自然超空泡射弹流体动力特性数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超空泡减阻技术能够使水下航行体的摩擦阻力减小90%,从而实现较高的航行速度,是未来水下航行体减阻技术发展的必然趋势。自然超空泡射弹是利用超空泡减阻技术研制的新一代水下兵器,对于未来海战中的近距离防御具有重要意义。自然超空泡射弹在水下航行过程中,周围流场环境对空泡形态和流体动力具有重要的影响,本文采用商业流体软件Fluent对自然超空泡射弹的流体动力特性进行了三维数值模拟,分析了流场参数对空泡形态和射弹流体动力系数的影响,具体内容如下:
     阐述分析超空泡流动的控制方程组,对不同的湍流模型和空化模型的特点及适用范围进行了对比分析,经比较选择k-ε湍流模型和全空泡模型,之后分析控制方程组的离散求解方法及计算边界条件选择方法。
     选取文献中已知模型为研究对象,分别采用二维轴对称和三维方法建模,并相应地采用二维求解器和三维求解器对自然超空泡射弹在不同空泡数、零攻角条件下的空泡形态和射弹流体动力特性进行模拟,并与经验公式进行对比,分析了不同求解器对数值模拟结果的影响,结果表明三维数值模拟精度较高。
     对不同流场参数条件下的自然超空泡射弹流体动力特性进行了三维数值模拟,分析了空化数、弗劳德数、雷诺数等流场参数以及攻角对空泡形态和射弹流体动力系数的影响。结果表明弗劳德数对空泡形态和射弹流体动力系数均无明显影响,雷诺数对射弹流体动力系数有一定影响,空化数和攻角对空泡形态和射弹流体动力系数均有明显影响。
Supercavitation technology can reduce 90% the frictional resistance for underwater vehicles to achieve high speed, which is the inevitable trend of technological development for underwater vehicles in the future.
     Natural supercavitating projectile is a new generation of underwater weapons which is developed in using supercavitation technology. For the naval warfare in the future ,it is great sence of close defense.
     For natural Supercavitating projectile underwater navigation, the flow field around the environment has great impact on the shape and the fluid dynamic characteristics of the projectile. In this paper, the three- dimensional numerical simulations are carried out to hydrodynamic of the natural supercavitating projectile by mainly commercial software Fluent. The impact of cavitating flow field parameters on the projectile shape and hydrodynamic coefficients is analyzed, as follows:
     The control equations of supercavitation flow are described. For the different turbulence model and the characteristics of cavitation, there is comparative analysis. After the k ?εturbulence model and the entire cavitation mode are chosen in this paper, the discrete of the control equations and the choose methods of the boundary conditions are described.
     The known model in literature is selected for the study .the models are built by two-dimensional axisymmetric modeling methods and three-dimensional modeling methods and solved by the corresponding two-dimensional and three-dimensional solver to simulate the cavitation shape and characteristics of fluid dynamics about the natural supercavitating projectile in different cavitation number and zero angle of attack , and compared with the empirical formula, an analysis on the impact in different numerical simulation solver for the results .the numerical simulation results show that three-dimensional result has higher accuracy.
     The three-dimensional numerical simulation of hydrodynamic characteristics on the natural supercavitating projectile are carried out .and analysis the impact of cavitation number, Froude number, Reynolds number, angle of attack, flow field parameters for the cavitation shape and hydrodynamic coefficient. The results show that the Froude number has no significant effecttion on cavitation shape and hydrodynamic coefficient of the supercavitating projectile. The Reynolds number has a certain influence on the hydrodynamic of supercavitating projectile.
     Cavitation number and angle of attack have a significant effect on cavitation shape and hydrodynamic coefficients of the projectile.
引文
1曹伟,魏英杰,王聪,等.超空泡技术现状、问题与应用力学进展。2006,36(4)571-579
    2易文俊,熊天红.小空化数下超空泡航行体的阻力特性试验研究水动力学研究与进展2009,24(1):1-6
    3傅惠萍,鲁传敬,冯学梅.超空泡武器技术中的几个水动力问题[J].船舶力学,2003,7(5):112-118
    4曹伟,王聪,魏英杰,等.自然超空泡形态特性的射弹试验研究[J].工程力学,2006,23(3):132-136
    5 SAVCHENKO Y N. Investigation of high-speed supercavitating underwater motion of bodies[C].Proceedings of NATO-AGARD, Ukraine: NASIHM, 1997.20-1,7
    6陈兢.新概念武器-超空泡水下高速武器.飞航导弹2004(4):34-37
    7傅金祝.德国超空泡水中兵器的研究现状.水雷战与舰船防护。2005(4):12-17
    8 Savchenko Yu N Experiment Investigation of Supercavitating Motion of bodies [A] Proceeding of CAV2001: Fourth International Symposiumon Supercavitating Flows [C], VonKarman Insitute (VKI) in Brussels Belgium, 2001.12
    9 Vlasenko, Y D”Experimental investigations high-speed unsteady supercavitating flow”, Third International Sympesium on Cavitaion , Apirl1998, Grenoble , France
    10 Y. D. Vlasenko. Experimental Investigations of High Speed Unsteady Supercavitating Flows. Proceedings of Third International Symposium on Cavitation, 1998(24):524-528.
    11 Savchenko Yu N. Control of supercavitation flow and stability of supercavitating motion of bodies [A]. Proceedings of CAV2001 Fourth International Symposium on Supercavitating Flows [C], Von Karman Institute(VKI) in Brussels Belgium, 2004:12
    12 Abraham N. Varghese, James S. Uhlman. Numerical Analysis of high-speed bodies in partially cavitating axisymmetric flow. Journal of Fluids Engineering, (2005)41-54.
    13 Farouk M. Owis, Ali H. Nayfeh. Numerical simulation of 3-D incompressible,multi-phase flows over cavitating projectile .European Journal of Mechanics B/Fluids 23 2004:339–351.
    14 Farouk M. Owis, All H. Nayfeh . Numerical Simulation of Super- and partially-Cavitating Flows Over an axisymmetric Projectile ,AIAA ,VA24061 2001.
    15 Merkle, C.L., Feng, J. and Buelow,"Computational Modeling of the Dynamics of Sheet Cavitation " , 3rd International Symposiumon Cavitation, Grenoble , France.1998.
    16 Kinnas S A ,Mazel C H. Numerical Versus experimental cavitation tunnel ( a supercavitating hydrofoil experiment )[J]. J.Fluid Eng.,1993,115:760~765
    17 Kinnas S A,Fine N E.A numerical nonlinear analysis ofthe flow around two-and three-dimensional partially cavitating hydrofoils [J]. J. Fluid Mech.,1993, 254 :151~181
    18 Ingber M S, Hailey C E. Numerical modelling of cavitieson axisymmetric bodies at zero and non-zero angle of at-tack [J]. Int. J. for Numerical Methods in Fluids, 1992,15: 251~271
    19 Dang J. KuiperG. Re-entrant jet modeling ofpartial cav-ity flow on three-dimensional hydrofoils [J]. Journal of Fluids Engineering, 1999, 121: 781~787
    20 Delannoy Y.Modelisation dec' oulements instation naires etcavitants[D]. Institute National Poly technique de Greno-ble, 1989
    21傅慧萍,李福新.回转体局部空泡绕柳流的非线性分析.力学学报,2002, 34(2):278-284
    22傅惠萍,乔志德,张宇文.基于模拟退火算法的水下航行体流体动力参数辨识.系统仿真学报。2001 13(4):434-435
    23贾彩娟,许辉,张宇文.水下航行体局部空泡流场的空泡未留模型初探。舰船科学技术.2004(2):12-16
    24贾彩娟,张宇文.水下航行体器局部空泡流场的非线性分析鱼雷技术2002(3):23-27
    25王海斌,张嘉钟,魏英杰,于开平,贾力平.空泡形态与典型空化器参数关系的研究---小空泡数下的发展空泡形态.水动力学研究与进展.Ser.A,2005,25(2):251-257.
    26熊天红,易文俊,刘怡昕.小攻角对水下超高速射弹空泡形体的影响。弹道学报。2008(3):71-74
    27周家胜,易文俊等.小攻角下超高速射弹的空泡形态特性分析。弹箭与制导学报.2008(2):165-169
    28 Kuboia A,Kuto H,Yamaguchi H. A new modeling of cavitating flows: a numerical study of unsteady cavitation on a hydrofoil section[J]. Fluid Mech., 1992, 240: 59-96.
    29 Vsin A D. The principle of independence of cavity section expansion ( Logvinovich’s Principle ) as the basis for investigation on cavitation flows[Z].ProcRTO EN-010/ATV-058,2001
    30 Vsin A D. The principle of independence of cavity section expansion (Logvinovich’s Principle ) as the basis for investigation on cavitation flows[Z]. ProcRTO EN-010 / ATV-058, 2001
    31 Yu. N. Savchenko. Supercavitation-problems and perspectives [C]// 4th International Symposium on Cavitations, California: California Institute of Technology , 2004(9):11-16.
    32 Bonet J, Burton AJ.A simple orthotropic , transversely isotropic hyperelastic constitutive equation for largestrain computations [J].Computer Methods in Applied Mechanics and Engineering , 1998,162(1~4):151~164.
    33 HKS Inc. Tire modeling using ABAQUS [M]. Training Lecture Notes, Version 6.1,2005.
    34 R. F. Kunz, T. S. Chyczewski, D. A. Boger, D. R. Stinebring, H. J. Gibeling. Multi-Phase CFD Analysis of Natural And Ventilated Cavitation About Submerged Bodies. 3rd ASME/ JSME Joint Fluids Engineering Conference. 1999(7): 18-23.
    35 S. A. Orszag. Numerical Simulation of Turbulence Flows. Handbook of Trubulence. Plenum Press, New York, 1977(1):281-313.
    36 Y. N. Savchenko, V. N. Semenenko, V. V. Serebryakov, Experimental Investigation of Developed Cavitation Flows at Subsonic Velocities. Dopovidi AN Ukrayiny. 1993(2): 64 ? 69. (in Russ)
    37贾力平,张嘉钟,于开平,等.空化器线形与超空泡减阻效果关系研究[J].船舶工程,2006,28(2): 20-23.
    38 Savchenko Yu N. Supercavitation -problems and perspectives[C].The Fourth International Symposium on Cavitation, Pasabena:California Institute of Technology, 2001:12-15
    39 Vladimir N. Semenenko. Artificial Supercavitation. Physics and Calculation. EN-010.2002:11
    40 Yu. N. Savchenko, Yu. A. Semenko, S. I. Putilin. Some Problems of the Supercavitating Motion Management. Sixth International Symposium onCavitation. CAV 2006, Mageningen, The Nethelands, 2006(9):13
    41 Yuriy D.Vlasenko experimental investigation of supercavitation flow regimesat subsonic and transonic speeds Fifth International Symposium on Cavitation. 2004:1-4.
    42 Emil V. Paryshev. Mathematical Modeling of Unsteady Cavity Flows Fifth International Symposium on Cavitation. 2005: 1-4.
    43 V. Ahuja. A. Hosangadi. shape optimization of multi-element airfoils using evolution naryal gorithms and hybrid unstructured framework 2004 ASME Heat Transfer/Fluids Engineering Summer Conference.2005(7)11-15.
    44 Guojian Lin, Balakumar Balachandran Eyad Abed. Supercavitating Body Dynamics, Bifurcations and Control .2005 American Control Conference 2005(6) 8-10.
    45 Emil V. Paryshev . Mathematical Modeling of Unsteady Cavity Flows . Fifth International Symposium on Cavitation (CAV2003) 2003(11):1-4.
    46 Ivan N Kirschnerdavid C Kringann W Stokesneal E Fine James S Uhlman, JR. control Strategies for supercavitating vehicles. Journal of Vibration and Control 2002; 8; 219.