanced testing equipment. R134a is a kind of ideal modeling fluid for its environment friendly quality, low pressure, low temperature and low latent heat of vaporization. Thus, the main content of this thesis is to use R134a as the working fluid to carry out study on the fluid-to-fluid modeling of CHF for water flow boiling in vertical tubes, horizontal tubes and helically-coiled tubes which are common heat-exchange form in the cooled wall of boilers, steam generator of nuclear reactors and many other thermal systems of higher heat fluxes. The main objective of the present study is to provide a clear acknowledge to effect of the existing CHF fluid-to-fluid modeling methods for the different types of channel, and then develop the fluid-to-fluid modeling technique of R134a and water which applied to the different types of flow channels with higher accuracy.
     This paper firstly summarized the existing boiling flow CHF fluid-to-fluid modeling methods and then expounded the successful CHF fluid-to-fluid models by now which were Ahmad model, Katto model, Lu Zhongqi model and Stevens-Kirby model respectively. A detailed analysis of the solving ideas for these models are presented. The similarity conditions needed to satisfy including geometric similarity, hydraulic similarity, thermodynamic similarity and flow similarity are analyzed and compared for each model. Then the step of applying each models were described in details. The CHF fluid modeling properties for R134a and water was calculated, respectively, the flow scale factor and CHF scale factor for Ahmad model, Katto model and Lu Zhongqi model in different conditions were achieved, and a look-up table for the CHF fluid modeling properties was made. The look-up table provided a great convenience to the evaluation of the existing fluid-to-fluid models using present CHF data, as well as to the arrangement of CHF modeling experiments committed to verify the effect of present fluid-to-fluid models.
     In the inspection and evaluation for present flow boiling CHF fluid-to-fluid modeling methods, obtaining the accurate CHF data for R134a flow boiling in different channels plays a key role to the validity of the results undoubtedly. So it is very important to ensure the accuracy of the experimental CHF data for R134a. The experiments were carried out in the vapor-liquid two-phase flow and boiling heat transfer experiment platform in Institute of Refrigeration and Cryogenics affiliated to Shandong University. While ensuring the measurement errors for temperature, pressure, mass flow rate, current, voltage and so on as small as possible, the more precise thermal equilibrium experiments were designed. In the thermal equilibrium experiments, an accurate calibration of heat loss was made using the heating cycle of pure liquid water to avoid more complex two-phase parameter calculations which may produce big errors. The thermal equilibrium experiment guaranteed the flow boiling CHF data were more reliable. Another measure to ensure the validity of the CHF data was judging the occurrence of CHF with the control program which employed the Agilent3498data acquisition system aided by computer programming. A large number of CHF data for R134a flow boiling in the vertical tube, horizontal tube and helically-coiled tube were achieved from the present experiments, which provided a strong basis to analysis and evaluation of the existing flow boiling CHF fluid-to-fluid modeling techniques with more accurate and reliable data.
     Study on flow boiling CHF fluid-to-fluid modeling in a vertical tube was performed. Firstly, the parameter trends of CHF in a vertical tube were analyzed simply and the main factors that influenced the CHF in the vertical tube under the present experimental conditions were found. In the analysis and evaluation to the results of the present CHF fluid-to-fluid modeling methods, the water CHF data used for comparison with the R134a CHF data stem from the existing water CHF experiments directly and the classic Bowring CHF correlation indirectly. This study presented parameter trends for boiling number varied with flow modeling parameter of each fluid-to-fluid model when the similarity conditions were satisfied respectively. The results indicated that the CHF fluid-to-fluid modeling methods at present were basically applied to the vertical tube for R134a and water.
     Study on CHF fluid-to-fluid modeling in a horizontal tube was carried out. Firstly the CHF parameter trends were analyzed in the horizontal tube, and then the effects of flow boiling CHF fluid-to-fluid modeling methods, i.e., Ahmad model, Katto model, Lu Zhongqi model and Stevens-Kirby model applied to the horizontal tube were tested and evaluated. The influence of mass flux, liquid-gas density ratio and inlet subcooling on the accuracy of modeling were analyzed. Based on the analysis of the modeling results and investigation to influences of stratification on the CHF in horizontal tube, the thesis focused on the statement for development of new flow boiling CHF fluid-to-fluid modeling methods in the horizontal tube. A new flow similarity criterion number based on the Katto model and the corrected Fred number to reflect the effect of stratification on flow boiling CHF in the horizontal tube were proposed. The results of data analysis showed that the error band of the new method applied to the horizontal tube under the experimental conditions was about±25%.
     Compared to the straight tube, the helically-coiled tube which is the representative of the curved tube has the advantages of high heat transfer efficiency, compact structure, etc., and is a new type of heat transfer equipment developed in recent years. The CHF data of R134a and water in horizontal helically coiled tubes were analyzed by applying Ahmad model, Katto model, Lu Zhongqi model and Stevens-Kirby model. The modeling results of each models were presented in the coordinates of boiling number vs. CHF flow modeling parameters when the similarity conditions were matched. The deviations of the fluid-to-fluid modeling methods at present were given within the range of experimental parameters. It was found that the mass flux, pressures and inlet subcooling had a notable influence on the flow scale factor of horizontal helically-coiled tubes. This thesis presented an empirical correlations of flow scale factor of horizontal helically-coiled tubes through regression of the experimental data, and developed a new fluid-to-fluid modeling method for CHF in helically-coiled tubes. The results showed that the errors of the new fluid-to-fluid modeling method applied to the helically-coiled tubes under the present experimental conditions were within±20%.
     In summary, a comprehensive analysis and evaluation to the results of CHF fluid-to-fluid modeling methods at present applied to the vertical tube, the horizontal tube and the horizontal helically-coiled tube was presented based on the CHF experiments, and the new CHF fluid-to-fluid modeling methods suitable for the horizontal tube and the horizontal helically-coiled tube were developed which provided strong support for the carrying out of intensive CHF experimental research using working fluid with low latent heat.
引文
[1]施明恒,甘永平,马重芳.沸腾与凝结[M],北京,高等教育出版社,1995.
    [2]陈学俊,两相流与传热—原理及应用[M],北京,原子能出版社,1991.
    [3]林宗虎,汽液两相流和沸腾传热[M],西安,西安交通大学出版社,2003.
    [4]Collier J G, Thome J R. Convective boiling and condensation [M].3rd ed. Clarendon press oxford,1994.
    [5]鲁钟琪.两相流与沸腾传热[M].北京,清华大学出版社,2002.
    [6]Groeneveld D C, Blumenroehr B, Cheng S C. CHF fluid-to-fluid modeling studies in three laboratories using different modeling fluids[C]. Proc. of the Fifth Int. Topical Meeting on Nuclear Thermal Hydraulics. Salt Lake City, Utah, USA, Sept.1992.
    [7]Seyoung C, Sungdeok H, Yeonsik C, et al. Comparison of the CHF data for water and refrigerant HFC-134a by using the fluid-to-fluid modeling methods[J]. International Journal of Heat and Mass Transfer,2007,50:4446-4456.
    [8]Groeneveld D C, Tavoularis S, Raogulia P, et al. Analytical and experimental program of supercritical heat transfer research at the university of Ottawa [J]. Nuclear Engineering and Technology,2007,40(2):107-116.
    [9]Finnemore E J, Franzini J B. Fluid mechanics with engineering applications[M],北京,清华大学出版社,2003.
    [10]林宗虎,王栋,陈学俊.临界热流密度值模化方法研究[J].西安交通大学学报,1987,21:33-40.
    [11]Akhtar S W, Moon S K, Chun S Y, et al. Modeling capability of R134a for a critical heat flux of water in a vertical 5×5 rod bundle geometry[J]. International Journal of Heat and Mass Transfer,2006,49:1299-1309..
    [12]Groeneveld D C, Doerffer S, Tain R M, et al. Fluid-to-fluid modeling of the critical heat flux and post-dryout heat transfer[C]. Proc.4th World Congress on Experimental Heat Transfer, Fluid Mechanics and Thermodynamics, Brussels,1997,2:859-867.
    [13]Hoyer N, Calculation of dryout and post dryout heat transfer for tube geometry[J]. International Journal of Multiphase Flow.1998,24(2):319-334.
    [14]Okawa T, Kotani, A., Kataoka, I., Naion, M., Prediction of the critical heat flux in annular regime in various vertical channels[J]. Nuclear Engineering and Design,2004,229: 223-236.
    [15]Weisman J, Pei P S. Prediction of critical heat flux in flow boiling at low qualities [J]. International Journal of Heat and Mass Transfer,1983,26(10):1463-1477.
    [16]Weisman J, Ileslamlou S. A phenomenological model for prediction of critical heat flux under highly subcooled conditions[J]. Fusion Technology,1988,13(4):654-659.
    [17]Celata G P. Rationalization of existing mechanistic models for the prediction of water subcooled flow boiling critical heat flux[J]. International Journal of Heat and Mass Transfer, 1994,37:340-360.
    [18]Liu W, Nariai H, Inasaka F. Prediction of critical heat flux for subcooled flow boiling[J]. International Journal of Heat and Mass Transfer,2000,43:3371-3390.
    [19]Galloway J E, Mudawar I. CHF mechanism in flow boiling from a short heated wall-I. Examination of near-wall conditions with the aid of photomicrography and high-speed video imaging[J]. International Journal of Heat and Mass Transfer,1993,36:2511-2526.
    [20]Galloway J E, Mudawar I. CHF mechanism in flow boiling from a short heated wall-Ⅱ. Theoretical CHF model [J]. International Journal of Heal and Mass Transfer,1993,36: 2527-2540.
    [21]Zhang H, Mudawar I, Hasan M M, CHF model for subcooled flow boiling in Earth gravity and microgravity[J]. International Journal of Heat and Mass Transfer,2007,50:4039-4051.
    [22]Kharangate C R, Mudawar I, Hasan M M, Experimental and theoretical study of critical heat flux in vertical upflow with inlet vapor void[J]. International Journal of Heat and Mass Transfer,2012,55:360-374.
    [23]Shah M M. Improved general correlation for critical heat flux during up flow in uniformly heated vertical tubes[J]. International Journal of Heat and Fluid Flow,1987,08:325-335.
    [24]Bowring R W. A simple but accurate round tube uniform heat flux dry-out correlation over the pressure range,0.7-12 MN/m 2 (100-2500 psia)[R]. AEEW-R789,1972.
    [25]Katto Y, Ohno H. An improved version of the generalized correlation of critical heat flux for the forced convective boiling in uniformly heated vertical tubes[J]. International Journal of Heat and Mass Transfer,1984,27:1641-1648.
    [26]Doroshchuk V E, Levitan L L, Lantzman F P. Investigation into burnout in uniformly heated tubes[R]. ASME paper 75-wt/ht-22,1975.
    [27]Kirillov P L, Bobkov V P, Boltenko E A, et al. New CHF table for water in round tubes[J]. Atomic Energy,1991,70:18-28.
    [28]Groeneveld D C, Cheng S C, Doan T.1986 AECL-UO critical heat flux[J]. Heat Transfer Engineering,1986,7:46-62.
    [29]Groeneveld D C, Leung L K H, Kirillov P L, et al. The 1995 look-up table for critical heat flux in tubes[J]. Nuclear Engineering and Design,1996,163 (1):1-23.
    [30]Groeneveld D C, Shan J Q, Vasic A Z, et al. The 2005 CHF LUT[C]. The 11th International Topical Meeting on Nuclear Reactor Thermal-Hydraulics, Avignon, France,2005,10, Paper No.166.
    [31]Groeneveld D C, Shan J Q, Vasic A Z, et al. The 2006 CHF look-up table[J]. Nuclear Engineering and Design,2007,237:1909-1922.
    [32]单建强,朱玉隆,李昌莹,等.临界热流密度查询表的现状及其存在的问题[J].核动力工程,2007,28(1):36-40.
    [33]张振杰.流动沸腾临界热通量的模化实验研究[D].硕士学位论文,北京:清华大学,1984.
    [34]陈炳德,陈军.氟利昂-水临界热流密度模化及模化转换因子[J].全国反应堆热工流体会议论文集,北京:原子能出版社,1999:53-58.
    [35]韩吉田,张金霞,陈常念,等.临界热流密度流体模化方法与分析[J].节能,2010,29(2):26-28.
    [36]王美霞,韩吉田,邵莉.近临界压力区临界热流密度的流体模化[J].中国电机工程学报,2011,31(20):95-99.
    [37]Judd R A, Tahir A, Carver M B, et al. ASSERT-4 User's Manual[Z]. AECL-8573,1984.
    [38]Tong L S. Boiling crisis and critical heat flux[R]. USAEC Report Tid-25887, Westinghouse Electric Corp.,1972.
    [39]Barnett P G, The scaling of forced convection boiling heat transfer[R]. Report No.AEEW-R134, United Kingdom Atomic Energy Authority, U.K.,1963.
    [40]Barnett P G. An experimental investigation to determine the scaling laws of forced convection boiling heat transfer, Part I [R]. Report No.AEEW-R363, United Kingdom Atomic Energy Authority, U.K.,1964.
    [41]Barnett P G, Wood R W. An experimental investigation to determine the scaling laws of forced convection boiling heat transfer, Part Ⅱ [R]. Report No.AEEW-R433, United Kingdom Atomic Energy Authority, U.K.,1965.
    [42]Stevens G F, Kirby G J. A quantitative comparison between burnout data for water at 1000 psia and Freon-12 at 155 psia[R]. Report No.AEEW-R327, United Kingdom Atomic Energy Authority, U.K.,1964.
    [43]Groeneveld D C. Similarity of water and Freon dryout data for uniformly heated tubes[C]. ASME Fluid and Heat Transfer Meeting, Detroit, Michigan, USA,1970,Paper No.70-HT-27.
    [44]Ahmad S Y. Fluid to fluid modeling of critical heat flux:a compensated distortion model[J]. International Journal of Heat and Mass Transfer,1973,16 (3):641-662.
    [45]Hauptmann E G, Lee V, Mcadam, D. Two-phase fluid modeling of the critical heat flux[C]. Proceeding of Institute Meeting, Reactor Heat Transfer, Karlsruhe,557-576, October 9-11, 1973.
    [46]Merilo M. Fluid-to-fluid modeling and correlation of flow boiling crisis in horizontal tubes[J]. International Journal of Multiphase Flow,1979,5(5):313-325.
    [47]Fulfs H. Comparison of Freon-12 and water steady state CHF data from a PWR 5x5 rod bundle[R]. Report,80/E/29, GKSS-Forschungszentrum Geesthacht GmbH, Geesthacht, Germany,1980.
    [48]Green W J, Lawther K R. A flow boiling burnout correlation for water and Freon-12[J]. Nuclear Engineering and Design,1981,67(1):13-25.
    [49]Groeneveld D C, Kiameh B P, Cheng S C. Prediction of critical heat flux (CHF) for non-aqueous fluids in forced convective boiling[J]. Proceedings of the 8th International Heat Transfer Conference, San Francisco, USA,1986,5:2209-2214.
    [50]Lu Zhongqi, Shi Deqiang, Zhang Zhenjie. Modeling studies on critical heat flux of convective boiling[C]. Two-Phase Flow and Heat Transfer, USA, USA Hemisphere Publ Corp,1988,207-214.
    [51]陈炳德.管内流动沸腾CHF实验及氟利昂模化研究[J].核动力工程,1994,15(5):460-464.
    [52]Pioro I L, Cheng S C. Vasic A Z, et al. Some problems for bundle CHF prediction based on CHF measurements in simple flow geometries[J]. Nuclear Engineering and Design,2000, 201:189-207.
    [53]杨瑞昌,王彦武,周立加,等.自然循环过冷沸腾流动和CHF的实验研究[J].清华大学学报(自然科学版),2000,40(6):57-59.
    [54]Pioro I L, Groeneveld D C, Cheng S C, et al. Comparison of CHF measurements in R134a cooled tubes and the water CHF look-up table[J]. International Journal of Heat and Mass Transfer,2001,44:73-88.
    [55]陈军,吴小航,孙奇.棒束临界热流密度流体模化研究[J].核科学与工程,2002,22(4):309-313.
    [56]陈军,杨燕华,廖建如,等.圆管临界热流密度的流体模化[J].核动力工程,2003,24(4):354-358.
    [57]Chen Jun, Liao Jianru, Kuang Bo, et al. Fluid-to-fluid modeling of critical heat flux in 4x4 rod bundles[J]. Nuclear Engineering and Design,2004,232:47-55.
    [58]陈军,廖建如,赵华,等.定位格架对4×4棒束临界热流密度流体模化的影响[J].原子能科学技术,2005,39(1):1-5.
    [59]Kim C H, Chang S H. CHF characteristics of R134a flowing upward in uniformly heated vertical tube[J]. International Journal of Heat and Mass Transfer,2005,48:2242-2249.
    [60]Chun S Y, Hong S D, Cho Y S, et al. Comparison of the CHF data for water and refrigerant HFC-134a by using the fluid-to-fluid modeling methods[J]. International Journal of Heat and Mass Transfer,2007,50:4446-4456.
    [61]陈常念.卧式螺旋管内临界热流密度特性及其流体模化方法研究[D].博士学位论文,山东大学,2010.
    [62]Chen C N, Han J T, Jen T C, et al. Fluid-to-fluid modeling of two-phase flow critical heat flux in horizontal helically coiled tubes[J]. Nuclear Engineering and Design,2011,241: 1430-1437.
    [63]陈常念,韩吉田,邵莉,等.临界热流密度流体模化广义准则数研究[J].原子能科学技术,2010,44(5):558-561.
    [64]Merilo M. Critical heat flux experiments in a vertical and horizontal tube with both Freon-12 and water as coolant[J]. Nuclear Engineering and Design,1977,44:1-16.
    [65]Merilo M, Ahmad S Y. The effect of diameter on vertical and horizontal flow boiling crisis in a tube cooled by Freon-12[J]. Report AECL-6485:1-51, AECL, Chalk River Nuclear Laboratories, Chalk River, Ontario, Canada, March 1979.
    [66]Wong Y L, Generalized CHF prediction for horizontal tubes with uniform heat flux[C]. Thesis of Master of Applied Science, Mechanical Engineering Department, University of Ottawa, Ottawa, Ontario, Canada, June,1988.
    [67]Wong Y L, Groeneveld D C, Cheng S C. CHF prediction for horizontal tubes[J]. International Journal of Multiphase Flow,1990,16(1):123-138.
    [68]郭烈锦,陈学俊.卧式螺旋管式蒸汽发生器管内沸腾传热恶化的实验研究[J].核科学与工程,1994,14(4):289-295.
    [69]冯自平,郭烈锦,陈学俊,等.卧式螺旋竹内烧干特性[J].化工学报,1997,48:180-185.
    [70]陈常念,韩吉田,邵莉,等.R134a卧式螺旋管内流动沸腾CHF特性研究[J].核动力工程,2010,31(5):76-80.
    [71]毛宇飞,郭烈锦,白博峰,等.卧式螺旋管内高压汽水两相流动沸腾干洲点的研究[J].工程热物理学报,2011,32(7):1145-1148.
    [72]杜广生,工程流体力学[M].北京,中国电力出版社,2008.
    [73]Y. Katto, A generalized correlation of critical heat flux for the forced convection boiling in vertical uniformly heated round tubes[J]. International Journal of Heat and Mass Transfer, 1978,21:1527-1542.
    [74]Katto Y. General features of CHF of forced convection boiling in uniformly heated vertical tubes with zero inlet subcooling[J]. International Journal of Heat and Mass Transfer,1980, 23:493-504.
    [75]Katto Y. General features of CHF of forced convection boiling in uniformly heated rectangular channel[J]. International Journal of Heat and Mass Transfer,1981, 24:1413-1419.
    [76]Katto Y. An analytical investigation on CHF of flow boiling in uniformly heated vertical tubes with special reference to governing dimensionless groups[J], International Journal of Heat and Mass Transfer,1982,25:1353-1361.
    [77]米明善,韩礼钟,李立,等.绿色环保制冷剂HFC-134a热物理性质[M].北京,科学出版社,1995.
    [78]Wagner W, Kruse A. Properties of water and Steam[M]. Verlag Berlin Heidelberg, Springer, 1998.
    [79]严加騄,余晓福,王永青.水和水蒸气热力性质图表[M].北京,高等教育出版社,2004.
    [80]杨世铭,陶文铨.传热学[M].北京,高等教育出版社,2006.
    [81]Gambill W R, Bundy R D, Wansbrough R W. Heat transfer, burnout, and pressure drop for water in swirl flow through tubes with internal twisted tapes[C], Chemical Engineering Progress Symposium Series 57 (1961):127-137. ORNL-2911, Oak Ridge National Laboratory, Oak Ridge, TN,1960.
    [82]Tatsuhiro U, Yasushi, I. Critical heat flux and exit film flow rate in a flow boiling system[J]. International Journal of Heat and Mass Transfer,1981,24:1267-1276.
    [83]Chen C N, Han J T, Jen T C, et al. Dry-out CHF correlation for R134a flow boiling in a horizontal helically-coiled tube[J]. International Journal of Heat and Mass Transfer,2011, 54:739-745.
    [84]Chen C N, Han J T, Jen T C, et al. Experimental study on critical heat flux characteristics of R134a flow boiling in horizontal helically-coiled tubes[J]. International Journal of Thermal Sciences,2011,50:169-177.
    [85]Alessandrini A, Peterlongo G, Ravetta R. Large scale experiments on heat transfer and hydrodynamics with steam-water mixtures:critical heat flux and pressure drop measurements in round vertical tubes at the pressure of 51 kg/cm2 abs[R]. CISE-R-86, Centro Informazioni Studi Esperienze, Milan, Italy,1963.
    [86]Bertoletti S, Gaspari G P, Lombardi C, et al. Heat transfer crisis in steam-water mixtures: experimental data in round tubes and vertical upflow obtained during the CAN-2 program[R]. CISE-R-90, Centro Informazioni Studi Esperienze, Milan,Italy,1964.
    [87]Peterlongo G, Ravetta R, Riva B, et al. Large scale experiments on heat transfer and hydrodynamics with steam-water mixtures:further critical power and pressure drop measurements in round vertical tubes with and without internal obstacles[R]. CISE-R-122, Centro Informazioni Studi Esperienze, Milan, Italy,1964.
    [88]Beitel G R. Boiling heat-transfer processes and their application in the cooling of high heat flux devices[R]. AEDC-TR-93-3, Arnold Engineering Development Center, Arnold Air Force Base, TN,1993.
    [89]Moffat R J. Describing the uncertainties in experimental results[J]. Experimental Thermal and Fluid Science,1988,1 (1):3-17.
    [90]沙定国,误差分析与测量不确定度评定[M].北京:中国计量出版社,2003.
    [91]李慎安.测量不确定度的简化评定[M].北京:中国计量出版社,2004.
    [92]Peskov O L. The compilation of experimental data on burnout in uniformly heated round tubes[R]. Institute of Physics and Power Engineering, Obninsk, Russia,1985.
    [93]Hassid A, Milani A, Ravetta R, et al. Heat transfer crisis with steam-water mixtures in round con-duits:reproducibility tests with different experimental facilities[R]. EUR-3920.e, European Atomic Energy Community,1968.
    [94]Becker K M. Burnout measurements in vertical round tubes:effect of diameter[R]. AE-TPM-RL-1260, Aktiebolaget Atomenergi, Stockholm, Sweden,1970.
    [95]Peng S W, Groeneveld D C, Liu W, et al. Flow boiling CHF and limiting quality phenomenon in tubes[R].2004 Annual Report of Bubble Physics and Natural Circulation Laboratory, Chengdu, China,2004.
    [96]张静,彭仕文,许国良.极限干度现象区CHF评估[J].核技术,2007,30(7):624-628.
    [97]Becker K M. Measurements of burnout conditions for flow of boiling water in horizontal round tubes[R]. AERL-1262, Aktiebolaget Atomenergi, Stockholm,Sweden,1971.
    [98]Taitel Y, Dukler A E. Flow pattern transition in gas-liquid systems measurement and modeling[M]. Hemisphere Publishing Corporation,Washington DC, USA,1986.
    [99]Wong Y L. Generalized CHF prediction for horizontal tubes with uniform heat flux[D], Thesis of Master of Applied Science, Mechanical Engineering Department, University of Ottawa, Ottawa, Ontario, Canada,1988.
    [100]Robertson J M. Dryout in horizontal hairpin waste-heat boiler tubes[J]. AIChE Journal, 1973,69(131):55-72.
    [101]Taitel Y, Dukler A E. A model for predicting flow regime transitions in horizontal and near horizontal gas-liquid flow[J]. AIChE Journal,1976,22:47-55.
    [102]Kefer V, Kohler W, Kastner W. Critical heat flux(CHF) and post-CHF heat transfer in horizontal and inclined evaporator tubes[J]. International Journal of Multiphase flow,1989, 15(3):385-392.
    [103]Celata G P, Mariani A. CHF and post-CHF (post-dryout) heat transfer[A]. Handbook of Phase Change:Boiling and Condensation,1999,450-465.
    [104]Celata G P, Cumo. A, Mariani A. Enhancement of CHF water subcooled flow boiling in tubes using helically coiled wires[J]. International Journal of Heat and Mass Transfer,1993. 37(1):53-67.
    [105]Jayanti S, Berthoud G. High-quality dryout in helical coils[J]. Nuclear Engineering and Design,1990,122:105-118.
    [106]Ma W M, Zhang M Y, Chen X J. High-quality critical heat flux in horizontally coiled tubes[J]. Journal of Thermal Science,1995,4:205-211.
    [107]毕勤成,陈听宽,田永生,等.螺旋管内高压汽水两相流传热恶化规律的研究[J].西安交通大学学报,1996,30(5):30-35.
    [108]马卫民,张鸣远,陈学俊,等.卧式螺旋管内的沸腾临界后传热[J].工程热物理学报,1998,19(5):633-636.
    [109]张文斌,赵亮,陈森林,等.立式螺旋管汽液两相流沸腾传热恶化实验研究[J].工程热物理学报,2009,30(10):1673-1676.
    [110]侯玉成.卧式螺旋管临界热负荷及干涸后传热实验研究[D].硕士学位论文,西安:西安交通大学,2000.