不同空间尺度区域氮素收支
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氮是生命必须的元素之一,随着人口的增加和经济的发展,人为活动增加了地球陆地生态系统的氮投入。人为活化氮的投入一方面提高了作物的产量,满足了人类对食物和能源等的需求,但是另一方面化肥过量施用、畜牧养殖废污排放、化石燃料大量使用等人类活动过程,极大地干扰了氮在大气、水、生物、土壤等圈层的相互转化及运动。地球生态系统中的氮素超负荷承载,导致了地球环境自然平衡的破坏,从而引起温室效应、臭氧层破坏、酸雨、地下水硝酸盐污染、湖泊与近海水体富营养化等一系列从区域到全球尺度的生态环境问题。因此,研究氮素的输入输出过程、控制机制、影响因素和变化趋势,对于提出针对性的氮素管理措施,从根本上控制氮素流失、加强资源保护、改善生态环境、促进社会经济可持续发展具有重要意义。
     近年来尽管我国在氮素投入支出方面的研究取得一定的成就,但整体上还不够完善。本研究利用实验监测数据、农户调查数据、统计年鉴数据、图形数据与公开发表的文献资料等,通过建立氮素投入(生物固氮、化学氮肥、粮食和饲料进口以及大气沉降)和氮素支出(氨挥发、流入水体、反硝化和储存、粮食和饲料出口以及生物质燃烧)模型,研究我国不同区域空间尺度氮素特征,以明确氮素的来源去向、过程机制、变化规律、影响因素及其环境效应,探索氮素流失的控制环节和主要途径。本研究取得如下主要成果和结论:
     1、在以稻作为主的句容农业小流域,连续两年的观测数据和农业调查数据显示,2007-2009年该流域总氮投入为1272ton,单位面积通量280 kg N ha-1 yr-1。化学氮肥是主要的氮投入来源,占总量的78.7%;流域的大气干湿沉降为39 kg N ha-1 yr-1,是第二大氮源;流域生物固氮占总氮投入的13.8%,通过粮食和饲料进口的氮体现在农作物种子的买进,仅占总氮投入量的0.6%。
     作为典型的农业流域,该地区没有大规模的养殖场和工厂等,流域内生产的粮食和食品大部分输出到流域之外。人畜排泄物基本还田作有机肥,通过农田有机肥和化学氮肥氨挥发的氮为188ton,占总氮投入的14.8%。调查显示该流域农作物秸秆露天燃烧量很高,通过秸秆露天和作为燃料燃烧排放到大气中的氮为140 ton,占总氮投入的11%。作为流域唯一出水口的水库,氮输出仅9.3 ton,不到总氮投入的1%,这表明句容农业流域投入的人为活化氮大部分通过氨挥发和生物质燃烧的方式排放到大气中。氮素以氨挥发、生物质燃烧排放到流域外是影响该流域氮素循环的主要因素。该农业流域内每年有637 ton氮被土壤系统本身所去除或被储存于土壤中,占总氮素投入的50%。历史资料和实测数据显示,当地土壤全氮含量并没有明显增加,因此大部分盈余氮通过反硝化进入环境。当地独特的自然景观对氮素的拦截作用、反硝化作用对水体氮的去除和大量的氨挥发、生物质燃烧是水体氮输出低的主要原因。因此,从减少氮素损失和治理环境污染的角度出发,对于稻作农业流域内的氮素管理,应该更加关注氮素的气态损失。
     2、在人口密集,工农业、养殖业高度发达的太湖流域常熟地区,单位面积氮素总投入为23927 kg N km-2 yr-1,折合27707 ton。化学氮肥是最大的氮源,占总氮投入的56.6%;大量的粮食和饲料的进口是该地区氮投入的主要特征,总量为6186ton,单位面积5342 kg N km-2 yr-1,占总氮投入的22.3%;大气氮沉降和生物固氮分别占总氮投入的15.5%和5.6%。
     通过氨挥发和生物质燃烧进入大气的氮分别为3535ton和172ton,占总量的12.8%和6.2%;通过水体输出的氮为8108ton(7002 kg N km-2 yr-1),占总投入量的29.3%。差减法显示,51.7%的氮素通过反硝化进入环境或储存在系统中。
     太湖地区水污染严重,大量未经处理的生活污水、工业废水直接排入水体是导致水体氮污染的主要原因。本研究显示,该地区地表水输出平均氮浓度为6mg N L-1,高于我国地表水劣五类标准。通过农村生活污水、禽畜养殖排放到水体的氮是水体氮的第一大源,占总量的26.5%;城镇居民生活污水和工业废水是第二的水体氮源,为2085ton,占流入水体总氮量的25.7%;来自农田径流和淋溶的氮占总流入水体总氮量的17.9%,大气氮沉降所占的比例仅次于农田径流和淋溶,为17.0%。作为典型的河网平原地区,水产养殖也是该地区水体氮的一个重要来源之一,占总量的8.1%。因此,在控制当地城镇生活污水、工业废水等主要水体氮污染源的同时,也要采取措施控制农村生活污水、禽畜排泄物排的排放。
     3、1985、1990、1995、2000、2005、2007年我国大陆生态系统氮投入总量分别为3081、3778、4418、4610、5238、5426kg N km-2 yr-1,22年间投入量增加76.1%。化学氮肥是第一大氮源,生物固氮所占比例呈现逐步下降的趋势,大气氮沉降约占总氮投入的24%。1985年以后出现粮食和饲料净进口的现状,截止2007年,通过粮食和饲料进口的氮占总氮投入的3.5%。氨挥发和流入水体的氮占总氮投入比例相当,约20%。22年间生物质燃烧排放氮占总氮投入的5.3-7.7%。通过物质平衡法估算,反硝化约占总氮支出的41%,系统储存占17%,大量的氮投入通过反硝化途径进入环境。与其他国家和地区相比,我国化学氮肥的施用是导致氮素投入水平过高的主要原因,而因此导致的大气氮沉降、氨挥发等也显著高于其他国家和地区。
     受地理位置、人口密度、经济发展水平、土地利用类型等因素的影响,我国氮素收支在省域尺度上差别很大。人口密度与反硝化和储存、流入水体的氮、总氮投入呈极显著直线正相关关系;耕地面积占总面积百分比、人均GDP与氮总投入、氨挥发、反硝化和储存、流入水体直线显著正相关。除林地面积百分比与生物质燃烧排放的氮直线显著正相关外,草地面积百分和林地面积百分比与氮素总投入、氨挥发、反硝化和储存、流入水体直线显著负相关。因此,在人口密度较大、经济相对发达的东部和东南沿海地区以及耕地面积比例较大的河南、山东、河北等省,氮素投入总量较高,相应的氮素流失量也较大。而在广大西北、西南地区,经济发展水平相对较低、人口密度小、土地利用类型以林地和草地为主,氮素投入较低、对环境的影响相应较小。
     我国长江、黄河、珠江三大河流水体存在不同程度的氮污染情况,本研究对三大流域的水体氮输出估算显示,长江流域是三大流域中水体氮输出最高的流域,1985、1990、1995、2000、2005、2007年水体氮输入分别为1.90、2.43、2.59、2.76、2.61Tg,相应年份河口氮输出量为1.33、1.7、1.81、1.93、1.83Tg;黄河、珠江流域流入水体、河口输出的氮相对较低,不足1Tg。1985-2007年间,三大流域的氮输出均呈增加的趋势,以长江流域增长较低,为37.4%,黄河流域增长最大,为61.5%。三大流域河口氮输出估算值与实测值相比,除黄河流域因常年断流、农田灌溉用水等原因导致估算值偏高外,其他两个流域估算值与实测值一致。
     4、不同尺度下的氮素收支研究显示,人为活动严重影响了氮素的生物地球化学循环。化学氮肥的投入在不同尺度下均为最大的氮素来源。不同尺度下,大部分氮素都通过反硝化或者系统储存进入到环境中,反硝化与系统储存的氮约占总氮投入的50%左右。在以农业种植为主的农业小流域,氮素投入支出与农业活动紧密相关,投入到环境中的氮素主要通过氨挥发、生物质燃烧等气体形式排放到大气中,地表水径流输出很低。而在经济发达的中尺度河网平原地区,除化学氮肥外,粮食的进口占氮素投入的比重较高。大量未经处理的生活污水、工业废水、人畜排泄物等流入水体导致水体氮浓度过高,水体富营养化严重。国家尺度下,氮素的投入支出时空变化差异较大,氮素的循环过程主要受人均GDP、土地利用类型和人口密度的影响。投入到地表的氮素超过70%通过反硝化、生物质燃烧、氨挥发排放到大气中,产生酸雨沉降、温室气体等环境问题,而约有20%的氮素流入到水体,造成我国主要河流的水质污染。
Nitrogen (N) is a fundamental component of living organisms, and it has been strongly influenced by human activity. From the pre-industrial era to 1990, reactive N input to the global terrestrial system increased twofold. The massive N input has enabled humankind to greatly increase food production. However, excessive N can induce a series of economic and environmental problems such as the greenhouse effect, destruction of the ozone layer, acid rain, nitrate pollution in groundwater, eutrophication of lakes and offshore water, and biodiversity reduction locally, nationally and globally. The findings of manifold consequences of human alteration of the N cycle have led to a much improved understanding of the scope of the anthropogenic N problem and possible strategies for managing it.
     China is the third largest country in the world and has diverse climatic conditions ranging from tropical in the south to cold temperate in the north, and from humid in the east to arid in the northwest. Rapid economic development and expansion of the human population in the past three decades has resulted in a large increase in chemical fertilizer and fossil fuel consumption, and thus greatly altered the N cycle. However, the changes in the input and fate of reactive N are not well understood. This study compile a N budget for mainland China with spatial and temporal distribution by using measurements, household interview and more up-to-date activity data and flux parameters to analyze the fluxes of N inputs and output and their impacts on the environment. In the N budget model, N input include chemical fertilizer, N fixation, atmospheric deposition and net food/feed import, N output include ammonia volatilization, biomass burning, net food and feed export and N export to surface water. The difference between N input and output was assumed as denitrification and storage. The followings are the productions and conclusions of this dissertation:
     1.We conducted N budget calculations for a rice paddy dominated agricultural watershed(Jurong Reservoir Watershed, JRW) in eastern China for 2007-2009, based on intensive monitoring of stream N dynamics, atmospheric deposition, ammonia (NH3) volatilization and household interviews about N related agricultural activities. The results showed that total N input in JRW was 1272ton yr-1. Chemical fertilizer was by far the dominant N input, totaling 1001 ton yr-1, accounts for 78.7% of total N input, atmospheric N deposition was the second most N input in this watershed,39 kg N ha-1 yr-1. N fixation and seeds import accounts for 13.8%,0.6%, respectively.
     Although total N input to the watershed was up to 280 kg N ha-1 yr-1, riverine discharge was only 4.2 kg N ha-1 yr-1, accounting for 1.5% of the total N input, and was further reduced to 2.0 kg N ha-1 yr-1 after reservoir storage and/or denitrification removal. The watershed actually purified the N in rainwater, as N concentrations in river discharge were much lower than those in rain water. The low riverine N output was because of the characteristics of paddy-dominated watersheds greatly influence the hydrologic flow path, increase the water residence time and the transport of N and associated elements. In addition, the low proportion of riverine N export in this watershed is also due to the fact that N is subject to other losses and export. Major N outputs included food/feed export, NH3 volatilization from chemical fertilizer and manure, and emissions from crop residue burning. Net reactive gaseous emissions (emissions minus deposition) accounted for 5.5% of the total N input, much higher than riverine discharge. Most of the N inputs were on croplands through N fertilization and fixation, and this part of N inputs is susceptible to NH3 volatilization and biomass burning, as well as food export. On average,10% of the chemical N fertilizer was volatilized as NH3 in the watershed. Therefore, the agricultural N cycle in such paddy-dominated watersheds impacts the environment mainly through gas exchange rather than water discharge.
     2. The Taihu Lake region in China is highly developed, but surface water pollution has become a serious environmental problem in recent years, with nitrogen (N) a major pollutant. A N-budget for Changshu, a representative county-level city in the Taihu Lake region, was established by using N-related human activities data from an intensive household survey conducted in 2007, measurement data on N fluxes and literature data on other necessary parameters. The total N input was 23927 kg N km-2 yr-1. Chemical fertilizer input was heavy and averaged 13553 km-2 yr-1, being the largest source of N input. Atmospheric N deposition contributed 15.5% to the total N input and food/feed import contributed another 22.3%. Average N input through biological N fixation was 1332 kg N km-2 yr-1, making it a minor contributor.
     Nearly half of the N input was denitrified or stored in soil, amounting to 12381 kg N km-2 yr-1. There was no N output through net food/feed export from the region. N transport to water was 7002 kg N km-2 yr-1, accounting for 29.3% of the total N input. NH3 volatilization from fertilizer and human and animal waste amounted to 3053 kg N km-2 yr-1, or 12.8% of the total N input. About 6.2% of the total N input was emitted to the atmosphere through burning of crop residue.
     N transport from human and animal waste, fertilizer and waste water, atmospheric N deposition directly on the water surface is an important source of N in water bodies. The largest sources of N load in the surface water were rural human and animal excreta and domestic sewage contributed 26.5%. Urban domestic water and human excreta, industrial waste, accounting for 25.7% of the total load. N leaching and runoff from farmland was the third most important source of N load, accounting for 17.9%. Runoff from other land uses also contributed 4.8%. Due to the wide cultivation of crabs and fish, aquaculture in the county also contributed 8.1% to the N load. The huge amount of N load to surface water would result in N concentrations of> 6.0 mg N L-1 even after denitrification removal in wetlands.
     3. The total N inputs in China mainland increased from 3081 kg km-2 in 1985 to 5426 kg km-2 in 2007. Chemical fertilizer N consumption dominated N input and accounted for 53.6% of the total N input in 2007. Atmospheric N deposition increased continuously, from 767 to 1300 kg N km-2 during 1985-2007. While the total amount of N2 fixation changed little from 1985 to 2007, its contribution to total N input decreased from 32.5 to 18.9%. Net N input through food/feed import increased steadily. Although there was net export of grains such as rice and maize in the past two decades, import of soybean with high N concentration increased greatly during 1995-2007.
     At a provincial scale, there was large spatial variability in total N inputs, ranging from 588 to 50582 kg N km-2 yr-1 for the Tibet Autonomous Region and the Shanghai Municipality, respectively. Total N inputs of different provinces in different years were significantly correlated with cropland areas, since chemical N fertilizer was the dominant source of N input. As a result, there was a large total N input in provinces in eastern and central China (e.g. Jiangsu, Sandong, Henan and Anhui) where land use is predominantly agriculture. Relatively large N inputs were also found in southern and southeastern provinces (e.g. Zhejing, Fujian, and Guangdong) where with high per capita Gross Domestic Product and 50% of the land area was forest, which has a higher N2 fixation rate. It is no wonder that the vast western area had very low N input as the major land use was desert. N input was relatively low in the most northeastern part of China due to the low chemical N fertilizer application rate and low crop index.
     Total N input steadily increased in all provinces during 1985-2007. The highest increase was in Ningxia and Tianjin, where total N input increased about tripled from 1985 to 2007. Tibet had the lowest increase in total N input, with a rate< 10%, due to N2 fixation being the dominant source of N input in Tibet, which changed little during the period. For most regions, the increase rate of total N input was 0-200 kg N km-2 yr-1, with greater increase rates in eastern and central China.
     The N that is stored and denitrified was estimated to amount to 1499kg N km-2 in 1985 to 3140 kg N km-2 in 2007, accounting for 48.7% and 57.9% of total N input, respectively. Both denitrification and storage are difficult to quantify by assuming a C/N ratio of 250 for vegetation and a C/N ratio of 10 for soils, the N storage in terrestrial ecosystems in China could be estimated at about 7.9 Tg N yr-1, and thus the total denitrification in Chinese terrestrial ecosystem would be over 20 Tg N yr-1 during the period, indicating that about 16% of the total N input was stored and about 42% was denitrified in Chinese terrestrial ecosystems in recent years.
     To more precisely account for the spatial and temporal variability in total N input and various N outputs, we conducted a correlation analysis between these N fluxes and land use types, human population density and per capita Gross Domestic Product (GDP). Total N input, N export to water bodies, denitrification and storage were highly correlated with population density, implying that most of the N is of anthropogenic origin. Total N input, N export to water bodies, denitrification and storage also had significant positive correlations with per capita GDP, indicating that economic development may enhance N load. Because of chemical fertilizer N which applied to cropland accounts for about half of the total N input, the percentage of cropland of total land area showed significant positive correlations with total N input and all N outputs. In contrast, the percentage of grassland and forestland of total land area were negatively correlated with total N input and all N output. The exception is biomass burning emission, which was positively correlated with the percentage of forestland of total land area since wood fuel was a major source of biomass burning.
     We summarized the amount of N export to water bodies for the three river basins (Yangtze River basin, Yellow River basin and Zhujiang River basin). The results showed that, the modeled riverine N exports agree reasonably well with the measured one for the Yangtze River basin and Zhujiang River basin. For the Yellow River basin, however, the estimated riverine N exports are much larger than the observed ones. This is likely due to the interception of the river water for irrigation and other purposes that may lead to low or zero flow in the lower part of the river in certain periods of the year.
     4. N cycling has been strongly influenced by human activity at different scales in China mainland. Chemical fertilizer was the biggest N input from a 45.5km2 scale watersheds to the whole China mainland and more than half of the N input was denitrificated or storaged in the system. At the small scale, although total N input is high, riverine N output can be <1.5% of the total N input, agricultural activities resulted in much more atmospheric N pollution. While in development area, food and feed import was much higher than the agricultural watershed, and large amount of total N transport to surface water body which resulted in water eutrophication in this area. There were large temporal variabilities in total N input and outputs at the national sacle, and total N input, N export to water bodies, denitrification and storage could be very well explained by human population density. Nitrogen input and major outputs were also positively related to per capita Gross Domestic Product and the percentage of total land area used as cropland. Large amout of N input resulted in soil acidification and the major river water pollution at national scale.
引文
1. Aas W, Shao M, Jin L, Larssen T, Zhao DW, Xiang RJ, Zhang JH, Xiao JS, Duan L. Air concentrations and wet deposition of major inorganic ions at five non-urban sites in China, 2001-2003 [J]. Atmospheric Environment,2007,41:1706-16.
    2. Andreae M O, Merlet P. Emission of trace gases and aerosols from biomass burning[J]. Global Biogeochemsity Cycles,2001,15:955-966.
    3. Aneja V P, Roelle P A, Murray G C et al. Atmospheric nitrogen compounds Ⅱ:emissions, transport, transformation, deposition and assessment[J]. Atmospheric Environment,2001,35(11):1903-1911.
    4. Asman W A H, Sutton M A, and Schjorring J K. Ammonia: Emission, atmospheric transport and deposition[J].New Phytol,1998,139:27-48.
    5. Aulakh M S, Doran J W, Mosier A R. Soil denitrification-significance, measurement, and effect of management [J]. Advances in Soil Science,1992,18:1-57.
    6. Bao X, Watanabe M, Wang Q X et al. Nitrogen budgets of agricultural fields of the Changjiang River basin from 1980 to 1990[J]. Science of the Total Environment,2006,363:136-148
    7. Bashkin V N, Park S U, Choi M S and Lee C B Nitrogen budgets for the Republic of Korea and the Yellow Sea region[J]. Biogeochemistry,2002,57/58:387-403.
    8. Binkley D, Son Y and Valentine D W. Do Forests Receive Occult Inputs of Nitrogen? [J]. Ecosystems,2000,3(4):321-331.
    9. Bouwman A F and VanderHoek K W. Scenarios of animal waste production and fertilizer use and associated ammonia emission for the developing countries[J]. Atmospheric Environment,1997,31 (24):4095-4102.
    10. Bouwman A F, Lee D S, Asman W A H, et al. A global high resolution emission inventory for ammonia [J]. Global Biogeochemical Cycles,1997, 11(4):561-587.
    11. Bouwman A F, Drecht G V, Knoop J M, Beusen A H W, Meinardi C R. Exploring changes in river nitrogen export to the world's oceans [J].Global Biogeochemical Cycles,2005,19:GB1002.
    12. Boyer E W, Howarth R W, Galloway J N et al. Riverine nitrogen export from the continents to the coasts[J]. Global Biogeochem. Cycles,2006,2O:GBIS91.
    13. Breemen N V, Boyer E W, Goodale C L, Jaworski, P K, Seitzinger S P, Lajtha K, Mayer B, Vandam D, Howarth R W, Nadelhoffer K J, Eve M, Billen G. Where did all the nitrogen go? Fate of nitrogen inputs to large watersheds in the northeastern U.S.A. [J]. Biogeochemistry,2002,57/58:267-293.
    14. Burns R C and Hardy R W F. Nitrogen Fixation in Bacteria and Higher Plants[M]. Springer-Verlag, New York,1975.
    15. Cai G X, Yang L C,Lu W F, Chen W, Xia B Q, Wang X Z, Zhu Z L. Gaseous loss of nitrogen from fertilizers applied to a paddy soil in southeastern China[J]. Pedosphere,1992,2:209-217.
    16. Cape J N, van der Eerdenb L J, Shepparda L J, Leitha I D, Sutton M A. Evidence for changing the critical level for ammonia[J]. Environmental Pollution,2009,3(157):1033-1037.
    17. Caraco N F and Cole J J. Human impact on nitrate export: An analysis using major world rivers[M]. Ambio,1999,28:167-70.
    18. Charles TD, Gregory BL, Arthur J B, Thomas J B, Christopher S C, et al. Acidic deposition in the Northeastern United States:Sources and inputs, ecosystem effects, and management strategies[J]. BioScience,2001,51(3):180-198.
    19. Cornell S E, Jickells T D, Thornton C A. Urea in rainwater and atmospheric aerosol[J]. Atmospheric Environment,1998,32:1903-1910.
    20. David M B, Gentry L E, Kovacic D A, Smith K M. Nitrogen balance in and export from an agricultural watershed[J]. Journal of Environmental Quality,1997,26:1038-1048.
    21. Delgado J A, Mosier A R. Mitigation alternatives to decrease nitrous oxides emissions and urea-nitrogen loss and their effecton methane flux[J]. Journal of Environmental Quality,1999,25 (6):1105-1111.
    22. Dise N B, Wright R F. Nitrogen leaching from European forests in relation to nitrogen deposition[J]. Forest Ecology and Management,1995,71 (1/2):153-161.
    23. Drecht G V, Bouwman A F, Knoop J M, Beusen A H W, Meinardi C RGlobal modeling of the fate of nitrogen from point and nonpoint sources in soils, groundwater, and surface water[J].2003, Global Biogeochemcal Cycles,17(4):1115.
    24. Drecht V G., Bouwman A F, Knoop J M et al. Global Pollution of Surface Waters from Point and Nonpoint Sources of Nitrogen[J]. The Scientific World Journal,2001, S2:632-641.
    25. Duan H, Ma R, Xu X, Kong F, Zhang S, Kong W, Hao J, Shang L Two decade reconstruction of algal blooms in China's Lake Taihu[J]. Environmental Science and Technology,2009, 43:3522-3528.
    26. Duan S W, Zhang S, Huang H Y. Transport of dissolved inorganic nitrogen from the major rivers to estuaries in China[J]. Nutrient Cycling in Agroecosystems,2000,57:13-22.
    27. Ducel R A, LaRoche J, Altieri K et al. Impacts of Atmospheric Anthropogenic Nitrogen on the Open Ocean[J]. Science,2008,320:893-897.
    28. Dutilleul P, Legendre P. Spatial heterogeneity against heteroseedasticity: An ecological paradigm versus A statistical concept[J].Oikos,1993,66:152-171.
    29. EANET. Acid Deposition Monitoring Network in East Asia Date report 2006. Network Center for EANET 2007. http://www.eanet.cc/product.html
    30. EEA (European Environment Agency) Atmospheric mission Inventory Guidebook [M]. Second edition EEA,1999, Copenhagen.
    31. Elser J J, Andersen T, Baron J S, Bergstrom Ann-Kristin. Shifts in Lake N:P Stoichiometry and Nutrient Limitation Driven by Atmospheric Nitrogen Deposition[J]. Science,2009,6:835-837.
    32. Enropcan Environment Agency, EEA. Atmospheric emission Inventory Guidebook[M], Seoond edition. EEA, Copenhagen.1999.
    33. European Centre for Ecotoxicology and Toxicology Of Chemicals (ECETOC). Ammonia emission to air in Western Europe. Technical Report,1994,62:192.
    34. FAO (2008) FAOSTAT agriculture data. http://apps.fao.org/page/collections?subset=agriculture
    35. FAOSTAT,2009:http://faostatfaoorg/Resources, fertilizer (Access 2009/7/9).
    36. FAOSTAT, FAO Statistical Databases 2006. http://faostat.fao.org/.
    37. Fillery I R P, De Datta S K. Ammonia volatilization from nitrogen volatilization as a N loss mechanism in flooded rice fields [J]. Fertilizer Research,1986.9:78-98.
    38. Filoso S, Martinelli L A, Howrath T W et al. Human activities changing the nitrogen cycle in Brazil[J]. Biogeochemistry,2006,79:61-89.
    39. Fowler D, Coyle M, Flechard C et al. Advances in micrometeorological methods for the measurement and interp retation of gas and particle nitrogen fluxes[J]. Plant and Soil,2001, 228:117-129.
    40. Fried M. Direct quantitative assessment in the field of fertilizer management practices[J]. Soil Science,1987,3:103-129.
    41. Galloway J N, Aber J D, Erisman JW, Seitzinger S P, Howarth R W, Cowling E B, Cosby B J. The nitrogen cascade [J]. BioScience,2003,53 (4):341-356.
    42. Galloway J N, Dentener F J, Capone D G, Boyer E W, Howarth R W, Seitzinger S P, Asner G P, Cleveland C C, Green P A, Holland E A, Karl D M, Michaels A F, Porter J H, Townsend A R, Vorosmarty C J. Nitrogen cycles:past, present, and future[J]. Biogeochemistry,2004,70:153-226.
    43. Galloway J N, Townsend A R, Erisman J W, et al. Transformation of the nitrogen cycle:recent trends, questions, and potential solutions [J]. Science,2008,20:889-892.
    44. Galloway J N, Zhao D W, Thomsonc V E and Chang L H. Nitrogen mobilization in the United States of America and the People's Republic of China[J]. Atmospheric Environment,1996, 30(10-11):1551-1561.
    45. Galloway J N. The global nitrogen cycle:Past, present and future [J]. Science in China (Series C), 2005,48(Special Issue):669-677.
    46. Galloway JN, Cowling EB. Reactive nitrogen and the world:200 years of change [J]. Ambio,2002, 31(2):64-71.
    47. Gentry L E, David M B, Below F E, Royer T V, McLsaac G F. Nitrogen mass balance of a tile-drained agricultural watershed in East-Central Illinois[J]. Journal of Environmental Quality, 2009,38:1841-1847.
    48. Giles J. Nitrogen study fertilizes fears of pollution [J]. Nature,2005,433:791-791.
    49. Giles J. Nitrogen study fertilizes fears of pollution [J]. Nature,2005,433:791.
    50. Goulding K W T, Bailey N J, Bradbury N J et al. Nitrogen deposition and its contribution to nitrogen cycling and associated soil processes[J]. New Phytol,1998,139:49-58.
    51. Groffman P M, Altabet M A, Bohlke J K. Methods for measuring denitrification:Diverse approaches to a difficult problem[J]. Ecological Applications,2006,16:2091-2122.
    52. Groffman P M. A conceptual assessment of the importance of denitrification as a source of soil nitrogen loss in tropical agro-ecosystems [J]. Fertilizer Research,1995,42:139-48.
    53. Gundersen P. Nitrogen deposition and the forest nitrogen cycle:role of denitrification[J]. Forest Ecology and Management,1991,44:15-28.
    54. Guo H Y, Wang X R, Zhu J G. Quantification and index of non-point source pollution in Taihu Lake region with GIS [J]. Environ Geochem Hlth,2004,26:147-156.
    55. Guo J H, Liu X J, Zhang Y, Shen J L et al. Significant Acidification in Major Chinese Croplands[J]. Science,2010,327:1008-1010.
    56. Han Y, Li X, Nan Z.Net anthropogenic nitrogen accumulation in the Beijing metropolitan region[J]. Environmental Science and Pollution Research,2011,18(3):485-96.
    57. Hauck R D. Nitrogen fertilizer effects on nitrogen cycle processes[C].International workshop: Terrestrial nitrogen cycles Oesterfaernebo (Sweden),1981,33:551-562.
    58. Holland E A, Dentener F J, Braswell B H, et al. Contemporary and pre-industrial global reactive nitrogen budgets [J].Biogeochemistry,1999,46:7-43.
    59. Howarth R W, et al. Regional nitrogen budgets and riverine N and P fluxes for the drainages to the North Atlantic Ocean:Natural and human influences [J]. Biogeochemistry,1996,35:75-139.
    60. Howarth R W, Swaney D P, Boyer E W, Marino R, Jaworski N, Goodale C. The influence of climate on average nitrogen export from large watersheds in the Northeastern United States[J]. Biogeochemistry,2006,79:163-186. ing and Assessment,1997,46(1-2):73-88.
    61. Intergovernmental Panel on Climate Change (IPCC) 2006 IPCC Guidelines for national greenhouse gas inventories[M]. Institute for Global Environmental Strategies, Hayama, Japan,2007.
    62. IPCC (Intergovernmental Panel on Climate Change) 2006 Guidelines for National Greenhouse Gas Inventories. http://wwwipcc-nggipigesorjp/.
    63. IPCC, Changes in Atmospheric Constituents and in Radioactive Forcing [M].Cambridge University Press, UK and New York USA 2007.
    64. IPCC, Summary for Policy makers In:Climate Change 2007:The Physical Science Basis Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change[M].Cambridge University Press, Cambridge, United Kingdom and New York,NY,USA,2007.
    65. Ito A, Penner J E. Global estimates of biomass burning emissions based on satellite imagery for the year 2000[J]. Journal of Geophysical Research,2004,109:D14S05.
    66. Jarvis S C, Hatch D J and Lockyer D R. Ammonia fluxes from grazed grassland:annual losses from cattle production systems and their relationship to nitrogen inputs[J]. Journal of Agricultural Science Camb,1989,113:99-108.
    67. Jaworski N A, Groffman P M, Keller A A et al.A watershed nitrogen and phosphorus balance:the Upper Potomac River basin[J].Estuaries,1992,15:83-95.
    68. Ju X T, Liu X J, Zhang F S et al. Nitrogen fertilization, soil nitrate accumulation, and policy recommendations in several agricultural regions of China [J]. Amibo,2004,33 (5):305-330.
    69. Ju X T, Xing G X, Chen X P, Zhang S L, Zhang L J, Liu X J, Cui Z L, Yin B, Christie P, Zhu Z L, Zhang F S. Reducing environmental risk by improving N management in intensive Chinese agricultural systems[J]. Proceedings of the National Academy of Sciences,2009,106:3041-3046.
    70. Ju X T, Xing G X, Chen X P, Zhang S L, Zhang L J, Liu X J, Cui Z L, Yin B, Christie P, Zhu Z L, Zhang F S. Reducing environmental risk by improving N management in intensive Chinese agricultural systems[J]. In:Proc of the Nat Acad sci,2009,6:3041-3046.
    71. Kaufman Y, Fraser R. The effect of smoke particles on clouds and climate forcing[J].Science,1997, 277:1636-1639.
    72. Kimura S D, Hatano R and Okazaki M. Characteristics and issues related to regional-scale modeling of nitrogen flows[J]. Soil Science and Plant Nutrition,2009,55:1-12.
    73. Konohira E, Yoh M, Kubota J, Yagi K, Akiyama H. Effects of riparian denitrification on stream nitrate—evidence from isotope analysis and extreme nitrate leaching during rainfall[J]. Water Air & Soil Pollution,2001,130:667-672.
    74. Kroeze C, Aerts R, van Breemen N, van Dam D et al. Uncertainties in the fate of nitrogen I:An overview of sources of uncertainty illustrated with a Dutch case study[J].Nutrient Cycling in Agroecosystems,2003,66:43-69.
    75. Krupa S V.Global climate change:processes and products-an overview[J].Environmental Monitor-
    76. Lal R. World crop residues production and implications of its use as a biofuel[J].Environment International,2005,31:575-584.
    77. Li Y E, Lin E D. Emissions of N2O, NH3 and NOx from fuel combustion, industrial processes and the agricultural sectors in China[J]. Nutrient Cycling in Agroecosystems,2000,57(16):99-106.
    78. Liang X Q, Chen Y X, Li H, Tian G M, Ni W Z, He M M, Zhang Z J. Modeling transport and fate of nitrogen from urea applied to a near-trench paddy field [J]. Environmental Pollution,2007, 150:313-320.
    79. Liu C, Watanabe M, Wang Q X.Changes in nitrogen budgets and nitrogen use efficiency in the agroecosystems of the Changjiang River basin between 1980 and 2000 [J]. Nutrient Cycling in Agroecosystems,2008,80:19-37.
    80. Liu X J, Ju X T, Zhang Y, He C, Kopsch J, Zhang F S. Nitrogen deposition in agroecosystems in the Beijing area[J]. Agriculture Ecosystems & Environment,2006.113:370-7.
    81. Liu Z W, Li Y S, Liu B Z, et al. Nutrient Cycling and Trend Modeling of Black Locust Plantation Ecosystem in Gullied Loess Plateau Area[J]. Journal of Northwest Forestry College,1998,13 (2): 34-40.
    82. Logan J, Prather M J, Wofsy S C, McElroy M B. Tropospheric chemistry:a global perspective[J]. Journal of Geophysical Research,1981,86:7210-7254.
    83. Lovett G M, Lindberg S E. Atmospheric deposition and canopy interactions of nitrogen in forests[J]. Canadian Journal of Forest Research,1993,23:1603-1616.
    84. Lowrance R. Nitrogen outputs from a field-size agricultural watershed[J].Journal of Environmental Quality,1992,21:602-607.
    85. Lu C Q, Tian H Q. Spatial and temporal patterns of nitrogen deposition in China: Synthesis of observational data [J]. Geophysical Research,2007,112:D22S05.
    86. Mackenzie FT. Our changing planet:An introduction to earth systems Science and global environmental change [M].1998,2nd ed Upper Saddle River (NJ): Prentice-Hall.
    87. Matson P A, Mcdowell W H, Townsed A R, et al. The globalization of deposition:ecosystem consequences in tropical environments[J]. Biogeochemistry,1999,46:67-83.
    88. Mauzerall D L, Logan J A, Jacob D J, Anderson B E et al. Photochemistry in biomas sburning plumes and implications for tropospheric ozone over the tropical South Atlantic[J] Journal of Geophysical Research,1998,103:8401-8423.
    89. Mclsaac G F, Hu X T. Net N input and riverine N export from Illinois agricultural watersheds with and without extensive tile drainage[J]. Biogeochemistry,2004,70:251-271.
    90. Meybeck M and Ragu A. River discharges to oceans:An assessment of suspended solids, major ions and nutrients, report [M]. U.N.Environ. Programme. Nairobi.1995.
    91. Misselbrook T H, van der Weerden T J, Pain B F et al. Ammonia emission factors for UK agriculture[J]. Atmospheric Environment,2000,34(6):871-880.
    92. Mulholland P J, et al. Stream denitrification across biomes and its response to anthropogenic nitrate loading [J]. Nature,2008,452:202-205.
    93. NADP. Nitrogen in the Nation's Rain[M]. Available Online:http://nadp. swa. uiuc. edu,2004.
    94. Norse D. Non-point pollution from crop production:Global, regional and national issues [J]. Pedosphere,2005,15(4):199-508.
    95. Nosengo N. Fertilized to death[J]. Nature,2003,425:894-895.
    96. Ohara T H, Akimoto J, Kurokawa N, et al. An Asian emission inventory of anthropogenic emission sources for the period 1980-2020[J]. AtmosphericChemistry and Physics,2007,7:6843-6902.
    97. Parfitt R L, Baisden W T et al. Nitrogen inputs and outputs for New Zealand in 2001 at national and regional scales[J]. Biogeochemistry,2006,80:71-88.
    98. Penner JE, Dickinson RE, O'Neill C A. Effects of aerosol from biomass burning on the global radiation budget[J].Science,1992,256:1432-1434.
    99. Perakis S S, Hedin L O. Nitrogen loss from unpolluted South American forests mainly via dissolved organic compounds[J]. Nature,2002,415(24):416-419.
    100. Piao S L, Fang J Y, Ciais P et alThe carbon balance of terrestrial ecosystems in China[J]. Nature, 2009,458:1009-1014.
    101.Piekett S T A, Cadenasso M L. Landscape ecology:Spatial heterogeneity in ecological systems[J].Science,1995,269:331-334.
    102. Poulsen H D, Kristensen V F. Standard values for farm manure A revaluation of the Danish standard values concerning the nitrogen, phosphorus and potassium content of manure Beretning 736 [R]. DIAS Report No 7, Danish Institute of Agricultural Sciences,1998, Telex, Denmark.
    103. Qin B Q, Xu P Z, Wu Q L et al. Environmental issues of Lake Taihu, China[J]. Hydrobiologia,2007, 581:3-14.
    104. Richter A, Burrows J P, Nu"βH, Granier C, Niemeier U.Increase in tropospheric nitrogen dioxide over China observed from space[J]. Nature,2005,437:129-132.
    105. Rockstrom J, Steffen W, Noone K, Persson A, Chapin F S et al. A safe operating space for humanity [J]. Nature,2009,461:472-475.
    106. Ryden J C, Ball P R and Gardwood E A. Nitrate leaching in grassland[J]. Nature,1984,311:50-541.
    107. Schaefer S C, Alber M. Temperature controls a latitudinal gradient in the proportion of watershed nitrogen exported to coastal ecosystems[J]. Biogeochemistry,2007,85:333-346.
    108. Schaefer S C, Hollibaugh J T, Alber M. Watershed nitrogen input and riverine export on the west coast of the US [J]. Biogeochemistry,2009,93:219-233.
    109. Schlesinger W H and Hartley A E A global budget for atmospheric NH3 [J]. Biogeochemistry,1992, 15:191-211.
    110. Schlesinger W H.On the fate of anthropogenic nitrogen[J]. Proceedings of the National Academy of Sciences,2009,106 (6):203-208.
    111. Schmitta M, Thonib L, Waldnera P et al. Total deposition of nitrogen on Swiss long term forest ecosystem research (LWF) plots:Comparison of the throughfall and the inferential method[J]. Atmospheric Environment,2005,39:1079-1091.
    112. Scudlark J R, Russell K M, Galloway J N et al. Organic nitrogen in precipitation at the mid-Atlantic U. S. coast—methods evaluation and preliminary measurements[J]. Atmospheric Environment, 1998,32:1719-1728.
    113. Seitzinger S P and Kroeze C. Global distribution of nitrous oxide production and N inputs in freshwater and coastal marine ecosystems[J]. Global Change Biology,1998,12(1):93-113.
    114. Seitzinger S P, Renee V S, Boyer E A et al. Nitrogen retention in rivers:model development and application to watersheds in the northeastern U S A[J]. Biogeochemistry,2002,57/58:199-37.
    115. Seitzinger S P. Denitriftcation in aquatic sendiments. In:Revsbech N P, Sdprensen J eds. Denitrification in Soil and Sediment[M].New York and London:Plenum Press,1990,301-321.
    116. Shen L, Lin G F, Tan J W and Shen J H. Genotoxicity of surface water samples from Meiliang Bay, Taihu Lake, Eastern China [J]. Chemosphere,2000,41:129-132.
    117. Shen Z L, Liu Q, Zhang S M, Miao H and Zhang P. A Nitrogen Budget of the Changjiang River Catchment[J]. Ambio,2003, 1(32):65-69.
    118. Sims J T, Goggin N, Mcdermott J. Nutrient management for water quality protection integrating research into environmental policy[J].Water Science and Technology,1999,39(12):291-298.
    119. Smil V. Nitrogen in crop production:An account of global flows[J]. Global Biogeochemical Cycles, 1999,13:647-662.
    120. Smith E G, Knutson R D, Taylor C R Penson J B. Impacts of chemical use reduction on crop yields and costs [M].1990, Tennessee Valley Authority and Texas A&M University System Cooperating.
    121. Sobota D J, Harrison J A, Dahlgren R A.Influences of climate, hydrology, and land use on input and export of nitrogen in California watersheds[J]. Biogeochemistry,2009,94:43-62.
    122. Sparks J, Walker J, Guenther A et al. Dry nitrogen deposition estimates over a forest experiencing free air CO2 enrichment[J]. Global Change Biology,2008,14(4):768-781.
    123. Stevens C J, Dise N B, Mountford J O, et al. Impact of nitrogen deposition on the species richness of grasslands [J]. Science,2004,303:1876-1879.
    124. Stewart W M, Dibb D W, Johnston A E, Smyth T J. The Contribution of Commercial Fertilizer Nutrients to Food Production[J]. Agronomy Journal,2005,97:1-6.
    125. Sun B, Shen R P et al. Surface N Balances in Agricultural Crop Production Systems in China for the Period 1980-2015[J]. Pedosphere,2008,18(3):304-315.
    126. Takeuchi M, Itahashi S and Saito M. A water quality analysis system to evaluate the impact of agricultural activities on N outflow in river basins in Japan [J]. Science China Series C,2005,48: 100-109.
    127. Tian G M, Cai Z C, Cao J L, et al. Factors affecting ammonia volatilization from a rice-wheat rotation system [J]. Chemosphere,2001,42:123-129.
    128. Tian G M, Cao J L, Cai Z C, et al. Ammonia volatilization from wheat field top-dressed with Urea [J]. Pedosphere.1998,8(4):331-336.
    129. Tian Y H, Yin B, Yang L Z, Yin S X, Zhu Z L. Nitrogen runoff and leaching losses during rice-wheat rotations in Taihu Lake region, China [J]. Pedosphere,2007,17:445-456.
    130. Townsend A R, Braswell B H, Holland E A, Penner J E. Spatial and temporal patterns in terrestrial carbon storage due to deposition of fossil fuel nitrogen [J]. Ecological Applications,1996, 6:806-814.
    131. Turner R E, Rabalais N N, Justic D et al. Global patterns of dissolved N, P and Si in large rivers [J].Biogeochemistry,2003,64:297-317.
    132. Ventura M, Scandellari F, Ventura F, Guzzon B, Pisa P R, Tagliavini M. Nitrogen balance and losses throughdrainage waters in an agricultural watershed of the Po Valley (Italy) [J]. European Journal of Agronomy,2008,29:108-115.
    133. Vitousek P M, Aber J D, Howarth R W, Likens G E, Matson P A, Schindler D W, Schlesinger W H, Tilman D G. Human alterations of the global nitrogen cycle:sources and consequences[J]. Ecological Applications,1997,7(3):737-750.
    134. Vitousek P M, Aber J D, Howarth R W, Likens G E, Matson P A, Schindler D W, Schlesinger W H, Tilman D G. Human alteration of the global nitrogen cycle:Sources and consequences [J]. Journal of Applied Ecology,1997,7:737-750.
    135. Wang X Z, Zhu J G, Guo R, Yasukazu H, Feng K. Nitrogen Cycling and Losses Under Rice-Wheat Rotations with Coated Urea and Urea in the Taihu Lake Region[J]. Pedosphere,2007,17:62-69.
    136. Williams E J, Hutchinson G L, Fehsenfeld F C.NOx and N2O emissions from soil[J]. Global Change Biology,1992,6(4):351-388
    137. Winchester J W, Escalona L, Meng F J et al. Atmospheric deposition and hydrogeologic flow of nitrogen in northern Florida watersheds[J].Geochimica et Cosmochimica Acta,1995, 59(11):2215-2222.
    138. Wu J X, Cheng X, Xiao H S, Wang H Q, Yang L Z, Ellis E C. Agricultural landscape change in China's Yangtze Delta,1942-2002:a case study [J]. Agriculture, Ecosystems & Environment,2009, 129:523-533.
    139. Xie Y X, Xiong Z Q, Xing G X, Sun G Q, Zhu Z L. Assessment of nitrogen pollutant sources in surface waters of Taihu Lake Region [J].Pedosphere,2007,17(2):200-208.
    140. Xie Y X, Xiong Z Q, Xing G X, Yan X Y, Shi S L, Sun G Q, Zhu Z L. Source of nitrogen in wet deposition to a rice agroecosystem at Tai lake region[J]. Atmospheric Environment,2008, 42(51):82-92.
    141. Xin X B, Zhai M P. Studies on nutrition cycle of Abies georgei forest ecosystem ofmountain Segila in Tibet[J]. Forest Research,2003,16(6):668-676.
    142. Xing G X, Yan X Y. Direct nitrous oxide emissions from agricultural fields in China estimated by the revised 1996 IPCC guidelines for national greenhouse gases[J]. Environmental Science & Policy,1999,2:355-361.
    143. Xing G X, Zhu Z L. Regional nitrogen budgets for China and its major watersheds [J]. Biogeochemistry,2002,57:405-427.
    144. Xing G X, Zhu Z L. The environmental consequences of altered nitrogen from industrial activity, agricultural production and population growth in China [J].The Scientific World,2001, 1(S2):70-80.
    145. Xu H, Yang L Z, Zhao G M, Yin S X, Liu Z P. Anthropogenic impact on surface water quality in Taihu Lake Region, China [J]. Pedosphere,2009,19(6):765-778.
    146. Yan W J, Mayorga E, Li X Y, Seitzinger S P, Bouwman A F. Increasing anthropogenic nitrogen inputs and riverine DIN exports from the Changjiang River basin under changing human pressures[J].Global Biogeochemical Cycles,2010,24:GB0A06, doi:10.1029/2009GB003575.
    147. Yan W J, Yin C Q, Tang H X. Nutrient retention by multipond systems:mechanisms for the control of nonpoint source pollution [J]. Journal of Environmental Quality,1998,127:1009-1017.
    148. Yan W J, Zhang S, Sun P, et al. How do nitrogen inputs to the Changjiang basin impact the Changjiang River nitrate [J].Global Biogeochemical Cycles,2003a,17 (4):1091.
    149. Yan X Y, Ohara T, Akimoto H.Bottom-up estimate of biomass burning in mainland China[J]. Atmospheric Environment,2006,40:5262-5273.
    150. Yan X Y, Zu C C, Wang S W, Smith P. Direct measurement of soil organic carbon content change in the croplands of China[J]. Global Change Biology,2010, doi:10.1111/j.1365-2486.2010.02286.x.
    151. Yan XY, Akimoto H, Ohara T. Estimation of nitrous oxide, nitric oxide and ammonia emissions from croplands in East, Southeast and South Asia[J]. Global Change Biology,2003b,19:1080-1096.
    152. Yanai R D, Battles J J, Richardson A D et al. Estimating Uncertainty in Ecosystem Budget Calculations[J].Ecosystems,2010,13:239-248.
    153. Yang R, Hayashi K, Zhu B, Li F Y, Yan X Y(Atmospheric NH3 and NO2 concentration and nitrogen deposition in an agricultural catchment of Eastern China[J]. Science of the Total Environment,2010,408(20):4624-32.
    154. Yoshikawa N, Shiozawa S, Ardiansyah. Nitrogen budget and gaseous nitrogen loss in a tropical agricultural watershed[J]. Biogeochemistry,2008,87:1-15.
    155. Zhang J, Yan J, Zhang Z F. Nationwide river chemistry trends in China:Huanghe and Changjiang[J].Ambio,1995,24(5):275-278.
    156. Zhao D W. Wang A P. Estimation of anthropogenic ammonia emissions in Asia[J]. Atmospheric Environment,1994,28(4):689-694.
    157. Zhao X, Xie Y X, Xiong Z Q, Yan X Y, Xing G X, Zhu Z L. Nitrogen fate and environmental consequence in paddy soil under rice-wheat rotation in the Taihu lake region, China[J]. Plant Soil, 2009b,319:225-234.
    158. Zhao X, Yan X Y, Xiong Z Q, Xie Y X, Xing G X, Shu S L, Zhu Z L.Spatial and temporal variation of inorganic nitrogen wet deposition to the Yangtze River Delta Region, China[J]. Water Air & Soil Pollution,2009a,203:277-289.
    159. Zheng X H, Fu C B, Xu X Ket al.The Asian nitrogen cycle case study[J].Ambio,2002,31(2):79-87.
    160. Zhu Z L, Chen D L. Nitrogen fertilizer use in China—contributions to food production, impacts on the environment and best management strategies[J]. Nutrient Cycling in Agroecosystems,2002, 63:117-127.
    161. Zhu Z L. Nitrogen balance and cycling in agroecosystems of China. In:Zhu ZL, Wen QX, Freney JR (eds) Nitrogen in Soils of China [M]. Kluwer, Dordrecht,1997, pp 323-338.
    162.曹金留,田光明,任立涛,等.江苏南部地区稻麦两熟土壤中尿素的氨挥发损失[J].南京农业大学学报,2000,23(4):51-54.
    163.常熟统计年鉴[M],常熟市统计局编,2008.
    164.陈家长,胡庚东,瞿建宏,樊恩源.流域池塘河蟹养殖向太湖排放氮磷的研究[J].农村生态环境,2005,21(1):21-23.
    165.陈静生,高学民,夏星辉,何大为.长江水系河水氮污染[J].环境化学,1999,18(4):289-293.
    166.陈静生,于涛.黄河流域氮素流失模数研究[J].农业环境科学学报,2004,23(5):833-838.
    167.陈灵芝,黄建辉,严昌荣.中国森林生态系统养分循环[M].气象出版社,北京,1997.
    168.陈能汪,洪华生,肖健,张珞平,王吉苹.九龙江流域大气氮干沉降[J].生态学报,2006,26(8):3062-7062.
    169.陈能汪,洪华生,张珞平.九龙江流域大气氮湿沉降研究[J].环境科学,2008,29(1):38-46.
    170.陈姝,居为民,李显风.常熟市土地利用变化对生态服务价值的影响[J].水土保持研究,2009,5(16):93-97.
    171.程红光,岳勇,杨胜天等.黄河流域非点源污染负荷估算与分析[J].环境科学学报,2006,26(3):384-391.
    172.褚庆全,李立军,红波.实现未来我国粮食安全的粮食贸易对策[J].中国农业科技导报,2008(2):36-41.
    173.崔玉婷,程序,韩纯儒,李荣刚.苏南太湖流域水稻氮肥利用率及氮肥淋洗量研究[J].中国农业大学学报,1998,3(5):51-54.
    174.邓美华,谢迎新,熊正琴,等.长江三角洲氮收支的估算及其环境影响[J].环境科学学报,2007,27(10):1709-1716.
    175.东亚海域海洋污染预防与管理厦门示范区执行委员会办公室编.厦门海岸带综合管理19941998(下册)[M].北京:海洋出版社,1998.
    176.董文旭,胡春胜,张玉铭华北农田土壤氨挥发原位测定研究[J].中国生态农业学报,2006,14(3):46-48.
    177.段水旺,章申,陈喜保等.长江下游氮、磷含量变化及其输送量的估算[J].环境科学,2000,21(1):53-57.
    178.方华,莫江明.活性氮增加:一个威胁环境的问题[J].生态环境,2006,15(1):164-168.
    179.方精云,刘国华,徐篙龄.我国森林植被的生物量和净生产量[J].生态学报,1996,16(5):497-508.
    180.方玉东,封志明,胡业翠,王霖琳.基于GIS技术的中国农田氮素养分收支平衡研究[J].农业工程学报,2007,23(7):31-41.
    181.冯绍元,郑耀泉.农田氮素的转化与损失及其对水环境的影响[J].农业环境保护,1995,15(6):277-279.
    182.冯兆继,石明岩,莫东华.倒置A2/O工艺氮平衡与脱氮效率的分析[J].化工环保,2008,5(28):388-390.
    183.国家环境保护总局,2006年中国环境状况公报,http://jcsmepgovcn/hjzl/zk.gb/06hjzkgb/.
    184.韩鲁佳,闫巧娟,刘向阳,胡金有.中国农作物秸秆资源及其利用现状[J].农业工程学报,2002,18(3):87-91.
    185.何平安.中国有机肥料养分志[M].中国农业出版社,北京,1999.
    186.黄文钰,吴延根,舒金华中国主要湖泊水库的水环境问题与防治建议[J].湖泊科学,1998,10 (3):83-90.
    187.黄小平,黄良民.珠江口海域无机氮和活性磷酸盐含量的时空变化特征[J].台湾海峡,2002,21(4):416-421.
    188.贾钧彦,张颖,蔡晓布等.藏东南大气氮湿沉降动态变化—以林芝观测点为例[J].生态学报,2009,29(4):1907-1913.
    189.金虎子,王韬,杨永哲,王志盈.西安市污水处理厂改良A2/O工艺的运行效果分析[J].中国给水排水,2008,22(24):86-89.
    190.金相灿,刘树坤,章宗涉,等.中国湖泊环境(第2册)[M].北京:海洋出版社,1995.
    191.金相灿,叶春,颜昌宙,任丙相,张永春,汪小泉,汪耀斌.太湖重点污染控制区综合治理方案研究[J].环境科学研究,1999,12(5):1-5.
    192.寇长林,巨晓棠,张福锁.三种集约化种植体系氮素平衡及其对地下水硝酸盐含量的影响[J].应用生态学报,2005,6(4):660-667.
    193.稂小洛,曹国良,黄学敏.中国区域氮氧化物排放清单[J].环境与可持续发展,2008,6:19-21.
    194.李春晖,杨志峰.黄河干流水体污染时空变化特征[J].水资源与水工程学报,2004,2(15):10-15.
    195.李荣刚,夏源陵,吴安之,钱一声.江苏太湖地区水污染物及其向水体的排放量[J].湖泊科学,2000,2(12):147-153.
    196.李双成,蔡运龙.地理尺度转换若干问题的初步探讨[J].地理研究,2005,24(1):11-18.
    197.李香真,陈佐忠.放牧草地生态系统中氮素的损失和管理[J].气候与环境研,1997,2(3):241-250.
    198.李玉中,祝廷成,姜世成.羊草草地生态系统干湿沉降氮输入量的动态变化[J].中国草地,2000,2:24-27.
    199.李志博,王起超,陈静.农业生态系统的氮素循环研究进展[J].土壤与环境,2002,11(4):417-421.
    200.刘更另.中国有机肥料[M],农业出版社,北京,1991.
    201.刘景明,张万友,聂英斌,宋存义.交替A2/O工艺处理医院综合污水的工程应用[J].工业水处理,2006,11(26):83-86.
    202.刘景双,于君宝,闫百兴,李淑坤.第二松花江水体中氮含量的动态变化分析[J].环境科学,1997,18(1):14-17.
    203.刘晓利,许俊香,王方浩,张福锁,马文奇.我国畜禽粪便中氮素养分资源及其分布状况[J].河北农业大学学报,2005,28(5):27-32.
    204.刘晓利,许俊香,王方浩,张福锁,马文奇.畜牧系统中氮素平衡计算参数的探讨[J].应用生态学报,2006,17(3):417-423.
    205.鲁如坤,史陶.金华地区降雨中养分含量的初步研究[J].十壤学报,1979,16(1):81-84.
    206.鲁如坤.土壤农业化学分析方法[M].中国农业科技出版社北京,2000.
    207.鲁如坤.农业化学手册[M].科学出版,北京,1982.
    208.鲁学军,周成虎,张洪岩等.地理空间的尺度—结构分析模式探讨[J].地理科学进展,2004,23(2):107-114.
    209.马立珊,钱敏仁.太湖地区硝态氮和亚硝态氮污染的研究[J].环境科学,1987,8(2):60-65.
    210.马立珊,汪祖强,张水铭等.苏南太湖水系农业面源污染及其控制对策研究[J].环境科学学报,1997,17(1):39-47.
    211.马雪华.在杉木林和马尾松林中雨水的养分淋溶作用[J].生态学报,1989,9(1):15-20.
    212.孟伟,于涛,郑丙辉等.黄河流域氮磷营养盐动态特征及主要影响因素[J].环境科学学报,2007,27(12):2046-2051.
    213.钱秀红,徐建民,施加春,刘杏梅.杭嘉湖水网平原农业非点源污染的综合调查和评价[J].浙江大学学报(农业与生命科学版),2002,28(2):14-150.
    214.邱建军,李虎,王立刚.中国农田施氮水平与土壤氮平衡的模拟研究[J].农业工程学报,2008,24(8):40-45.
    215.全国土壤普查办公室.中国土壤[M].北京:中国农业出版社,1998.
    216.全为民,沈新强,韩金娣,陈亚瞿.长江口及邻近水域富营养化现状及变化趋势的评价与分析[J].海洋环境科学,2005,3(24):13-16.
    217.沈健林,刘学军,张福锁.北京近郊农田大气NH3与NO2干沉降研究[J].土壤学报,2008,45(1):165-169.
    218.沈志良,刘群,张淑美.长江总氮和有机氮的分布变化与迁移[J].海洋与湖沼,2003,34:577-585.
    219.宋玉芝,秦伯强,杨龙元等.大气湿沉降向太湖水生生态系统输送氮的初步估算[J].湖泊科学,2005,17(3):226-230.
    220.苏成国,尹斌,朱兆良,沈其荣.稻田氮肥的氨挥发损失与稻季大气氮的湿沉降[J].应用生态学报,2003,14(11):1884-1888.
    221.孙庆瑞,王美蓉.我国氨的排放量和时空分布[J].大气科学,1997,21(5):590-598.
    222.孙瑞娟,王德建,林静慧.太湖流域土壤肥力演变及原因分析[J].土壤,2006,38(1):106-109.
    223.太湖流域水资源保护局.《太湖流域水质通报》.http://www.hwcc. com.cn
    224.田光明,蔡祖聪,曹金留,等.镇江丘陵区稻田化肥氮的氨挥发及其影响因素[J].土壤学报,2001,38(3):324-332.
    225.田玉华,尹斌,朱兆良.稻田氮素淋洗损失研究[J].安徽农业科学,2006,34(12):2792-2794.
    226.童娟.珠江流域概况及水文特性分析[J].水利科技与经济,2007,1(13):31-33
    227.王朝辉,刘学军,巨晓棠,张福锁.田间土壤氨挥发的原位测定—通气法[J].植物营养与肥 料学报,2002,8(2)205-209.
    228.王德建.基塘系统的物质循环与能量传递[A],见:徐琪,杨林章。董元华.等著,中国稻田生态系统[C].北京:中国农业出版社,1998,118-39.
    229.王飞,李锐,杨勤科等.水土流失研究中尺度效应及其机理分析[J].水土保持学报,2003,17:167-169.
    230.王激清,马文奇,江荣风,张福锁.中国农田生态系统氮素平衡模型的建立及其应用[J].农业工程学报,2007,23(8):210-215.
    231.王佳宁,晏维金,贾晓栋等.长江流域点源氮磷营养盐的排放、模型及预测[J].环境科学学报,2006,26(4):658-666.
    232.王书伟,廖千家骅,胡玉亭,等.我国NH3-N排放量及空间分布变化初步研究[J].农业环境科学报,2009,28(3):619-626.
    233.王文兴,卢筱风,庞燕波等.中国氨的排放强度地理分布[[J].环境科学学报,1997,17(1):1-6.
    234.武淑霞.我国农村畜禽养殖业氮磷排放变化特征及其对农业而源污染的影响[D].北京,中国农业科学院,2005.
    235.郗金标,张福锁,有祥亮.中国森林生态系统N平衡现状[J].生态学报,2007,8(27):3257-3267.
    236.夏星辉,周劲松,杨志峰,陈静生.黄河流域河水氮污染分析[J].环境科学学报,2001,21(5):563-568.
    237.谢迎新.人为影响下稻田生态系统环境来源氮解析[D].中国科学院研究生院博十学文论文,2006.
    238.邢光熹,施书莲.等苏州地区水体氮污染状况[J].土壤学报,2001,38(4):540-546.
    239.熊正琴,邢光熹等.太湖地区湖、河和井水中氮污染状况的研究[J].农村生态环境,2002,18(2):29-33.
    240.徐洪斌,吕锡武,李先宁,等.太湖流域农村生活污水污染现状调查研究[J].农业环境科学学报,2007,26(增刊):375-378.
    241.徐琪,陆彦椿,刘元昌.中国太湖地区水稻土[M].上海科学技术出版社,1980:37-40.
    242.许海,刘兆普,焦佳国,杨林章.太湖上游不同类型过境水氮素污染状况[J].生态学杂志,2008,27(1):43-49.
    243.晏维金,章申,王嘉慧.长江流域氮的生物地球化学循环及其对输送无机氮的影响[J].地理学报,2001,56(6):505-514.
    244.杨凤.动物营养学[M].农业出版社北京,1991.
    245.杨茹玮,史学正,于东升,黄耀,徐茂,潘贤章,金洋.基于1:5万数据库研究土壤空间分异及其影因素—以江苏省无锡和常州市为例[J].土壤学报,2006,43(3):369-375.
    246.叶灵,巨晓棠,刘楠,张丽娟,袁丽金等.华北平原不同农田类型土壤硝态氮累积及其对地下 水的影响[J].水土保持学报,2010,24(2):165-178.
    247.尹洁,郑玉涛,王晓燕.密云水库水源保护区不同类型村庄生活污水排放特征[J].农业环境科学学报,2009,28(6):1200-1207.
    248.尹微琴,王小治,王爱礼,赵海涛,郁志华,朱培森,封克.太湖流域农村生活污水污染物排放系数研究——以昆山为例[J].农业环境科学学报,2010,29(7):1369-1373
    249.张大弟,张小红.上海市郊非点源污染综合调查评价[J].上海农业学报,1997,13(1):31-36.
    250.张东升,史学正,于东升,黄标,赵永存,黄耀.城乡交错区蔬菜生态系统氮循环的数值模拟研究[J].土壤学报,2007,44(3):484-491.
    251.张林根,周木林,吴行国.江苏省句容县十壤志[M].句容县土壤普查办公室,镇江市农业局,江苏省土壤普查办公室.1986.(内部资料)
    252.张鑫,付永胜,范兴建,等.农村生活污水排放规律及处理方法分析[J].广东农业科学,2008,8:139-142.
    253.张修峰,李传红.大气氮湿沉降及其对惠州西湖水体富营养化的影响[J].中国生态农业学报,2008,16(1):16-19.
    254.赵亮,魏浩,冯士筰 渤海氮磷营养盐的循环和收支[J].环境科学,2002,23(1):78-81.
    255.中国统计年鉴[M],中国统计年鉴编委会,1986,1991,1996,2001,2005,2008.
    256.周爱姣,陶涛,张太平,张勇.A-A2/O工艺处理低碳源城市污水的除磷脱氮效果[J].环境科学与技术,2008,12(31):150-152.
    257.周静,崔键,王国强,马友华.我国南方牧草生态系统氮素循环与特征研究[J].土壤,2008,40(3):386-391.
    258.周徐海,王小治,郭红岩,等.农业非点源污染潜力指数系统(AP-PI)在太湖典型区域的应用[J].农业环境科学学报,2006,25(4):1029-1034.
    259.朱兆良,孙波.中国农业面源污染控制对策研究[J].环境保护,2008,8:4-6.
    260.朱兆良,邢光熹.氮循环—维系地球生命生生不息的一个自然过程[M].北京,清华大学出版社,广州,暨南大学出版社,2002,16-19.
    261.朱兆良.农田中氮肥的损失与对策[J].土壤与环境,2000,9(1):1-6.
    262.朱兆良.中国土壤氮素研究[J].土壤学报,2008,45(5):778-783.