微波功率SiGe HBT与基于虚衬底的SiGe HPT的研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着无线通信和光纤通信技术的发展与融合,对组成通信系统的光电子器件性能和成本的要求日益提高。传统的Si材料器件以其成熟的工艺技术具有高集成和低成本优势,但是由于受到Si材料自身特性和器件结构的限制,无法满足高速的要求。SiGe异质结晶体管(HBT)利用了能带工程和成熟的Si微电子工艺,频率特性得到了质的飞跃,在无线通信领域得到了广泛应用;与此同时,引入具有内部增益的SiGe异质结光晶体管(HPT),发挥与SiGe HBT结构工艺完全兼容的优势,拓展了Si基材料和器件在光纤通信领域的应用。但是,SiGe HPT由于吸收区Ge组分和厚度受到Si衬底的限制,在光纤通信波段无法获得较高的响应度。本文以提高SiGe HBT的功率和频率特性、SiGe HPT的响应度和响应波长为目的,在SiGe HBT和HPT理论设计、材料制备和器件研制三方面开展了研究工作。取得了以下主要成果:
     (1)参与完成了新型国产双生长室UHV/CVD系统的安装与调试,并通过大量的生长实验优化了SiGe材料的生长条件,总结出Ge组分、生长速率和掺杂浓度随源流量、温度等条件的生长动力学规律,为SiGe HBT和HPT的制备奠定了材料基础。
     (2)设计并制备了工作在L波段(1~2GHz)的微波功率SiGe HBT。定量研究了Ge组分对SiGe HBT性能的影响,发现当基区Ge组分从0.20增加到0.23时,导致SiGe HBT电流增益从60提高到158。当基极为电压和电流输入时,观察到SiGe HBT分别呈现正、负两种相反的热电反馈现象,并采用电压源与电阻串联的输入方式,实现了SiGe HBT自加热特性的自补偿,解决了功率SiGe HBT自加热问题。
     (3)采用氧化法制备了高质量Si基和SOI基SiGe弛豫衬底,并建立了SiGe氧化动力学模型。在模型中首次引入了氧化物中应力的作用,发现并证实了SiGe氧化速率增强是由于氧气在氧化物中的扩散激活能较低所导致,修正了以往人们认为由于Ge-Ge键能比Si-Si键能更弱的观点,并合理解释了一直颇具争议的SiGe氧化自停止现象。
     (4)系统地研究了SiGe弛豫衬底二次外延中表面热处理方法。发现了高温脱氧时SiGe薄膜表面形成Ge岛,通过改变SiGe薄膜中的Ge组分可实现Ge岛大小和密度的调控,为制备Ge量子点提供了新的方法;而采用高温脱氢时,发现SiGe表面形成坑,通过优化脱氢温度在550℃获得良好的表面形貌,并应用于高质量SiGe材料的二次外延,解决了SiGe弛豫衬底二次外延中表面处理这一难题。
     (5)创新性地提出了基于SiGe虚衬底的SiGe HPT,对器件特性进行了系统的模拟分析,并在氧化法和低温Ge缓冲层法制备的SiGe弛豫衬底上完成了这种新型器件的制备。SiGe HPT的击穿电压BV_(CEO)达到14V,暗电流密度在-5V偏压时为4mA/cm~2。在1.55μm波长处SiGe HPT的响应度为1.94mA/W,实现了以量子阱作为吸收区的SiGe HPT在1.55μm波长的响应,比目前报道的SiGe HPT在相同的入射方式下获得的最高响应度提高了20倍。
The communication market has experienced a substantial and rapid growth over the past few years, which will require higher speed and low cost semiconductor devices in the future communication units. One of the solutions to meet these requirements is the concept of a complete communication system integrating electron devices and optoelectronic devices on a single chip. The successful development of high-speed SiGe heterojunction bipolar transistor (HBT) has provided the opportunity to integrate RF/microwave circuits and CMOS low-power circuit on a single chip in the wireless communication units. At the same time, SiGe heteroj unction bipolar phototransistor (HPT) with high external quantum efficiency, low noise and compatibility of the device's epitaxial structure and fabrication with that of the HBT becomes more attractive for high-speed optoelectronic integrated circuit applications. However, it is a great challenge to obtain higher responsivity in near-infrared communication band for the traditional SiGe HPT due to the lower Ge content and the limitation of the critical thickness of SiGe layer on Si substrates. In this thesis, in order to improve the responsivity and extend the detection wavelength of SiGe HPT as well as the power and frequency of SiGe HBT, comprehensive theoretical designs and systemic experiments on SiGe HBT and HPT have been carried out. The main works and results are summarized as follows:
     (1) A homemade double-chamber chemical vapor deposition system was built and tested. Based on the growth kinetics of SiGe alloy, the growth conditions including source gas flux and substrate temperature were optimized for reaching certain Ge contents, growth rates and doping concentrations of SiGe layer, which pave the way for the following study of SiGe HBT and HPT.
     (2) A microwave power SiGe HBT with cut-off frequency of 2GHz have been designed and fabricated. We found that a little increase of Ge content in SiGe base region such as from 0.20 to 0.23 could lead to significant increase in current gain from 60 to 158. It was observed that the SiGe HBTs present positive and negative thermal-electric feed back when the base was biased with voltage and current source respectively. Those opposite trends of thermal-electric feed back were successfully utilized to compensate the self-heating effect of SiGe HBT by inserting a certain ballast resistance in the bias circuit.
     (3) High quality SiGe relaxed substrate based on Si and SOI substrate were prepared by dry oxidation. With lots of oxidation data, a SiGe oxidation kinetic model including the stress in the oxide was proposed for the first time. We found that the growth rate enhancement in SiGe oxidation process was induced by the lower activation energy of oxygen diffusivity rather than the weaker Ge-Ge bond energy reported by other group. More important, the self-limiting oxidation of SiGe alloy, which was still under debate, can be better understood in this model.
     (4) Thermal cleaning of SiGe surface under ultra-high vacuum has been systematically investigated. We found that Ge islands preferentially formed in the process of decomposition of native oxide covering the SiGe layer. The size and density of Ge islands could be controlled by the initial Ge content of the SiGe layer, which offered a simple route to fabricated small Ge quantun dots. However, for the SiGe layer passivated with hydrogen, lots of pits formed in the SiGe film during vacuum thermal annealing. When the temperature decreased to 550℃, a planar surface of SiGe substrate was obtained, on which a high quality SiGe epitaxy layer with the same content was also successfully achieved.
     (5) A novel SiGe HPT based on SiGe virtual substrate has been proposed and fabricated for the first time. The SiGe HPT showed a break voltage BV_(ceo) of about 14V and a low dark current density in the order of 4mA/cm~2 at 5V. The responsivity of 1.94mA/W was achieved at 1.55μm for normal incidence, which was about 20 times higher than that of previous SiGe HPT with Ge dot absorption layer reported by other group. It was also the first time to extent the response wavelength up to 1.55μm for SiGe HPT with multi-quantum-well absorption region.
引文
[1]M.Jutzi,M.Berroth,G.Wohl,M.Oehme,and E.Kasper.Ge-on-Si vertical incidence photodiodes with 39-GHz bandwidth[J],IEEE Photonic.Tech.Lett.,2005,17(7):1510-1512.
    [2]R.A.Soref,F.Namavar,and J.P.Lorenzo.Optical wave-guiding in a single-crystal layer of germanium silicon grown on silicon[J].Opt.Lett.,1990,15(5):270-272.
    [3]C.Li,Q.Yang,H.Wang,J.Yu,Q.Wang,Y.Li,J.Zhou,and C.Lin.SiGe/Si MQW resonant-cavity-enhanced photodetectors for 1.3μm operation[J].Appl.Phys.Lett.,2000,77(2):256-258.
    [4]J.W.Shi,Y S.Wu,Z.R.Li,and P.S.Chen.Impact-ionization-induced bandwidth-enhancement of a Si-SiGe-Based avalanche photodiode operating at a wavelength of 830nm with a gain-bandwidth product of 428GHz[J].IEEE Photonic.Tech.Lett.,2007,17(7):1041-1135.
    [5]Z.Pei,C.S.Liang,L.S.Lai,Y.T.Tseng,Y.M.Hsu,P.S.Chen,S.C.Lu,M.J.Tsai,and C.W.Liu.A high-performance SiGe-Si multiple-quantum-well heterojunction phototransistor[J].IEEE Electron Dev.Lett.,2003,24(10):643-645.
    [6]S.S.Iyer,G.L.Patton,S.S.Delage,S.Tiwari,and J.M.C.Stork.Silicon-germanium base heteroj unction bipolar transistors by molecular beam epitaxy[C].IEDM,1987,874-876.
    [7]C.A.King,J.L.Hoyt,C.M.Gronet,J.F.Gibbons,M.Scott,and J.Turner.Si/Si_(1-x)Ge_x heteroj unction bipolar transistors produced by limited reaction processing[J].IEEE Electron Dev.Lett.,1989,10(2):52-54.
    [8]G.L.Patton,J.H.Comfort,B.S.Meyerson,E.F.Crabbe,G.J.Scilla,E.D.Fresart,J.M.C.Stork,J.Y C.Sun,D.L.Harame,and J.N.Burghartz.63-75 GHz f_T SiGe-base heteroj unction bipolar technology[C].Tech.Dig.IEEE Symp.VLSI Tech.,1990,49-50.
    [9]G.L.Patton,J.H.Comfort,B.S.Meyerson,E.F.Crabbe,G J.Scilla,E.D.Fresart,J.M.C.Stork,J.Y.C.Sun,D.L.Harame,and J.N.Burghartz.75 GHz f_T SiGe base heterojunction bipolar transistors[J].IEEE Electron Dev.Lett.,1990,11(4):171-173.
    [10]D.L.Harame,E.F.Crabbe,J.D.Cressler,J.H.Comfort,J.Y.C.Sun,S.R.Stiffier,E.Kobeda,J.N.Burghartz,M.M.Gilbert,J.C.Malinowski,A.J.Dally,S.Ratanaphanyarat,M.J.Saccamanqo,W.Rausch,J.Cotte,C.Chu,and J.M.C.Stork.A high performance epitaxial SiGe base ECL BiCMOS technology[C].IEDM,1992,19-22.
    [11]D.L.Harame,J.M.C.Stork,B.S.Meyerson,K.Y J.Hsu,J.Cotte,K.A.Jenkins,J.D.Cressler,P.Restle,E.F.Crabbe,S.Subbanna,T.E.Tice,B.W.Scharf,and J.A.Yasaitis.Optimization of SiGe HBT technology for high speed analog and mixed-signal applications[C].IEDM,1993,71-74.
    [12]D.L.Harame,K.Schonenberg,M.Gilbert,D.N.Ngoc,J.Malinowski,S.J.Jeng,B.Meyerson,J.D.Cressler,R.Groves,G.Berg,K.Tallman,K.Stein,G.Hueckel,C.Kermarrec,T.Tice,G.Fitzgibbons,K.Walter,D.Colavito,T.Houghton,N.Greco,T.Kebede,B.Cunningham,S.Subbanna,J.H.Comfort,and E.F.Crabbe.A 200 mm SiGe-HBT technology for wireless and mixed-signal applications[C].IEDM,1994,437-440.
    [13]E.Crabbe,B.Meyerson,D.Harame,J.Stork,A.Megdanis,J.Cotte,J.Chu,M.Gilbert,C.Stanis,J.Comfort,G.Patton,and S.Subbanna.113 GHz-f_T graded-base SiGe HBT's[J].IEEE Trans.Electron Dev.,1993,40:2100-2101.
    [14]K.Oda,E.Ohue,M.Tanabe,H.Shimamoto,T.Onai,and K.Washio.130 GHz-fT SiGe HBT technology[C].Int.Electron Devices Meeting Tech.Dig.,1997,791-794.
    [15]A.Gruhle,H.Kibbel,A.Schurr,D.Behammer,and U.Konig.SiGe heteroj unction bipolar transistors with 156 GHz transit frequency[C].Proc.State-of-the-Art Program on Compound Semiconductors,1999,198-200.
    [16]S.J.Jeng,B.Jagannathan,J.S.Rieh,J.Johnson,K.T.Schonenberg,D.Greenberg,A.Strieker.H.Chen,M.Khater,D.Ahlgren,G.Freeman,K.Stein,and S.Subbanna.A 210-GHz f_T SiGe HBT with a non-self-aligned structure[J],IEEE Electron Dev.Lett.,2001,22(11):542-544.
    [17]J.S.Rieh,B.Jagannathan,H.Chen,K.T.Schonenberg,D.Angell,A.Chinthakindi,J.Florkey,F.Golan,D.Greenberg,S.J.Jeng,M.Khater,F.Pagette,C.Schnabel,P.Smith,A.Stricker,K.Vaed,R.Volant,D.Ahlgren,G.Freeman,K.Stein,and S.Subbanna.SiGe HBTs with cur-off frequency of 350GHz[C].IEDM,2002,771-774.
    [18]J.S.Rieh,B.Jagannathan,H.J.Chen,K.Schonenberg,S.J.Jeng,M.Khater,D.Ahlgren,G.Freeman,and S.Subbanna.Performance and design considerations for high speed SiGe HBTs of f_(T/)f_(max)=375GHz/210GHz[C].Int Conf Indium Phosphide and Related Materials.2003,374-377.
    [19]M.Khater,J.S.Rieh,T.Adam,A.Chinthakindi,J.Johnson,R.Krishnasamy,M.Meghelli,F.Pagette,D.Sanderson,C.Schnabel,K.T.Schonenberg,P.Smith,K.Stein,A.Stricker,S.J.Jeng,D.Ahlgren,and G.Freeman.SiGe HBT technology with f_(max)/f_T=350/300 GHz and gate delay below 3.3 ps[C].IEDM,2004,247-250.
    [20]Y.Shi,and G.Niu.Vertical profile design and transit time analysis of nano-scale SiGe HBTs for terahertz f_T[C].IEEE BCTM,2004,213-216.
    [21]Y.Shi,and G.Niu.2-D analysis of device parasitics for 800/1000GHz f_T/f_(max) SiGe HBT[C].IEEE BCTM,2005,252-255.
    [22]R.Krithivasan,Y.Lu,J.D.Cressler,J.S.Rieh,M.H.Khater,D.Ahlgren,and G.Freeman.Half-terahertz operation of SiGe HBTs[J].IEEE Electron Dev.Lett.,2006,27(7):567-569.
    [23]E.O.Johnson.Physics limitations on frequency and power parameters of transistors[J].IRE International Convention Record,1965,13(5):27-34.
    [24]F.Schwierz,and J.J.Liou.RF transistors:recent developments and roadmap toward terahertz applications[J].Solid-State Electron.,2007,51:1079-1091.
    [25]R.J.E.Hueting,J.W.Slotboom,J.Melai,P.Agarwal,and P.H.C.Magnee.A new trench bipolar transistor for RF applications[J].IEEE Trans.Electron Dev.,2004,51(7):1108-1113.
    [26]H.S.Bennett,R.Brederlow,J.C.Costa,P.E.Cottrell,W.M.Huang,A.A. Immorlica,Jr.,J.E.Mueller,M.Racanelli,H.Shichijo,C.E.Weitzel,B.Zhao.Device and technology evolution for Si-based RF integrated circuits[J].IEEE Trans.Electron Dev.,2005,52(7):1235-1258.
    [27]U.Erben,A.Gruhle,A.Schuppen,H.Kibbel,and U.Koenig.Dynamic characterisation of Si/SiGe power HBTs[J].Elect.Lett.,1994,30(6):525-527.
    [28]U.Erben,M.Wahl,A.Schuppen,and Schumacher.Class-A SiGe HBT power amplifiers at C-band frequencies[J].IEEE Microwave and Guided Wave Lett.,1995,5(12):435-436.
    [29]P.A.Potyraj,K.J.Petrosky,K.D.Hobart,F.J.Kub,and P.E.Thompson.A 230-Watt S-band SiGe heterojunction bipolar transistor[J].IEEE Trans.Microwave Theo.Technol,1996,44(12):2392-2397.
    [30]A.Schuppen,S.Gerlach,H.Dietrich,D.Wandrei,U.Seiler,and U.Konig.1-W SiGe power HBT's for mobile communication[J].IEEE Microwave Guided Wave Lett.,1996,6(9):341-343.
    [31]Z.Ma,S.Mohammadi,P.Bhattacharya,L.P,B.Katehi,S.A.Alterovitz,and G.E.Ponchak.High power X-band (8.4GHz) SiGe/Si heterojunction bipolar transistor[J].Electron.Lett.,2001,37(12):790-791.
    [32]Z.Ma,S.Mohammadi,P.Bhattacharya,L.P,B.Katehi,S.A.Alterovitz,and G.E.Ponchak,K.M.Strohm,and J.F.Luy.Ku-band (12.6GHz) SiGe/Si high-power heterojunction bipolar transistors[J].Electron.Lett.,2001,37(18):1140-1142.
    [33]S.Mohammadi,Z.Ma,J.Park,P.Bhattacharya,L.P.B.Katehi,G.E.Ponchak,S.A.Alterovitz,K.M.Strohm,and J.F.Luy.SiGe/Si power HBTs for X-to K-band applications[C].IEEE MTT-S Dig.,2002,289-292.
    [34]Z.Ma,N.Jiang,G.Wang,and S.A.Alterovitz.An 18-GHz 300-mW SiGe Power HBT[J].IEEE Electron Dev.Lett.,2005,26(6):381-383.
    [35]G.Wang,H.C.Yuan,and Z.Ma.Ultrahigh-performance 8-GHz SiGe power HBT[J].IEEE Electron Dev.Lett.,2006,27(5):371-373.
    [36]N.Jiang,Z.Ma,G Wang,P.Ma,and M.Racanelli.3-W SiGe power HBTs for wireless applications[J].Mat.Sci.Semicon.Proc,2005,8:323-326.
    [37]A.J.Joseph,D.L.Harame,B.Jagannathan,D.Coolbaugh,D.Ahlgren,J. Magerlein,L.Lanzerotti,A.Feilchenfeld,S.S.Onge,J.Dunn,and E.Nowak.Status and direction of communication technologies-SiGe BiCMOS and RFCMOS[J].Proc.IEEE,2005,93(9):1539-1558.
    [38]U.Pfeiffer,S.Reynolds,and B.Floyd.A 77 GHz SiGe power amplifier for potential applications in automotive radar systems[C].IEEE RFIC Symposium Digest Papers,2004,91-94.
    [39]A.Komijani,and A.Hajimiri.A wideband 77GHz,17.5dBm power amplifier in silicon[C].Proceedings of the IEEE CICC,2005,571-574.
    [40]J.L.Polleux,F.Moutier,A.L.Billabert,C.Rumelhard,E.Sonmez,and H.Schumacher.An SiGe/Si heterojunction phototransistor for opto-microwave application:modeling and firt experimental results[C].11~(th) GAAS Symposium,2003,231-234.
    [41]J.L.Polleux,F.Moutier,A.L.Billabert,C.Rumelhard,E.Sonmez,and H.Schumacher.A strained SiGe layer heterojunction bipolar phototransistor for short-range opto-microwave applications[C].International Topical Meeting on Microwave photonics,2003,113-116.
    [42]T.Yin,A.M.Pappu,and A.B.Apsel.Low-cost,high efficiency,and high-speed SiGe phototransistors in commercial BiCMOS[J].IEEE Photonic.Tech.Lett.,18(1):55-57.
    [43]S.Chandrasekhar,M.K.Hoppe,A.G.Dentai,C.H.Joyner,and G.J.Qua.Demonstration of enhanced performance of an InP/InGaAs heterojunction phototransistor with a base terminal[J].IEEE Electron Dev.Lett.,1991,12(10):550-552.
    [44]S.W.Tan,H.R.Chen,W.T.Chen,M.K.Hsu,A.H.Lin,and W.S.Lour.The influence of base bias on the collector photocurrent for InGaP/GaAs heterojunction phototransistors[J].J.Appl.Lett.,2005,97:034502/1-034502/7.
    [45]Z.Pei,C.S.Liang,L.S.Lai,Y.T.Tseng,Y M.Hsu,P.S.Chen,S.C.Lu,C.M.Liu,M.J.Tsai,and C.W.Liu.High Efficient 850 nm and 1310nm multiple quantum well SiGe/Si heterojunction phototransistors with 1.25 plus GHz bandwidth (850nm)[C].IEDM,2002,297-300.
    [46]Z.Pei,L.S.Lai,H.P.Hwang,Y.T.Tseng,C.S.Liang,and M.J.Tsai.Si_(1-x)Ge_x/Si multi-quantum well phototransistor for near-infrared operation[J].Physica E,2003,16:554-557.
    [47]J.W.Shi,Z.Pei,F.Yuan,Y M.Hsu,C.W.Liu,S.C.Lu,and M.J.Tsai.Performance enhancement of high-speed SiGe-based heterojunction phototransistor with substrate terminal[J].Appl.Phys.Lett.,2004,85(14):2947-2949.
    [48]Z.Pei,J.W.Shi,Y M.Hsu,F.Yuan,C.S.Liang,S.C.Lu,W.Y Hsieh,M.J.Tsai,and C.W.Liu.Bandwidth enhancement in an integratable SiGe phototransistor by removal of excess carriers[J].IEEE Electron Dev.Lett.,2004,25(5):286-288.
    [49]F.Yuan,J.W.Shi,Z.Pei,and C.W.Liu.MEXTRAM modeling of Si-SiGe HPTs [J].IEEE Trans.Electron Dev.,2004,51(6):870-876.
    [50]V.Ryzhii,and M.Ershov.Infrared multiple-quantum-well phototransistor[J].Solid State Electronics,1995,38(1):149-155.
    [51]V.Ryzhii,M.Ershov,I.Khmyrova,M.Ryzhii,and T.Iizuka.Multiple quantum-dot infrared phototransistors[J].Physica B,1996,227:17-20.
    [52]A.Elfving,G.V.Hansson,and W.X.Ni.SiGe(Ge-dot) heteroj unction phototransistors for efficient light detection at 1.3-1.55μm[J].Physica E,2003,16:528-532.
    [53]W.H.Shi,R.W.Mao,L.Zhao,L.P.Luo,and Q.M.Wang.Fabrication of Ge nano-dot heteroj unction phototransistors for improved light detection at 1.55μm [J].Chin.Phys.Lett,2006,23(3):735-737.
    [54]R.S.Wei,N.Deng,H.Dong,M.Ren,L.Zhang,P.Chen,and L.Liu.Ge quantum-dot polysilicon emitter heteroj unction phototransistors for 1.31-1.55μm light detection[J].Mat.Sci.Eng.B,2008,147:187-190.
    [1]A.Moriya,M.Sakuraba,T.Matsuura,and J.Murota.Doping and electrical characteristics of in situ heavily B-doped Si_(1-x)Ge_x films epitaxially grown using ultraclean LPCVD[J].Thin Solid Films,1999,343:541-544.
    [2]S.Kannan,C.Taylor,and D.Allred.PECVD growth of Si_x:Ge_(1-x) films for high speed devices and MEMS[J].J.Non-Cryst.Solids,2006,352:1272-1274.
    [3]B.S.Meyerson.UHV/CVD growth of Si and Si:Ge alloys:chemistry,physics,and device applications[J].Proc.IEEE.,1992,80(10):1592-1608.
    [4]B.S.Meyerson.Low-temperature silicon epitaxy by ultrahigh vacuum/chemical vapor deposition[J].Appl.Phys.Lett.,1986,48(12):797-799.
    [5]于卓.Si_(1-x)Ge_x/Si异质结材料UHV/CVD生长及其特性研究[Z].博士学位论文,1999.
    [6]孙伟峰.UHV/CVD外延生长硅及锗硅单晶薄膜[Z].硕士学位论文,2005.
    [7]曾玉刚,韩根全,余金中,成步文,王启明.双生长室超高真空化学气相淀积系统的研制[J].真空,2007,44(3):19-23.
    [8]R.Malik,and E.Gulari.Modeling growth of Si_(1-x)Ge_x epitaxial films from disilane and germane[J].J.Appl.Phys.,1993,73:5193-5196.
    [9]F.Hirose,and H.Sakamoto.Adsorption mechanisms of Si_2H_6 and GeH_4 on Si (100) 2×1 surfaces[J].Appl.Surf.Sci.,1996,107:75-80.
    [10]S.M.Jang,and R.Reif.Temperature dependence of Si_(1-x)Ge_x epitaxial growth using very low pressure chemical vapor deposition[J].Appl.Phys.Lett.,1991,59:3162-3164.
    [11]W.K.Liu,S.M.Mokler,N.Ohtani,C.Roberts,and B.A.Joyce.A RHEED study of the surface reconstructions of Si(001) during gas source MBE using disilane[J].Surf.Sci.,1992,364(3):301-311.
    [12]E.S.Tok,N.J.Woods,and J.Zhang.RHEED and SIMS studies of germanium segregation during growth of SiGe/Si heterostructures.J.Cryst.Growth,2000,209(2):321-326.
    [13]W.Huang,C.Chen,X.Xiong,Z.Liu,W.Zhang,and P.H.Tsien.Growth of graded SiGe films by novel UHV/CVD system[C].Junction Technology,IWJT '04.The Fourth International Workshop,2004,281-284.
    [14]J.Zhang,X.Jin,P.H.Tsien,and T.C.Lo.Characterization of SiGe base layer in Si/SiGe heterojunction bipolar transistor layer structure[J].Thin Solid Films,1998,333(1):13-15.
    [15]C.Li,S.John,E.Quinones,and S.Banerjee.Cold-wall ultrahigh vacuum chemical vapor deposition of doped and undoped Si and Si_(1-x)Ge_x epitaxial films using SiH_4 and Si_2H_6[J].J.Vac Sci.Technol.A,1996,14(1):170-183.
    [16]G.W.Huang,L.P.Chen,C.T.Chou,K.M.Chen,H.C.Tseng,W.C.Tasi,and C.Y.Chang.Low temperature epitaxy of Si and Si_(1-x)Ge_x by ultrahigh vacuum-chemical molecular epitaxy[J].J.Appl.Phys.,1997,81(1):205-210.
    [17]J.M.Baribeau and S.J.Rolfe.Characterization of boron-doped silicon epitaxial layers by x-ray diffraction[J].Appl.Phys.Lett.,1991,58(19):2129-2131.
    [1]W.Shockley.U.S.Patent 2569347,issued 1951.
    [2]H.Kroemer.Theory of a wide-gap emitter for transistors[J].Proc.IRE,1957,45:1535-1537.
    [3]H.Kroemer.Heterostructure bipolar transistors and integrated circuits[J].Proc.IEEE,1982,70:13-25.
    [4]H.Kroemer.Heterostructure bipolar transistors:what shoud we build?[J].J.Vacuum Sci.Tech.,1983,2:112-130.
    [5]S.S.Iyer,G.L.Patton,S.S.Delage,S.Tiwari,and J.M.C.Stork.Silicon-germanium base heteroj unction bipolar transistors by molecular beam epitaxy[C].IEDM,1987,874-876.
    [6]C.G.Van de Walle,and R.M.Martin.Theoretical calculations of heteroj unction discontinuities in the Si/Ge system[J].Phys.Rev.B,1986,34:5621-5634.
    [7]R.People and J.C.Bean.Band alignments of coherently strained Ge_xSi_(1-x)/Si heterostructures on 〈001〉 Ge_ySi_(1-y) substrates[J].Appl.Phys.Lett.,1986,48:538-540.
    [8]G.P.Schwartz,M.S.Hybertsen,J.Bevk,R.G.Nuzzo,J.P.Mannaerts,and G.J.Gualtieri.Core-level photoemission measurements of valenc band offsets in highly strained heterojunctions:Si-Ge system[J].Phys.Rev.B,1989,39:1235-1241.
    [9]J.C.Brighten,I.D.Hawkins,A.R.Peaker,E.H.C.Parker,and T.E.whall.The determination of valence band discontinuities in Si/Si_(1-x)Ge_x/Si heterojunctions by capacitance-voltage techniques[J].J.Appl.Phys.,1993,74:1894-1899.
    [10]C.T.Kirk.A theory of transistor cutoff frequency (fr) falloff at high current densities[J].IRE Trans.Electron Dev.,1962,3:164-174.
    [11]D.L.Harame,J.H.Comfort,J.D.Cressler,E.F.Crabbe,J.Y.C.Sun,B.S.Meyerson,and T.Tice.Si/SiGe epitaxial-base transistors:part Ⅰ-materials,physics,and circuits[J].IEEE Trans.Electron Dev.,1995,40(3):455-468.
    [12]G.L.Pattern,D.Harame,J.M.C.Stork,B.S.Meyerson,G.J.Scilla,and E.Ganin.Graded-SiGe-Base,poly-emitter heterojunction bipolar transistors[J].IEEE Electron Dev.Lett.,1989,10(12):534-536.
    [13]E.Crabbe,B.Meyerson,D.Harame,J.Stork,A.Megdanis,J.Cotte,J.Chu,M.Gilbert,C.Stanis,J.Comfort,G.Patton,and S.Subbanna.113-GHz f_T graded-base SiGe HBT's[J].IEEE Trans.Electron Dev.,1993,40(11):2100-2101.
    [14]D.L.Harame,J.M.C.Stork,B.S.Meyerson,K.Y.J.Hsu,J.Cotte,K.A.Jenkins,J.D.Cressler,P.Restle,E.F.Crabbe,S.Subbanna,T.E.Tice,B.W.Scharf,and J.A.Yasaitis.Optimization of SiGe HBT technology for high speed analog and mixed-signal applications[C].IEDM,1993,71-74.
    [15]Z.Liu,X.Xiong,W.Huang,G.Li,W.Zhang,J.Xu,Z.Liu,H.Lin,P.Xu,P.Chen,and P.H.Tsien.Polysilicon emitter double mesa microwave power SiGe HBT[J].Chin.J.Semicon.,2003,24(9):897-902.
    [16]K.Y Lee,B.N.Johnson,S.Mohammadi,P.K.Bhattacharya,L.P.B.Katehi,and G.Ponchak.An 8.5 GHz SiGe-based amplifier using fully self-aligned double mesa SiGe HBTs[C].Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems,2004,311-313.
    [17]J.S.Rieh,L.H.Lu,L.P.B.Katehi,P.Bhattacharya,E.T.Croke,G.E.Ponchak,and S.A.Alterovitz.X-and Ku-band amplifiers based on Si/SiGe HBT's and micromachined lumped components[J].IEEE Trans.Microwave Theory and Tech.,1998,46(5):685-693.
    [18]A,Gruhle.The influence of emitter-base junction design on collector saturation current,ideality factor,early voltage,and device switching speed of Si/SiGe HBT's[J].IEEE Trans.Electron Dev.,1994,41(2):198-203.
    [19]Z.Ma,and N.Jiang.Base-region optimization of SiGe HBTs for high-frequency microwave power amplification[J].IEEE Trans.Electron.Dev.,2006,53(4):875-883.
    [20]R.People,and J.C.Bean.Calculation of critical layer thickness versus lattice mismatch for GexSi_(1_x)/Si strained-layer heterostructures[J].Appl.Phys.Lett.. 47(3):322-323.
    [21]陈星弼,张庆中.晶体管原理与设计(M).电子工业出版社.2007.
    [22]B.J.Baliga,Modern Power Devices(M),2~(nd)edition,Wiley & Sons,1987:68-69.
    [23]Q.Z.Liu,B.A.Orner,L.Lanzerotti,M.Dahlstrom,W.Hodge,M.Gordon,J.Johnson,M.Gautsch,J.Greco,J.Rascoe,D.Ahlgren,A.Joseph,and J.Dunn.Collector optimization in advanced SiGe HBT technologies[C].Dig.CSIC,2005,117-120.
    [24]A.Koldehoff,M.Schroter,and H.M.Rein.A compact bipolar transistor model for very-high-frequency applications with special regard to narrow emitter stripes and high current densities[J].Solid-State Electorn.,1993,36(7):1035-1048
    [25]A.Schuppen,S.Gerlach,H.Dietrich,D.Wandrei,U.Seiler,and U.Konig.1-W SiGe power HBT's for mobile communication[J].IEEE Microwave Guided Wave Lett.,1996,6(9):341-343.
    [26]R.Emeis,A.Herlet,and E.Spenke.The effective emitter area of power transistors[J].Proc.IRE,1957,7:1220-1229.
    [27]R.Sampathkumaran.Design and simulation of SiGe HBT for power application at 10GHz.Ph.D.Dissertation,Cincinnati University,2004.
    [28]C.Canali,G.Majni,R.Minder,and G Ottaviani.Electron and hole drift velocity measurements in silicon and their empirical relation to electric field and temperature[J].IEEE Trans.Electron Dev.,1975,11:1045-1047.
    [1]邹德恕,陈建新,沈光地,高国,杜金玉,张时明,袁颖.SiGe/Si HBT及逆向制造方法[J].半导体技术,1997,(2):23-25.
    [2]邹德恕,陈建新,袁颖,董欣,高国,沈光地.SiGe/Si HBT制造中干法、湿法腐蚀技术的研究[J].半导体技术,1997,(1):26-28.
    [3]熊小义,刘志农,张伟,付玉霞,黄文韬,刘志弘,陈长春,窦维治,钱佩信.SiGe HBT发射极台面湿法腐蚀技术研究[J].纳米器件与技术,2003,10:15-17.
    [4]陈光红,于映,罗仲梓,吴清鑫.AZ 5214E反转光刻胶的性能研究及其在剥离工艺中的应用.功能材料,2005,3(36):431-440.
    [5]J.Eberhardt,and E.Kasper.Ni/Ag metallization for SiGe HBTs using a Ni silicide contact[J].Semicond.Sci.Technol.,2001,16:L47-L49.
    [6]S.P.Mcalister,W.R.Mckinnon,S.J.Kovacic,and H.Lafontaine.Self-heating in multi-emitter SiGe HBTs[J].Solid-State Electron.,48:2001-2006.
    [7]K.Lu,P.A.Perry,and T.J.Brazil.A new large-signal AlGaAs/GaAs HBT model including self-heating effects,with corresponding parameter-extraction procedure [J].IEEE Trans.Microwave Theory and Tech.,1995,43(7):1433-1445.
    [8]D.R.Pehlke,and D.Pavlidis.Evaluation of the factors determining HBT high frequency performance by derect analysis of S-parameter data[J].IEEE Trans.Microwave Theory and Tech.,1992,40(12):2367-2373.
    [9]P.J.van Wijnen,and L.C.Smith.High frequency characterization of small geometry bipolar transistors[C].IEEE Bipolar Circuits & Technology Meeting,1988,91-94.
    [10]U.Schaper,and B.Holzapfl.Analytical parameter extraxtion of the HBT equivalent circuit with T-like tepology from measured S-parameters[J].IEEE Trans.Microwave Theory and Yech.,1995,43(3):493-493.
    [11]S.Lee,and A.Gopinath.New circuit model for RF probe pads and interconnections for the extraction of HBT equivalent circuits[J].IEEE Electron Dev.Lett.,1991,12(10):521-523.
    [12]刘凤莲.提高微波晶体管S参数测量精确度的实用技术[J].宇航计测技术,2003,23(1):26-30.
    [13]吴群.微波工程技术[M].哈尔滨工业大学出版社,2005.
    [14]W.Liu.The temperature and current profiles in an emitter finger as a function of the finger length[J].Solid-State Electron.,1993,36:1787-1789.
    [15]W.Liu,and B.Bayraktaroglu.Theoretical calculations of temperature and current profiles in multifinger heterojunction bipolar transistors[J].Solid-State Electron.,1993,36:125-132.
    [16]D.Jin,W.Zhang,P.Shen,H.Xie,Y.Wang,W.Zhang,L.He,Y.Sha,J.Li,and J.Gan.Multi-finger power SiGe HBTs for thermal stability enhancement over a wide biasing range[J].Solid-State Electron.,2008,52:937-940.
    [17]D.Jin,W.Zhang,H.Xie,L.Chen,P.Shen,and N.Hu.Structure optimization of multi-finger power SiGe HBTs for thermal stability improvement[J].Microelectronics Reliability,2009,49:382-386.
    [18]M.G.Adlerstein.Thermal stability of emitter ballasted HBT's.IEEE Trans.Electron Dev.,1998,45(8):1653-1655.
    [19]R.P.Arnold,and D.S.Zoroglu.A quantitative study of emitter ballasting[J].IEEE Trans.Electron Dev.,1974,21(7):385-391.
    [20]Y.Zhu,J.K.Twynam,M.Yagura,M.Hasegawa,T.Hasegawa,Y.Eguchi,Y.Amano,E.Suematsu,K.Sskuno,N.Matsumoto,H.Sato,and N.Hashizume.Self-heating effect compensation in HBTs and its analysis and simulation[J].IEEE Trans.Electron Dev.,2001,48(11):2640-2646.
    [21]S.M.Sze.Physics of semiconductor devices[M].2nd ed.New York:Wiley,1981.
    [22]V.Palankovski,G.K.Grujin,and S.Selberherr.Study of dopant-dependent band gap narrowing in compound semiconductor devices[J].Mat.Sci.Engin.,1999,B66:46-49.
    [23]J.C.Bean.Silicon-based semiconductor heterostructures:column Ⅳ bandgap engineering[J].Proc.IEEE,1992,80(4):571-587.
    [1]W.Shockley.U.S.Patent 2569347,issued 1951.
    [2]M.S.Unlu,K.Kishino,J.I.Chyi,L.Arsenault,J.Reed,S.N.Mohammad,and H.Morkoc.Resonant cavity enhanced AlGaAs/GaAs heterojunction phototransistors with an intermediate InGaAs layer in the collector[J].Appl.Phys.Lett.,1990,57(8):750-752.
    [3]W.Q.Li,M.Karakucuk,P.N.Freeman,J.R.East,G.I.Haddad,and P.K.Bhattacharya.High-speed Al_(0.2)Ga_(0.8)As/GaAs multi-quantum-well phototransistors with tunable spectral response[J].IEEE Electron Dev.Lett.,1993,14(7):335-337.
    [4]W.Yang,T.Nohava,S.Krishnankutty,R.Torreano,S.McPherson,and H.Marsh.High gain GaN/AlGaN heterojunction phototransistor[J].Appl.Phys.Lett.,1998,73(7):978-980.
    [5]S.Bansropun,R.C.Woods,and J.S.Roberts.Evidence of optical gain improvement in AlGaAs/GaAs heterojunction phototransistors using an emitter shoulder structure[J].IEEE Trans.Electron Dev.,2001,48(7):1333-1339.
    [6]J.L.Polleux,F.Moutier,A.L.Billabert,C.Rumelhard,E.Sonmez,and H.Schumacher.A strained SiGe layer heterojunction bipolar phototransistor for short-range opto-microwave applications[Cj.International Topical Meeting on Microwave photonics,2003,113-116.
    [7]T.Yin,A.M.Pappu,and A.B.Apsel.Low-cost,high efficiency,and high-speed SiGe phototransistors in commercial BiCMOS[J].IEEE Photonic.Tech.Lett.,2006,18(1):55-57.
    [8]Z.Pei,C.S.Liang,L.S.Lai,Y.T.Tseng,Y.M.Hsu,P.S.Chen,S.C.Lu,C.M.Liu,M.J.Tsai,and C.W.Liu.High Efficient 850 nm and 1310nm multiple quantum well SiGe/Si heterojunction phototransistors with 1.25 plus GHz bandwidth (850nm)[C].IEDM,2002,297-300.
    [9]J.W.Shi,Z.Pei,F.Yuan,Y.M.Hsu,C.W.Liu,S.C.Lu,and M J.Tsai.Performance enhancement of high-speed SiGe-based heterojunction phototransistor with substrate terminal[J].Appl.Phys.Lett.,2004,85(14):2947-2949.
    [10]W.H.Shi,R.W.Mao,L.Zhao,L.P.Luo,and Q.M.Wang.Fabrication of Ge nano-dot heterojunction phototransistors for improved light detection at 1.55μm[J].Chin.Phys.Lett.,2006,23(3):735-737.
    [11]Y Zhang,C.Li,S.Y Chen,H.K.Lai,and J.Y.Kang.Numerical analysis of SiGe heterojunction bipolar phototransistor based on virtual substrate[J].Solid-State Electron,2008,52:1782-1790.
    [12]C.C.Lin,W.Martin,and J.S.Harris.Optical gain and collector current characteristics of resonant-cavity phototransistors[J].Appl.Phys.Lett,2000,76(9):1188-1190.
    [13]N.Chand,P.A.Houston,and P.N.Robson.Gain of a heterojunction bipolar phototransistor[J].IEEE Trans.Electron Dev,1985,ED32(3):622-627.
    [14]T.Moriizumi and K.Takahashi.Theoretical analysis of heterojunction phototransistors[J].IEEE Trans.Electron Dev,1972,19(2):152-158.
    [15]A.Cuevas,P.A.Basore,G G Matlakowski,C.Dubois.Surface recombination velocity of highly doped n-type silicon[J].J.Appl.Phys,1996,80(6):3370-3375.
    [16]J.P.McKelvey and R.L.Longini.Volume and surface recombination rates for injected carriers in germanium[J].J.Appl.Phys,1954,25(5):634-641.
    [17]J.Weber and M.I.Alonso.Near-band-gap photoluminescence of Si-Ge alloys[J].Phys.Rev.B,1989,40(8):5683-5693.
    [18]D.V.Lang,R.People,J.C.Bean,and A.M.Sergent.Measurement of the band gap of Ge_xSi_(1-x)/Si strained-layer heterostructures[J].Appl.Phys.Lett,1985,47(12):1333-1335.
    [19]S.Galdin,P.Dollfus,V.A.Fortuna,P.Hesto,and H.J.Osten.Band offset predictions for strained group Ⅳ alloys:Si_(1-x-y)Ge_xC_y on Si(001) and Si_(1-x)Ge_x on Si_(1-z)Ge_z(001)[J].Semicond.Sci.Technol,2000,15:565-572.
    [20]S.C.Jain and D.J.Roulston.A simple expression for band gap narrowing (BGN) in heavily doped Si,Ge,GaAs and Ge_xSi_(1-x) strained layers[J].Solid State Electron,1991,34(5):453-465.
    [21]R.Braunstein,A.R.Moore,and F.Herman.Intrinsic optical absorption in germanium-silicon alloys[J].Phys.Rev,1958,109:695-610.
    [22]L.Naval,B.Jalali,L.Gomelsky,and J.M.Liu.Optimization of Si_(1-x)Ge_x/Si Waveguide photodetectors operating at λ=1.3μm[J].J.Lightwave.Technol,1996,14(5):787-797.
    [23]J.L.Polleux and C.Rumelhard.Optical absorption coefficient determination and physical modelling of strained SiGe/Si photodetectors[C].IEEE EDMO 2000 Proc,Glasgow,Scotland,2000(November),167-172.
    [24]L.M.Giovane.Strain-balanced silicon-germanium materials for near IR photodetection in silicon-based optical interconnects.Ph.D.dissertation,Massachusetts Institute of Technology,1993.
    [25]M.V.Fischetti and S.E.Laux.Band structure,deformation potentials,and carrier mobility in strained Si,Ge,and SiGe alloys[J].J.Appl.Phys,1996,80(4):2234-2248.
    [26]D.J.Roulston.Bipolar Semiconductor Devices[M].New York:Mc-Graw-Hill,1990.
    [27]M.E.Law,E.Solley,M.Liang,D.E.Burk.Self-consistent model of minority-carrier lifetime,diffusion length,and mobility[J].IEEE Electron Dev.Lett.,1991,12(8):401-403.
    [28]D.L.Harame,J.H.Comfort,J.D.Cressler,E.F.Crabbe,J.Y.C.Sun,B.S.Meyerson,and T.Tice.Si/SiGe epitaxial-base transistors-part Ⅰ:materials,physics,and circuits[J].IEEE Trans.Electron Dev.,1995,42(3):455-468.
    [29]R.People and J.C.Bean.Calculation of critical layer thickness versus lattice mismatch for Ge_xSi_(1-x)/Si strained-layer heterostructures[J].Appl.Phys.Lett.,47(3):322-324.
    [30]J.Humlicek,F.Lukes,and E.Schmidt.Silicon-germanium alloys(Si_xGe_(1-x)),in Handbook of Optical Constants of Solids Ⅱ,E.D.Palik,Ed.Boston,MA:Academic,1991,607-636.
    [1]E.A.Fitzgerald,Y.H.Xie,M.L.Green,D.Brasen,A.R.Kortan,J.Michel,Y.J.Mii,and B.E.Weir.Totally relaxed Ge_xSi_(1-x) layers with low threading dislocation densities grown on Si substrates[J].Appl.Phys.Lett.,1991,59:811-813.
    [2]J.P.Liu,L.H.Wong,D.K.Sohn,L.C.Hsia,L.Chan,C.C.Wong,and H.J.Osten.A novel thin buffer concept for epitaxial growth of relaxed SiGe layers with low threading dislocation density[J].Electrochemi.Solid-State Lett.,2005,8(2):G60-G62.
    [3]L.H.Wong,J.P.Liu,F.Romanato,C.C.Wong,and Y.L.Foo.Strain relaxation mechanism in a reverse compositionally graded SiGe heterostructure[J].Appl.Phys.Lett.,2007,90(8):061913/1-061913/3.
    [4]J.H.Li,C.S.Peng,Y.Wu,D.Y Dai,J.M.Zhou,and Z.H.Mai.Relaxed Si_(0.7)Ge_(0.3) layers grown on low threading dislocation density[J].Appl.Phys.Lett.,1997,71(21):3132-3134.
    [5]M.Bauer,K.Lyutovich,M.Oehme,E.Kasper,H.-J,Herzog,and F.Ernst.Relaxed SiGe buffers with thicknesses below 0.1 μm[J].Thin Solid Films,2000,369:152-156.
    [6]T.Tezuka,N.Sugiyama,and S.Takagi.Fabrication of strained Si on an ultrathin SiGe-on-insulator virtual substrate with a high-Ge fraction[J].Appl.Phys.Lett.,2001,79(12):1798-1800.
    [7]M.Miyao,M.Tanaka,I.Tsunoda,T.Sadoh,T.Enokida,and H.Hagino.Highly strain-relaxed ultrathin SiGe-on-insulator structure by Ge condensation process combined with H+ irradiation and postannealing[J].Appl.Phys.Lett.,2006,88:142105/1-142105/3.
    [8]Z.Di,M.Zhang,W.Liu,M.Zhu,C.Lin,and P.K.Chu.Relaxed SiGe-on-insulator fabricated by dry oxidation of sandwiched Si/SiGe/Si structure[J].Mat.Sci.Engin.B,2005,124:153-157.
    [9]P.-E.Hellberg,S.-L.Zhang,F.M.d'Heurle,and C.S.Petersson.Oxidation of silicon-germanium alloys.Ⅱ.A mathematical model[J].J.Appl.Phys.,1997,82(11):5779-5787.
    [10]蔡坤煌.氧化法制备硅基SiGe驰豫衬底的研究[M].硕士学位论文,2008.
    [11]J.C.Tsang,P.M.Mooney,F.Dacol,and J.O.Chu.Measurements of alloy composition and strain in thin Ge_xSi_(1-x) layers[J].J.Appl.Phys.,1994,75:8098-8101.
    [12]J.Groenen,R.Carles,S.Christiansen,M.Albrecht,W.Dorsch,H.P.Strunk,H.Wawra,and G.Wagner.Phonons as probes in self-organized SiGe islands[J].Appl.Phys.Lett.,1997,71:3856-3858.
    [13]C.Li,K.H.Cai,Y.Zhang,H.K.Lai,and S.Y.Chen.Oxidation behavior of strained SiGe layer on silicon substrate in both dry and wet ambient[J].J.Electrochemi.Soc,2008,155(3):H156-H159.
    [14]D.G.Schimmel,A comparison of chemical etches for revealing(100) silicon crystal defects[J].J.Electrochemi.Soc,1976,123(5):734-737.
    [15]P.E.Hellberg,S.L.Zhang,F.M.Heurle,and C.S.Petersson.Oxidation of SiGe alloys.I.An experimental study[J].J.Appl.Phys.,1997,82(11):5773-5778.
    [16]T.Shimura,M.Shimizu,S.Horiuchi,H.Watanabe,K.Yasutake and M.Umeno.Self-limiting oxidation of SiGe alloy on silicon-on-insulator wafers[J].Appl.Phys.Lett.,2006,89(11):111923/1-111923/3.
    [17]Z.Di,P.K.Chu,M.Zhang,W.Liu,Z.Song,and C.Lin.Germanium movement mechanism in SiGe-on-insulator fabricated by modified Ge condensation[J].J.Appl.Phys.,2005,97:064-504.
    [18]S.W.Bedell,K.Fogel,D.K.Sadana,and H.Chen.Defects and strain relaxation in silicon-germanium-on-insulator formed by high-temperature oxidation[J].Appl.Phys.Lett.,2004,85(24):5869-5871.
    [19]J.Tersoff and F.K.LeGoues.Competing relaxation mechanisms in strained layers[J].Phys.Rev.Lett.,1994,72(22):3570-3573.
    [20]S.Hong,H.-W.Kim,D.K.Bae,S.C.Song,G-D.Lee,and E.Yoon,C.S.Kim, Y.L.Foo,and J.E.Greene.Formation of flat,relaxed Si_(1-x)Ge)x alloys on Si(001) without buffer layers[J].Appl.Phys.Lett.,2006,88:122103/1-122103/3.
    [21]M.Tanaka,I.Tsunoda,T.Sadoh,T.Enokida,M.Ninomiya,M.Nakamae and M.Miyao.Thickness-dependent stress-relaxation in thin SGOI structures and its improvement[J].Thin Solid Films,2006,508:247-250.
    [22]B.E.Deal and A.S.Grove.General relationship for the thermal oxidation of silicon[J].J.Appl.Phys.,1965,36(12):3770-3778.
    [23]M.A.Rabie,Y M.Haddara,and J.Carette.A kinetic model for the oxidation of silicon germanium alloys[J].J.Appl.Phys.,2005,98:074904/1-074904/10.
    [24]B.Vincent,J.F.Damlencourt,P.Rivallin,E.Nolot,C.Licitra,Y.Morand,and L.Clavelier.Fabrication of SiGe-on-insulator substrates by a condensation technique:an experimental and modeling study[J].Semicond.Sci.Technol.2007,22:237-244.
    [25]A.Fargeix,G.Ghibaudo.Role of stress on the parabolic kinetic constant for dry silicon oxidation[J].J.Appl.Phys.,1984,56(2):589-591
    [26]P.Thanikasalam,T.K.Whidden,D.K.Ferry.Oxidation of slicon (100):Experimental data versus a unified chemical model[J].J.Vac.Sci.Technol.B,1996,14(4):2840-2844.
    [27]K.Kim,Y H.Lee,M.H.An,M.S.Suh,C.J.Youn,K.B.Lee,H.J.Lee.Growth law of silicon oxides by dry oxidation[J].Semicond.Sci.Technol.,1996,11:1059-1063.
    [28]W.S.Liu,E.W.Lee,and M.A.Nicolet.Wet oxidation of GeSi at 700℃[J].J.Appl.Phys.1992,71(8):4015-4017.
    [29]S.Balakumar,S.Peng,K.M.Hoe,G.Q.Lo,R.Kumar,N.Balasuramaman,and
    D.L.Kwong.Fabrication of thick SiGe on insulator (Si_(0.2)Ge_(0.8)OI) by condensation of SiGe/Si superlattice grown on silicon on insulator[J].Appl.Phys.Lett.,90,2007,90:192113/1-192113/3.
    [30]T.Tezuka,N.Sugiyama,T.Mizuno,M.Suzuki,and S.Takagi.A novel fabrication technique of ultrathin and relaxed SiGe buffer layers with high Ge fabrication for sub-100 nm strained silicon-on-insulator MOSFETs[J].Jpn.J.Appl.Phys.,2001,40:2866-2874.
    [31]K.V.Shanavas,N.Garg,and S.M.Sharma.Classical molecular dynamics simulations of behavior of GeO_2 under high pressures and at high temperatures[J].Phys.Rev.B,2006,73:094120/1-094120/12.
    [32]Z.W.Zhou,Z.M.Cai,C.Li,H.K.Lai,S.Y.Chen,and J.Z.Yu.Promoting strain relaxation of Si_(0.72)Ge_(0.28) film on Si (100) substrate by inserting a low-temperature Ge islands layer in UHVCVD[J].Appl.Sur.Sci.,2008,255:2660-2664.
    [33]O.G Schmidt,U.Denker,S.Christiansen,and F.Ernst.Composition of self-assembled Ge/Si islands in single and multiple layers[J].2002,81(14):2614-2616.
    [34]C.Tetelin,X.Wallart,D.Stievenard,J.P.Nys,and D.J.Gravesteijn.Evidence of Ge island formation during thermal annealing of SiGe alloys:combined atomic force microscopy and Auger electron spectroscopy study[J].J.Vac.Sci.Technol.B,1998,16(1):137-141.
    [35]R.Tromp,G.W.Rubloff,P.Balk,and F.K.LeGoues.High-temperature SiO2 decomposition at the Si02/Si interface[J].Phys.Rev.Lett.,1985,55(21): 2332-2335.
    [36]D.Jones and V.Palermo.Production of nanostructures of silicon on silicon by atomic self-organization observed by scanning tunneling microscopy[J].Appl.Phys.Lett.,2002,80(4):673-675.
    [37]A.Oshiyama.Structures of stepes and apperances of (311) Facets on Si (100) surfaces[J].Phys.Rev.Lett.,1995,74(1):130-133.
    [38]Q.Li,E.S.Tok,and H.C.Kang.Energetics of adsorbed hydrogen and surface ermanium on stepped SixGel-x (100)-(2xl) surfaces[J].Phys.Rev.B,2008,77,205306/1-205306/10.
    [39]C.H.Jang,S.I.Paik,Y.W.Kim,and N.-E.Lee.Substrate pit formation and surface wetting during thermal annealing of strained-Si/relaxed-Sio.78Geo.22 heterostructure[J].Appl.Phys.Lett.,2007,90(9):091915/1-091915/3.
    [1]J.L.Polleux,F.Moutier,A.L.Billabert,C.Rumelhard,E.Sonmez,and H.Schumacher.An SiGe/Si heterojunction phototransistor for opto-microwave application:modeling and first experiment results[C].11~(th) GAAS Symposium,2003,231-234.
    [2]Z.Pei,C.S.Liang,L.S.Lai,Y.T.Tseng,Y.M.Hsu,P.S.Chen,S.C.Lu,M.-J.Tsai,and C.W.Liu.A high-performance SiGe-Si multiple-quantum-well heterojunction phototransistor[J].IEEE Electron Dev.Lett.,2003,24(10):643-645.
    [3]P.E.Dodd,T.B.Stellwag,M.R.Melloch,and M.S.Lundstrom.Surface and perimeter recombination in GaAs diodes:an experimental and theoretical investigation[J].IEEE Trans.Electron Dev.,1991,38(6):1253-1261.
    [4]L.M.Giovane,H.C.Luan,A.M.Agarwal,and L.C.Kimerling.Correlation between leakage current density and threading dislocation density in SiGe p-i-n diodes grown on relaxed graded buffer layers[J].2001,Appl.Phys.Lett.,78(4):541-543.
    [5]M.Houssa,G.Pourtois,B.Kaczer,B.De Jaeger,F.E.Leys,D.Nelis,K.Paredis,A.Vantomme,M.Caymax,M.Meuris,and M.M.Heyns.Experimental and theoretical study of Ge surface passivation[J].Microelectronic Engineering,2007,84:2267-2273.
    [6]A.Elfving,G V.Hansson,and W.X.Ni.SiGe(Ge-dot) heterojunction phototransistors for efficient light detection at 1.3-1.55μm[J].Physica E,2003,16:528-532.
    [7]N.Chand,P.A.Houston,and P.N.Robson.Gain of a heterojunction bipolar phototransistor[J].IEEE Trans.Electron Dev.,1985,ED32(3):622-627.
    [8]H.Kroemer.Theory of a wide-gap emitter for transistors[J].Proc.IRE,1957,45:1535-1537.