碳纳米管的聚苯胺掺杂研究及其在气敏传感器中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
准一维的碳纳米管是一种潜在的优良气敏材料,它具有很大的表面-体积比和丰富的孔隙结构,对一些气体分子有很强的吸附能力。同样,聚苯胺也具有一定的气敏响应特性,掺杂聚苯胺后的碳纳米管,其气敏特性有显著提高。基此,本论文主要做了以下的研究:
     论文中采用了较为简单的原位聚合法,制备出了本征态聚苯胺。并利用介电泳方法可实现对碳纳米管的定向操控的特性,通过优化控制碳管所在交流电场的幅值、频率及时间等参数实现在叉指电极间定向排布碳纳米管、聚苯胺纤维膜,测试了两种材料对氨气的响应特性,从响应时间、恢复时间、线性度等参数分析其特点。
     同时,本文重点介绍了基于聚苯胺及多壁碳纳米管复合材料的氨气传感器的制备与测试,使用原位聚合法使苯胺单体以碳纳米管为核心进行聚合反应,运用介电泳法制备多壁碳纳米管/聚苯胺气敏复合膜传感器。该传感器对10ppm氨气的响应灵敏度为3.4,响应时间15s,而对比实验中聚苯胺膜传感器的灵敏度为1.9。实验结果表明,由于碳纳米管在介电泳过程中构建的大比表面积纳米三维结构和优良的导电率,纳米复合材料的微观结构和导电性能都得到大幅改善,从而使得复合物具有相对于本征碳纳米管和聚苯胺膜更好的气敏特性。
     此外,我们还采用直接分散法对碳纳米管进行聚苯胺掺杂,实验结果证明,基于直接分散法制备的碳纳米管聚苯胺混合物气体传感器的响应为2.837。与之前本征碳纳米管制作的气敏传感器相比,响应时间大大缩短,恢复时间略大于之前的传感器,并且直接分散法制作的传感器在1000s左右时能完全恢复到之前的位置,而本征碳纳米管却不能。
     实验进一步证明,掺杂聚苯胺的碳纳米管有着更好的气敏应用前景。该制备方法克服了本征态碳纳米管气敏特性低的缺陷,增强了聚苯胺纳米结构特性,提升了复合材料对氨气的气敏响应特性。
Carbon nanotubes(CNTs) has porous microstructure and high surface area, so has strong absorption for some gas, which makes it a promising future as sensitive material. It is found that polyaniline(Pani) also has a certain gas sensor response characteristics. The characteristics of gas sensors based on carbon nanotubes doped Fani is significantly higher. Have this in mind, we do the following works:
     In this paper, we prepared polyaniline using the method of in-sute polymerization. And we control the ordered arragement of carbon nanotubes and Pani by using electrophoresis (DEP).The parameters we optimize are amplitude, frequency and time of the electric field. We also test the gas sening characteristics to ammonia of the two materials, and we certify the conclusion from response time, recovery time, linear degrees.
     Carbon nanotube and Polyaniline composite for gas sensing were investigated in this paper. Pani coated multi-walled carbon nanotube (MWNT) was synthesized by means of in-sute polymerization and dielectrophoresis. The nano-composite sensor showed a 3.4 reversible resistance change to lOppm NH3 with a response time of 15s while the sensitivities of Pani film sensor is 1.9 in the contrast experiment. The results indicate that the nano-composite sensitivity and sensing dynamic are improved due to the nanostructure with ultra-high surface-volume ratio and good conductivity. The mechanism of sensitivity to NH3 of the sensor was also discussed.
     In addition, we also use the method of direct scattered to prepare carbon nanotubes doped polyaniline.The mixed gas sensor response is 2.837 to ammonia in our experiment.And compared to pure CNT,the response time shortens greatly, the recovery time is just slightly longer, and the desorption is better.
     In conclusion,the gas sensor based on the CNT doped Pani has a better application prospect. The methods we use not only overcome the low defects of CNT gas scnsors,but also enhance the nano structure characteristics of polyaniline, which makes the composite material a star material for ammonia detection.
引文
[1]IIJIMA S. Helical microtubules of graphitic carbon [J]. nature,1991, 354(6348):56-8.
    [2]SAITO Y, OKUDA M, FUJIMOTO N, et al. Single-wall carbon nanotubes growing radially from Ni fine particles formed by arc evaporation [J]. Japanese journal of applied physics,1994,33(L526-L9.
    [3]DUJARDIN E, EBBESEN T W, KRISHNAN A, et al. Purification of single-shell nanotubes[J].Advanced Materials,1998,10(8):611-3.
    [4]布沙B,周佳.纳米技术手册[J].国外科技新书评介,2006,007):10-
    [5]麦亚潘,刘忠范.碳纳米管:科学与应用[M].科学出版社,2007.
    [6]赵玉增,齐永晓,张俊喜.碳纳米管的制备与应用研究进展[J].上海电力学院学报,2010,26(004):361-5.
    [7]KONG J, FRANKLIN N R, ZHOU C, et al. Nanotube molecular wires as chemical sensors [J]. Science,2000,287(5453):622.
    [8]CHOPRA S, PHAM A, GAILLARD J, et al. Carbon-nanotube-based resonant-circuit sensor for ammonia [J]. Applied physics letters,2002,80(4632.
    [9]SNOW E, PERKINS F, HOUSER E, et al. Chemical detection with a single-walled carbon nanotube capacitor [J]. Science,2005,307(5717):1942.
    [10]文晓艳.改性碳纳米管气体传感器[J].化学进展,2008,20(0203):260-4.
    [11]TSANG S, CHEN Y, HARRIS P, et al. A simple chemical method of opening and filling carbon nanotubes [J].1994,
    [12]ABRAHAM J K, PHILIP B, WITCHURCH A, et al. A compact wireless gas sensor using a carbon nanotube/PMMA thin film chemiresistor [J]. Smart Materials and Structures,2004,13(1045.
    [13]方向生,郭淼,陈文菊,et al.碳纳米管及其修饰物对挥发性有机物气敏性的研究[J].传感技术学报,2008,5):2130-4.
    [14]LIM J H, PHIBOOLSIRICHIT N, MUBEEN S, et al. Electrical and gas sensing properties of polyaniline functionalized single-walled carbon nanotubes [J]. Nanotechnology,2010,21(075502.
    [15]KIM S, LEE H R, YUN Y J, et al. Effects of polymer coating on the adsorption of gas molecules on carbon nanotube networks [J]. Applied physics letters, 2007,91(093126.
    [16]WEI C, DAI L, ROY A, et al. Multifunctional chemical vapor sensors of aligned carbon nanotube and polymer composites [J]. Journal of the American Chemical Society,2006,128(5):1412-3.
    [17]ESPINOSA E, IONESCU R, BITTENCOURT C, et al. Metal-decorated multi-wall carbon nanotubes for low temperature gas sensing [J]. Thin Solid Films, 2007,515(23):8322-7.
    [18]SCHLECHT U, BALASUBRAMANIAN K, BURGHARD M, et al. Electrochemically decorated carbon nanotubes for hydrogen sensing [J]. Applied surface science,2007,253(20):8394-7.
    [19]DAI H, HAFNER J H, RINZLER A G, et al. Nanotubes as nanoprobes in scanning probe microscopy [J]. nature,1996,384(6605):147-50.
    [20]CHEN Y C, RARAVIKAR N, SCHADLER L, et al. Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55 μm [J]. Applied physics letters,2002,81(975.
    [21]BONARD J M, ST CKLI T, MAIER F, et al. Field-emission-induced luminescence from carbon nanotubes [J]. Physical review letters,1998,81(7):1441-4.
    [22]POSTMA H W C, TEEPEN T, YAO Z, et al. Carbon nanotube single-electron transistors at room temperature [J]. Science,2001,293(5527):76.
    [23]成会明,刘畅,丛洪涛.具有优异储氢性能的高质量单壁纳米碳管的合成[J].物理,2000,29(8):449-50.
    [24]王曙光,李延辉.碳纳米管负载氧化铝材料的制备及其吸附水中氟离子的研究[J].高等学校化学学报,2003,24(001):95-9.
    [25]马登月.碳纳米管负载二氧化锰材料的制备及吸附铅离子的机制研究[D];山东大学硕士学位论文,2007.
    [26]喻光辉,曾繁涤.聚氨酯/碳纳米管复合材料力学及电性能研究[J].工程塑料应用,2005,33(6):11-4.
    [27]杜波,袁华,刘俊峰,et a1.多壁碳纳米管/环氧树脂复合材料雷达波吸收性能[J].南昌大学学报:理科版,2008,32(005):439-42.
    [28]SHIRAKAWA H, LOUIS E J, MACDIARMID A G, et al. Synthesis of electrically conducting organic polymers:halogen derivatives of polyacetylene,(CH) x [J]. J Chem Soc, Chem Commun,1977,16):578-80.
    [29]诸平,卢樱,程秀花,et a1.神奇材料与2000年诺贝尔化学奖[J].宝鸡文理学院学报(自然科学版),2001,21(1):
    [30]WALTMAN R, BARGON J. Electrically conducting polymers: a review of the electropolymerization reaction, of the effects of chemical structure on polymer film properties, and of applications towards technology [J]. Canadian journal of chemistry,1986,64(1):76-95.
    [31]MACDIARMID A G, CHIANG J C, HALPERN M, et al. "Polyaniline": Interconversion of Metallic and Insulating Forms [J]. Molecular Crystals and Liquid Crystals,1985,121(1-4):173-80.
    [32]NICOLAS-DEBARNOT D, PONCIN-EPAILLARD F. Polyaniline as a new sensitive layer for gas sensors [J]. Analytica Chimica Acta,2003,475(1-2):1-15.
    [33]WANG S, ZHANG Q, YANG D, et al. Multi-walled carbon nanotube-based gas sensors for NH< sub> 3 detection [J]. Diamond and Related materials,2004,13(4):1327-32.
    [34]HUANG J, KANER R B. The intrinsic nanofibrillar morphology of polyaniline [J]. Chem Commun,2005,4):367-76.
    [35]BAI H, SHI G. Gas sensors based on conducting polymers [J]. Sensors, 2007,7(3):267-307.
    [36]EPSTEIN A, GINDER J, ZUO F, et al. Insulator-to-metal transition in polyaniline [J]. Synthetic Metals,1987,18(1-3):303-9.
    [37]CRUZ G, MORALES J, CASTILLO-ORTEGA M, et al. Synthesis of polyaniline films by plasma polymerization [J]. Synthetic Metals,1997,88(3):213-8.
    [38]LIAO C, GU M. Electroless deposition of polyaniline film via autocatalytic polymerization of aniline [J]. Thin Solid Films,2002,408(1):37-42.
    [39]CAO Y, SMITH P, HEEGER A J. Counter-ion induced processibility of conducting polyaniline and of conducting polyblends of polyaniline in bulk polymers [J]. Synthetic Metals,1992,48(1):91-7.
    [40]CHIANG J C, MACDIARMID A G. [] Polyaniline:Protonic acid doping of the emeraldine form to the metallic regime [J]. Synthetic Metals,1986,13(1-3): 193-205.
    [41]GENIES E, LAPKOWSKI M. Polyaniline films. Electrochemical redox mechanisms [J]. Synthetic Metals,1988,24(1-2):61-8.
    [42]GOPALAN A I, LEE K P, SANTHOSH P, et al. Different types of molecular interactions in carbon nanotubc/conducting polymer composites-A close analysis [J]. Composites science and technology,2007,67(5):900-5.
    [43]ZHANG T, NIX M B, YOO B Y, et al. Electrochemically functionalized single-walled carbon nanotube gas sensor [J]. Electroanalysis,2006,18(12):1153-8.
    [44]KRUTOVERTSEV S, SOROKIN S, ZORIN A, et al. Polymer film-based sensors for ammonia detection [J]. Sensors and Actuators B:Chemical, 1992,7(1-3):492-4.
    [45]AGBOR N, PETTY M, MONKMAN A. Polyaniline thin films for gas sensing [J]. Sensors and Actuators B:Chemical,1995,28(3):173-9.
    [46]李伟,成荣明,徐学诚,et al.羟基自由基对多壁碳纳米管表面和结构的影响[J].无机化学学报,2005,21(2):186-90.
    [47]贾士强,张琳,张立旻,et al.定向多壁碳纳米管纯化研究[J].纤维复合材料,2007,24(004):40-3.
    [48]LI J, ZHANG Q, YANG D, et al. Fabrication of carbon nanotube field effect transistors by AC dielectrophoresis method [J]. Carbon,2004,42(11):2263-7.
    [49]LIU X, SPENCER J L, KAISER A B, et al. Selective purification of multiwalled carbon nanorubes by dielectrophoresis within a large array [J]. Current Applied Physics,2006,6(3):427-31.
    [50]辛育东,刘晓东.碳纳米管酸氧化改性[J].东华理工大学学报:自然科学版,2010,33(001):75-8.
    [51]江琳沁,高濂.化学处理对碳纳米管分散性能的影响[J].无机材料学报,2003,18(005):1135-8.
    [52]胡洁,张宇军,李鹏,et al.碳纳米管分散形态的电镜研究[J].电子显微学报,2003,22(005):415-9.
    [53]POHL H A, POHL H. Dielectrophoresis:the behavior of neutral matter in nonuniform electric fields [M]. Cambridge university press Cambridge,1978.
    [54]HUANG Y, WANG X, TAME J, et al. Electrokinetic behaviour of colloidal particles in travelling electric fields:studies using yeast cells [J]. Journal of Physics D:Applied Physics,1993,26(1528.
    [55]LUNGU M. Separation of small metallic nonferrous particles in low concentration from mineral wastes using dielectrophoresis [J]. International Journal of Mineral Processing,2006,78(4):215-9.
    [56]YAMAMOTO K, AKITA S, NAKAYAMA Y. Orientation of carbon nanotubes using electrophoresis [J]. Japanese journal of applied physics,1996,35(7B): L917-L8.
    [57]BATES A D, CALLEN B P, COOPER J M, et al. Construction and characterization of a gold nanoparticle wire assembled using Mg2+-dependent RNA-RNA interactions [J]. Nano letters,2006,6(3):445-8.
    [58]KRUPKE R, HENNRICH F, L HNEYSEN H, et al. Separation of metallic from semiconducting single-walled carbon nanotubes [J]. Science,2003, 301(5631):344.
    [59]HONG S, JUNG S, CHOI J, et al. Electrical transport characteristics of surface-conductance-controlled, dielectrophoretically separated single-walled carbon nanotubes [J]. Langmuir,2007,23(9):4749-52.
    [60]SUEHIRO J, IKEDA N, OHTSUBO A, et al. Fabrication of bio/nano interfaces between biological cells and carbon nanotubes using dielectrophoresis [J]. Microfluidics and nanofluidics,2008,5(6):741-7.
    [61]WANG R, LI H, PAN M, et al. A carbon nanotube gas sensor fabricated by dielectrophoresis and its application for NH3 detection, F,2009 [C]. IEEE.
    [62]惠国华,陈裕泉.基于碳纳米管微传感器阵列和随机共振的气体检测方法研究[J].传感技术学报,2010,23(002):179-82.
    [63]KAUFFMAN D R, STAR A. Carbon nanotube gas and vapor sensors [J]. Angewandte Chemie International Edition,2008,47(35):6550-70.
    [64]JEEVANANDA T, KIM N H, HEO S B, et al. Synthesis and characterization of polyaniline-multiwalled carbon nanotube nanocomposites in the presence of sodium dodecyl sulfate [J]. Polymers for Advanced Technologies,2008, 19(12):1754-62.
    [65]KONYUSHENKO E N, STEJSKAL J, TRCHOV M, et al. Multi-wall carbon nanotubes coated with polyaniline [J]. Polymer,2006,47(16):5715-23.
    [66]陈金霞,郭淼,陈文菊,et al.基于多壁纳米碳管的传感器对甲苯的气敏性研究[J].传感技术学报,2005,18(001):39-42.
    [67]ZHANG T, MUBEEN S, YOO B, et al. A gas nanosensor unaffected by humidity [J]. Nanotechnology,2009,20(255501.