腺病毒介导的RPL23基因转染通过对MDM2-p53反馈环的调节抑制p53野生型胃癌细胞的生长
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
p53的失活是肿瘤转化过程中最常见的事件之一。人类大部分肿瘤的发生和发展同p53的变异和缺失密切相关。p53在人类肿瘤中突变率很高,平均达到50%;尽管如此,仍有约50%的肿瘤表达野生型p53(wt-p53),其中多数因细胞内降解代谢或下游信号通路的改变而致p53正常功能缺失。
     MDM2在调节p53浓度及活性中起关键作用。在正常细胞中,MDM2通过对p53蛋白持续而又快速的降解使p53活性保持在一个适当的水平,这是生物体维持正常生长的一种平衡调控手段。MDM2本身是p53的转录靶基因,因而两者构成负反馈环路,调节p53的稳定性。但在一些细胞中,由于基因扩增或其它原因导致MDM2水平的升高,从而导致对p53产生构成性的、非正常的抑制作用,并且不可逆地促使其降解,使p53对细胞正常的调控平衡被破坏,造成细胞生长失控,因而变得具有肿瘤细胞的特性。
     将p53从被MDM2的抑制中释放出来或阻断MDM2与其它基础转录因子的相互作用以恢复p53的正常功能,即可抑制癌的发生或发展。已有的研究显示,核糖体蛋白L23(RPL23)是细胞内调节MDM2-p53反馈环的一个重要分子。通过与MDM2的直接结合,RPL23抑制MDM2对p53的泛素化和降解而间接促使wt-p53功能的活化,进而诱导p53依赖的细胞周期阻滞和/或凋亡。此外,研究显示外源性表达的RPL23在胞核和胞浆内均可与MDM2结合,提示RPL23蛋白可以复合物的形式将MDM2阻滞于胞核或胞浆,进而间接抑制MDM2与p53的结合及对p53的泛素化和降解。基于此,我们设想以RPL23基因为靶点的肿瘤基因治疗是一可行策略。
     目的:
     探讨腺病毒介导的RPL23基因转染是否可通过对MDM2-p53相互作用的抑制诱导胃癌细胞内源性wt-p53蛋白的积聚活化并进而抑制其生长。
     方法:
     1、利用免疫组织化学染色的方法观察p53和MDM2在胃癌组织中的表达情况;2、构建rAd5-RPL23重组腺病毒,并利用Western Blot、免疫沉淀及免疫荧光染色等方法鉴定其对胃癌细胞MDM2-p53反馈环的调节;3、应用Ad-RPL23重组腺病毒转染wt-p53型胃癌细胞系AGS和MKN45,观察其对胃癌细胞周期和/或凋亡的影响,并进行裸鼠体内成瘤实验,进一步验证Ad-RPL23重组腺病毒对p53野生型胃癌的生长抑制作用。
     结果:
     1、p53和MDM2在胃癌组织中的表达及意义
     我们利用免疫组化染色检测了p53和MDM2在94例胃癌原发灶中的表达。结果显示:p53(突变型)的检出率为36%(34/94),此外,在这些可以检出突变型p53蛋白表达的胃癌原发灶中并非所有癌细胞均是p53阳性表达,其阳性率差异比较大,从10%-99%,均数约30%,提示在胃癌原发灶中有更多的癌细胞为p53野生型;在62.8%(59/94)的胃癌原发灶中可以检测到MDM2表达,定位于胞浆和胞核,并且呈异质性表达;在我们的研究中亦发现胃癌淋巴结转移灶MDM2表达阳性率显著高于原发灶,提示MDM2的水平增高可能与胃癌细胞的转移密切相关。
     2、Ad-RPL23重组腺病毒的构建及其对MDM2-p53反馈环的调节
     本研究首先利用武汉晶赛公司Adenovirus Expression System重组腺病毒构建系统成功构建了rAd5-RPL23(Ad-RPL23),随后利用Western Blot、免疫共沉淀和免疫荧光等方法证实在胃癌细胞系MKN45中外源性RPL23蛋白可与内源性MDM2蛋白相互结合并抑制其E3泛素酶活性,进而诱导wt-p53蛋白的积聚活化。进一步实验,我们证实Ad-RPL23诱导的p53活化源于其对MDM2降解p53过程的抑制。
     3、Ad-RPL23转染对胃癌细胞细胞周期和/或凋亡的影响
     Ad-RPL23转染后,p53野生型人胃癌细胞系MKN45和AGS出现G_1-S期阻滞,Western Blot结果显示,Ad-RPL23转染的MKN45和AGS细胞p53蛋白表达水平与MDM2蛋白表达水平具有一致性,显示外源性RPL23表达可抑制MDM2-p53相互作用并引起p53积聚活化,进而诱导p21的表达。此外,在MKN45细胞中,Ad-RPL23转染可以诱导明显的细胞凋亡,Western Blot结果显示,作为p53转录的靶基因,Bax和PUMA,两个已知的凋亡相关分子,表达均明显上调。在p53突变型胃癌细胞系MGC803中,Ad-RPL23转染对细胞周期及凋亡未有影响,显示外源性的RPL23是通过p53途径发挥其抑癌效应的。裸鼠体内成瘤实验进一步证实了上述结果。总之,本实验提供的数据表明,在野生型p53的胃癌细胞系中,外源性RPL23对MDM2-p53相互作用的抑制可以诱导p53的积聚活化,并进而诱导相应的细胞周期阻滞和/或凋亡。
     结论:外源性RPL23诱导的p53积聚活化是一种胃癌治疗的新策略。
Functional integrity of the p53 gene is an essential cellular defense againstneoplastic transformation. In fact, nearly all of the different kinds of humanmalignancies analyzed thus far were shown to contain mutations of the p53 geneor alternations in the p53 regulating pathway. Mutations in the p53 gene arefound in about 50% of all human tumors. Even so, half of human tumors retainwild-type p53, which are thought to have inadequate p53 function due toabnormalities in p53 regulation or defective signaling in the p53 pathway.
     Murine double minute 2 (MDM2), is an oncogene which encodes a proteinbest characterized for its role in the inactivation and degradation of wt p53. Innormal cells, steady-state levels of wt p53 are maintained at very low levels bycontinuous degradation by MDM2, which is essential for cells to hold p53function in check during normal development. The MDM2 gene itself is a downstream target of p53, thus forming a tight autoregulatory feedback loop.Consistent with this notion, gene amplification and over-expression of MDM2have been shown in a variety of tumors, which results in the inactivation of wtp53 protein, with an effect similar to that of mutations in the p53 gene.
     Interfering with the MDM2-p53 feedback loop leads to p53 (wt) activation,ultimately preventing neoplasia. Ribosomal proteins L23 (RPL23) was reportedto be able to inhibit MDM2-mediated p53 ubiquitination through direct bindingto MDM2, and subsequently induce p53 levels as well as its activity. In addition,RPL23 could interact with MDM2 in both the nucleus and the cytoplasm,which meant MDM2 was retained in the cytoplasm and the nucleus as acomplex, and this complex formation represented one more mechanism bywhich RPL23 indirectly inhibited the MDM2-p53 binding. Based on the knownmolecular properties of the RPL23 protein, we proposed a rationale for usingRPL23 as a target for cancer gene therapy.
     Objective:
     To investigate whether by disrupting the interaction between MDM2 andp53, adenovirus-mediated delivery of human ribosomal protein L23 (Ad-RPL23)stabilizes p53 protein, specifically activates the p53 pathway, and has in vitroand in vivo antitumor activity against gastric cancer harboring wt-p53.
     Methods:
     1. The expression of p53 and MDM2 in gastric cancer was determined byimmunohistochemical staining; 2. Adenovirus expressing a his-tagged humanribosomal protein L23 (Ad-RPL23) was constructed, and immunoblotting,immunoprecipitation, and immunofluorescence staining were applied to verifythe inhibition of MDM2-p53 interaction by Ad-RPL23; 3. Using an in vitrosystem with cultured gastric cancer MKN45 and AGS cells carrying wt-p53, the effects of Ad-RPL23 transfection on cell cycle and apoptosis were investigated,and studies using nude mice were applied further to ascertain the antitumoreffect of Ad-RPL23 in vivo.
     Results:
     1. Expression of p53 and MDM2 in gastric cancer
     94 primary gastric adenocarcinomas were assessed for MDM2 and p53expression using immunohistochemistry. It was found that p53 protein (mt-p53)was detected in 36% (34/94) of primary gastric cancer, and the percentage ofp53-positive cells was highly variable ranging from 10% to 99% (median, 30%),indicating that more cancer cells in gastric cancer express wt-p53; MDM2protein was located in the cytoplasm and nucleus of gastric cancer cells, and thepositive rate of MDM2 expression in primary gastric cancer was 62.8% (59/94).In addition, immunohistochemical staining for MDM2 revealed that expressionof MDM2 in lymph node metastasis was significantly higher than that inprimary gastric focus, indicating that overexpression of MDM2 were related tometastasis of gastric cancer.
     2. Construction and verification of Ad-RPL23
     Adenoviruses expressing a his-tagged human ribosomal protein L23 (Ad-RPL23)was constructed using the adenovirus expression system of WuhanGenesil Biotechnology Co., Ltd. Consequently, by immunoblotting,immunoprecipitation, and immunofluorescence staining, we showed that p53was accumulated in gastric cancer MKN45 cells through disruption of theinteraction between MDM2 and p53 by adenovirus delivered L23. Further, weprovided evidence that the accumulation of p53 induced by Ad-RPL23 waslargely attributable to decreased degradation of the protein.
     3. The growth inhibitory effect of Ad-RPL23 on in vitro and in vivo human gastric cancer cell lines
     In MKN45 and AGS cells harboring wt-p53, inhibition of MDM2-p53interaction by Ad-RPL23 stabilized p53 and thus resulted in substantial cellcycle arrest at G_1-S checkpoint, which was mediated largely by up-regulation ofp21, a transcriptional target of p53. We also showed that in MKN45 cells withwt-p53, inhibition of MDM2-p53 interaction by Ad-RPL23 resulted insignificant apoptotic cell death, which was associated with up-regulation of twowell-established transcriptional targets of p53, the proapoptotic proteins Bax andPUMA. Of note, no effects of Ad-RPL23 on cell cycle progression or apoptosiswere found in MGC803 cells with mt-p53, indicating the specificity ofexogenous RPL23 in activation of the p53 pathway. Encouraging results werealso obtained in the Ad-RPL23 treatment for subcutaneous tumors of MKN45gastric cancer. In conclusion, the data presented in this study verified thatinhibition of MDM2-p53 interaction by Ad-RPL23 could stabilize p53 andinduce cell cycle arrest and apoptosis in gastric cancer cells carrying wt-p53.
     Conclusion:
     Exogenous RPL23 induced wt-p53 stabilization and activation may be anovel therapeutic approach for patients with gastric cancer.
引文
[1]Vogelstein B, Lane D, Levine AJ. Surfing the p53 network. Nature,2000,408(6810):307-10
    [2]Levine AJ. p53, the cellular gatekeeper for growth and division. Cell,1997,88(3):323-31
    [3]Oren M. Decision making by p53: life, death and cancer. Cell Death Differ, 2003,10(4):431-42
    [4]Vassilev LT. MDM2 inhibitors for cancer therapy. Trends Mol Med.2007,13(1):23-31
    [5]Moll UM, Wolff S, Speidel D, Deppert W. Transcription-independent pro-apoptotic functions of p53. Curr Opin Cell Biol, 2005,17(6):631-6
    [6]Vousden KH, Lu X. Live or let die: the cell's response to p53. Nat Rev Cancer, 2002,2 (8):594-604
    [7]Hainaut P, Hollstein M. p53 and human cancer: the first ten thousand mutations. Adv Cancer Res, 2000,77:81-137
    [8]Yang Y, Li CC, Weissman AM. Regulating the p53 system through ubiquitination. Oncogene, 2004,23(11):2096-106
    [9]Li M, Brooks CL, Wu-Baer F, Chen D, Baer R, Gu W. Mono-versus polyubiquitination: differential control of p53 fate by Mdm2. Science,2003,302(5652): 1972-5
    [10]Wade M, Wahl GM. Targeting Mdm2 and Mdmx in cancer therapy:better living through medicinal chemistry? Mol Cancer Res, 2009,7(1):1-11
    [11]Fakharzadeh SS, Rosenblum-Vos L, Murphy M, Hoffman EK, George DL. Structure and organization of amplified DNA on double minutes containing the mdm2 oncogene. Genomics, 1993,15(2):283-90
    [12]Oliner JD, Kinzler KW, Meltzer PS, George DL, Vogelstein B.Amplification of a gene encoding a p53-associated protein in human sarcomas. Nature, 1992,358 (6381):80-3
    [13]Freedman DA, Wu L, Levine AJ. Functions of the MDM2 oncoprotein.Cell Mol Life Sci, 1999,55 (1):96-107
    [14]Kastan MB. Wild-type p53: tumors can't stand it. Cell, 2007,128(5):837-40.
    [15]Lane DP. Exploiting the p53 pathway for cancer diagnosis and therapy.BrJ Cancer, 1999,80 (Suppl 1):1-5
    [16] Hardcastle IR. Inhibitors of the MDM2-p53 interaction as anticancer drugs. Drugs Fut, 2007, 32(10): 883
    [17] Harris SL, Levine AJ. The p53 pathway: positive and negative feedback loops. Oncogene, 2005,24 (17):2899-908
    [18] Haupt Y, Maya R, Kazaz A, Oren M. Mdm2 promotes the rapid degradation of p53. Nature, 1997,387 (6630):296-299
    [19] Honda R, Tanaka H, Yasuda H. Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53. FEBS Lett, 1997,420 (1):25-27
    [20] Kubbutat MH, Jones SN, Vousden KH. Regulation of p53 stability by Mdm2. Nature, 1997,387 (6630):299-303
    [21] Leng RP, Lin Y, Ma W, Wu H, Lemmers B, Chung S, Parant JM, Lozano G, Hakem R, Benchimol S. Pirh2, a p53-induced ubiquitin-protein ligase,promotes p53 degradation. Cell, 2003,112(6):779-91
    [22] Dornan D, Wertz I, Shimizu H, Arnott D, Frantz GD, Dowd P, O'Rourke K, Koeppen H, Dixit VM. The ubiquitin ligase COP1 is a critical negative regulator of p53. Nature, 2004,429(6987):86-92
    [23] Chen D, Kon N, Li M, Zhang W, Qin J, Gu W. ARF-BP1/Mule is a critical mediator of the ARF tumor suppressor. Cell, 2005,121(7):1071-83
    [24] del Arroyo AG, Peters G. The Ink4a/Arf network cell cycle checkpoint or emergency brake? Adv Exp Med Biol, 2005,570:227-47
    [25] Sachs Z, Sharpless NE, DePinho RA, Rosenberg N. p16(Ink4a) interferes with Abelson virus transformation by enhancing apoptosis. J Virol,2004,78(7):3304-11
    [26] Sherr CJ. Divorcing ARF and p53: an unsettled case. Nat Rev Cancer.2006,6(9):663-73
    [27] Korgaonkar C, Hagen J, Tompkins V, Frazier AA, Allamargot C, Quelle FW, Quelle DE. Nucleophosmin (B23) targets ARF to nucleoli and inhibits its function. Mol Cell Biol, 2005,25(4): 1258-71
    [28] Liu X, Liu Z, Jang SW, Ma Z, Shinmura K, Kang S, Dong S, Chen J,Fukasawa K, Ye K. Sumoylation of nucleophosmin/B23 regulates its subcellular localization, mediating cell proliferation and survival. Proc Natl Acad Sci U S A, 2007,104(23):9679-84
    [29] Saporita AJ, Maggi LB Jr, Apicelli AJ, Weber JD. Therapeutic targets in the ARF tumor suppressor pathway. Curr Med Chem, 2007,14(17): 1815-27
    [30] Dai MS, Lu H. Inhibition of MDM2-mediated p53 ubiquitination and degradation by ribosomal protein L5. J Biol Chem. 2004,279 (43):44475-82
    [31] Lohrum MA, Ludwig RL, Kubbutat MH, Hanlon M, Vousden KH.Regulation of HDM2 activity by the ribosomal protein L11. Cancer Cell,2003,3 (6):577-87
    [32] Dai MS, Zeng SX, Jin Y, Sun XX, David L, Lu H. Ribosomal protein L23 activates p53 by inhibiting MDM2 function in response to ribosomal perturbation but not to translation inhibition. Mol Cell Biol, 2004,24(17):7654-68
    [33] Jin A, Itahana K, O'Keefe K, Zhang Y. Inhibition of HDM2 and activation of p53 by ribosomal protein L23. Mol Cell Biol, 2004,24(17):7669-80
    [34] He H, Sun Y. Ribosomal protein S27L is a direct p53 target that regulates apoptosis. Oncogene, 2007,26(19):2707-16
    [35] Chen D, Zhang Z, Li M, Wang W, Li Y, Rayburn ER, Hill DL, Wang H,Zhang R. Ribosomal protein S7 as a novel modulator of p53-MDM2 interaction: binding to MDM2, stabilization of p53 protein, and activation of p53 function. Oncogene, 2007,26(35):5029-37
    [36] Popowicz GM, Czarna A, Rothweiler U, Szwagierczak A, Krajewski M,Weber L, Holak TA. Molecular basis for the inhibition of p53 by Mdmx.Cell Cycle, 2007,6(19):2386-92.
    [37] Gilkes DM, Chen J. Distinct roles of MDMX in the regulation of p53 response to ribosomal stress. Cell Cycle, 2007,6(2):151-5
    [38] Marine JC, Jochemsen AG. Mdmx and Mdm2: brothers in arms? Cell Cycle, 2004,3(7):900-4
    [39] Steegenga WT, Shvarts A, Riteco N, Bos JL, Jochemsen AG. Distinct regulation of p53 and p73 activity by adenovirus E1A, E1B, and E4orf6 proteins. Mol Cell Biol, 1999,19(5):3885-94
    [40] Li Z, Day CP, Yang JY, Tsai WB, Lozano G, Shih HM, Hung MC.Adenoviral E1A targets Mdm4 to stabilize tumor suppressor p53. Cancer Res, 2004,64(24):9080-5
    [41] Bond GL, Hu W, Levine AJ. MDM2 is a central node in the p53 pathway:12 years and counting. Curr Cancer Drug Targets, 2005,5(1):3-8
    [42] Vousden KH, Prives C. P53 and prognosis: new insights and further complexity. Cell, 2005,120(1):7-10
    [43] Bottger A, Bottger V, Sparks A, Liu WL, Howard SF, Lane DP. Design of a synthetic Mdm2-binding mini protein that activates the p53 response in vivo. Curr Biol, 1997,7(11):860-9
    [44] Chene P, Fuchs J, Bohn J, Garcia-Echeverria C, Furet P, Fabbro D. A small synthetic peptide, which inhibits the p53-Mdm2 interaction, stimulates the p53 pathway in tumour cell lines. J Mol Biol,2000,299(1):245-53
    [45]Chene P. Inhibiting the p53-MDM2 interaction: an important target for cancer therapy. Nat Rev Cancer, 2003,3(2): 102-9
    [46]Klein C, Vassilev LT. Targeting the p53-MDM2 interaction to treat cancer. Br J Cancer, 2004,91(8): 1415-9
    [47]Chen L, Agrawal S, Zhou W, Zhang R, Chen J. Synergistic activation of p53 by inhibition of MDM2 expression and DNA damage. Proc Natl Acad Sci U S A, 1998,95(1): 195-200.
    [48]Zhang R, Wang H, Agrawal S. Novel antisense anti-MDM2 mixed-backbone oligonucleotides: proof of principle, in vitro and in vivo activities, and mechanisms. Curr Cancer Drug Targets, 2005,5(1):43-9
    [49]Sun Y. Targeting E3 ubiquitin ligases for cancer therapy. Cancer Biol Ther, 2003,2(6):623-9
    [50]Yang Y, Ludwig RL, Jensen JP, Pierre SA, Medaglia MV, Davydov IV,Safiran YJ, Oberoi P, Kenten JH, Phillips AC, Weissman AM, Vousden KH. Small molecule inhibitors of HDM2 ubiquitin ligase activity stabilize and activate p53 in cells. Cancer Cell, 2005,7(6):547-59
    [51]Arkin MR, Wells JA. Small-molecule inhibitors of protein-protein interactions: progressing towards the dream. Nat Rev Drug Discov,2004,3(4):301-17
    [52]Fry DC, Vassilev LT. Targeting protein-protein interactions for cancer therapy. J Mol Med, 2005,83(12):955-63
    [53]Kussie PH, Gorina S, Marechal V, Elenbaas B, Moreau J, Levine AJ,Pavletich NP. Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science, 1996,274(5289):948-53
    [54]Fotouhi N, Graves B. Small molecule inhibitors of p53/MDM2 interaction. Curr Top Med Chem, 2005,5(2): 159-65
    [55]Vassilev LT. p53 Activation by small molecules: application in oncology.J Med Chem, 2005,48(14):4491-9
    [56]Vassilev LT, Vu BT, Graves B, Carvajal D, Podlaski F, Filipovic Z, Kong N, Kammlott U, Lukacs C, Klein C, Fotouhi N, Liu EA. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2.Science, 2004,303(5659):844-8
    [57]Tovar C, Rosinski J, Filipovic Z, Higgins B, Kolinsky K, Hilton H, Zhao X, Vu BT, Qing W, Packman K, Myklebost O, Heimbrook DC, Vassilev LT. Small-molecule MDM2 antagonists reveal aberrant p53 signaling in cancer: implications for therapy. Proc Natl Acad Sci U S A,2006,103(6):1888-93
    [58] Issaeva N, Bozko P, Enge M, Protopopova M, Verhoef LG, Masucci M,Pramanik A, Selivanova G. Small molecule RITA binds to p53, blocks p53-HDM-2 interaction and activates p53 function in tumors. Nat Med,2004,10(12):1321-8
    [59] Krajewski M, Ozdowy P, D'Silva L, Rothweiler U, Holak TA. NMR indicates that the small molecule RITA does not block p53-MDM2 binding in vitro. Nat Med, 2005,11(11): 1135-6
    [60] Galatin PS, Abraham DJ. QSAR: hydropathic analysis of inhibitors of the p53-mdm2 interaction. Proteins, 2001,45(3): 169-75
    [61] Galatin PS, Abraham DJ. A nonpeptidic sulfonamide inhibits the p53-mdm2 interaction and activates p53-dependent transcription in mdm2-overexpressing cells. J Med Chem, 2004,47(17):4163-5
    [62] Stoll R, Renner C, Hansen S, Palme S, Klein C, Belling A, Zeslawski W,Kamionka M, Rehm T, M(?)hlhahn P, Schumacher R, Hesse F, Kaluza B,Voelter W, Engh RA, Holak TA. Chalcone derivatives antagonize interactions between the human oncoprotein MDM2 and p53.Biochemistry, 2001,40(2):336-44
    [63] Hollstein M, Sidransky D, Vogelstein B, Harris CC. p53 mutations in human cancers. Science, 1991,253(5015);49-53
    [64] Ahrendt SA, Halachmi S, Chow JT, Wu L, Halachmi N, Yang SC,Wehage S, Jen J, Sidransky D. Rapid p53 sequence analysis in primary lung cancer using an oligonucleotide probe array. Proc Natl Acad Sci U S A, 1999,96(13):7382-7
    [65] Poyurovsky MV, Prives C. Unleashing the power of p53: lessons from mice and men, Genes Dev, 2006,20(2): 125-31
    [66] Michalak E, Villunger A, Erlacher M, Strasser A. Death squads enlisted by the tumour suppressor p53. Biochem Biophys Res Commun,2005,331(3):786-98
    [67] Satyamoorthy K, Bogenrieder T, Herlyn M. No longer a molecular black box-new clues to apoptosis and drug resistance in melanoma. Trends Mol Med, 2001,7(5): 191-4
    [68] Satyamoorthy K, Chehab NH, Waterman MJ, Lien MC, El-Deiry WS,Herlyn M, Halazonetis TD. Aberrant regulation and function of wild-type p53 in radioresistant melanoma cells. Cell Growth Differ,2000,11(9):467-74
    [69] Soengas MS, Capodieci P, Polsky D, Mora J, Esteller M, Opitz-Araya X,McCombie R, Herman JG, Gerald WL, Lazebnik YA, Cordon-Cardo C, Lowe SW. Inactivation of the apoptosis effector Apaf-1 in malignant melanoma. Nature. 2001, 409(6817): 207-11
    [70] Campos SK, Barry MA. Current advances and future challenges in Adenoviral vector biology and targeting. Curr Gene Ther, 2007, 7(3): 189-204
    [71] 宋海峰,钱海利,张雪艳,梁萧,付明,林晨.复制缺陷型腺病毒Ad-p14~(ARF)治疗肝细胞癌的实验研究及作用机制的探讨.中华肿瘤杂志,2006,28(9):641-5
    [72] Bardeesy N, Aguirre AJ, Chu GC, Cheng KH, Lopez LV, Hezel AF, Feng B, Brennan C, Weissleder R, Mahmood U, Hanahan D, Redston MS, Chin L, Depinho RA. Both p16(Ink4a) and the p19(Arf)-p53 pathway constrain progression of pancreatic adenocarcinoma in the mouse. Proc Natl Acad Sci U S A, 2006, 103(15): 5947-52
    [73] Lin AW, Lowe SW. Oncogenic ras activates the ARF-p53 pathway to suppress epithelial cell transformation. Proc Natl Acad Sci U S A, 2001, 98(9): 5025-30
    [74] Lindstr(o|¨)m MS, Wiman KG. Myc and E2F1 induce p53 through p14~(ARF)-independent mechanisms in human fibroblasts. Oncogene, 2003, 22(32): 4993-5005
    [75] Brooks CL, Gu W. Dynamics in the p53-mdm2 ubiquitination pathway. Cell Cycle, 2004, 3(7): 895-9
    [76] Gudkov AV, Komarova EA. The role of p53 in determining sensitivity to radiotherapy. Nat Rev Cancer, 2003, 3(2): 117-29
    [77] Mendrysa SM, McElwee MK, Michalowski J, O'Leary KA, Young KM, Perry ME. Mdm2 is critical for inhibition of p53 during lymphopoiesis and the response to ionizing irradiation. Mol Cell Biol, 2003, 23(2): 462-72
    [78] Mendrysa SM, O'Leary KA, McElwee MK, Michalowski J, Eisenman RN, Powell DA, Perry ME. Tumor suppression and normal aging in mice with constitutively high p53 activity. Genes Dev, 2006, 20(1): 16-21
    [79] Vassilev LT. Small-molecule antagonists of p53-MDM2 binding: research tools and potential therapeutics. Cell Cycle, 2004, 3(4): 419-21
    [80] Appella E, Anderson CW. Post-translational modifications and activation of p53 by genotoxic stresses. Eur J Biochem, 2001, 268(10): 2764-72
    [81] Ljungman M. Dial 9-1-1 for p53: mechanisms of p53 activation by cellular stress. Neoplasia, 2000, 2(3): 208-25
    [82] Thompson T, Tovar C, Yang H, Carvajal D, Vu BT, Xu Q, Wahl GM, Heimbrook DC, Vassilev LT. Phosphorylation of p53 on key serines is dispensable for transcriptional activation and apoptosis. J Biol Chem, 2004, 279(51): 53015-22
    [83] St(?)hmer T, Chatterjee M, Hildebrandt M, Herrmann P, Gollasch H,Gerecke C, Theurich S, Cigliano L, Manz RA, Daniel PT, Bommert K,Vassilev LT, Bargou RC. Nongenotoxic activation of the p53 pathway as a therapeutic strategy for multiple myeloma. Blood, 2005,106(10):3609-17
    [84] Kojima K, Konopleva M, Samudio IJ, Shikami M, Cabreira-Hansen M,McQueen T, Ruvolo V, Tsao T, Zeng Z, Vassilev LT, Andreeff M.MDM2 antagonists induce p53-dependent apoptosis in AML:implications for leukemia therapy. Blood, 2005,106(9):3150-9
    [85] Coll-Mulet L, Iglesias-Serret D, Santidri(?)n AF, Cosialls AM, de Frias M,Casta(?)o E, Camp(?)s C, Barrag(?)n M, de Sevilla AF, Domingo A, Vassilev LT, Pons G, Gil J. MDM2 antagonists activate p53 and synergize with genotoxic drugs in B-cell chronic lymphocytic leukemia cells. Blood,2006,107(10):4109-14
    [86] Secchiero P, Barbarotto E, Tiribelli M, Zerbinati C, di Iasio MG, Gonelli A, Cavazzini F, Campioni D, Fanin R, Cuneo A, Zauli G. Functional integrity of the p53-mediated apoptotic pathway induced by the nongenotoxic agent nutlin-3 in B-cell chronic lymphocytic leukemia (B-CLL). Blood, 2006,107(10):4122-9
    [87] Blagosklonny MV, Pardee AB. Exploiting cancer cell cycling for selective protection of normal cells. Cancer Res, 2001,61(11):4301-5
    [88] Blagosklonny MV, Robey R, Bates S, Fojo T. Pretreatment with DNA-damaging agents permits selective killing of checkpoint-deficient cells by microtubule-active drugs. J Clin Invest, 2000,105(4):533-9
    [89] Gudkov AV, Komarova EA. Prospective therapeutic applications of p53 inhibitors. Biochem Biophys Res Commun, 2005,331(3):726-36
    [90] Wool IG. The structure and funtion of eukaryotic ribosomes. Annu Rev Bioc hem, 1979,48:719-54
    [91] Wool IG. Extraribosomal functions of ribosomal proteins. Trends Biochem Sci, 1996,21(5): 164-5
    [92] Liu JM, Ellis SR. Ribosomes and marrow failure: coincidental association or molecular paradigm? Blood, 2006,107(12):4583-8
    [93] Naora H. Involvement of ribosomal proteins in regulating cell growth and apoptosis: translational modulation or recruitment for extraribosomal activity? Immunol Cell Biol, 1999,77(3): 197-205
    [94] Ruggero D, Pandolfi PP. Does the ribosome translate cancer? Nat Rev Cancer, 2003,3(3): 179-92
    [95] Lai MD, Xu J. Ribosomal proteins and colorectal cancer. Curr Genomics.2007,8(1):43-9
    [96] Befort K, Costigan M, Woolf CJ. Differential gene expression-how to find new analgesic targets. Curr Opin Investig Drugs, 2001, 2(3): 396-8.
    [97] 明镇寰.核糖体结构研究进展.浙江大学学报(理学版),2001,28(1):67-71
    [98] Chen FW, Ioannou YA. Ribosomal proteins in cell proliferation and apoptosis. Int Rev Immunol, 1999, 18(5-6): 429-48
    [99] Moritz M, Paulovich AG, Tsay YF, Woolford JL Jr. Depletion of yeast ribosomal proteins L16 or rp59 disrupts ribosome assembly. J Cell Biol, 1990, 111(6 Pt 1): 2261-74
    [100] Kongsuwan K, Yu Q, Vincent A, Frisardi MC, Rosbash M, Lengyel JA, Merriam J. A Drosophila Minute gene encodes a ribosomal protein. Nature, 1985, 317(6037): 555-8
    [101] Wanzel M, Russ AC, Kleine-Kohlbrecher D, Colombo E, Pelicci PG, Eilers M. A ribosomal protein L23-nucleophosmin circuit coordinates Mizl function with cell growth. Nat Cell Biol, 2008, 10(9): 1051-61
    [102] Fisher EM, Beer-Romero P, Brown LG, Ridley A, McNeil JA, Lawrence JB, Willard HF, Bieber FR, Page DC. Homologous ribosomal protein genes on the human X and Y chromosomes: Escape from X interactivation an d possible implications for turner syndrome. Cell, 1990, 63(6): 1205-18
    [103] Willig TN, Draptchinskaia N, Dianzani I, Ball S, Niemeyer C, Ramenghi U, Orfali K, Gustavsson P, Garelli E, Brusco A, Tiemann C, P(?)rignon JL, Bouchier C, Cicchiello L, Dahl N, Mohandas N, Tchernia G. Mutations in ribosomal protein S19 gene and diamond blackfan anemia: wide variations in phenotypic expression. Blood, 1999, 94(12): 4294-306
    [104] Kenmochi N, Yoshihama M, Higa S, Tanaka T. The human ribosomal protein L6 gene in a critical region for Noonan symdrome. J Hum Genet, 2000, 45(5): 290-3
    [105] Al-Maghtheh M, Vithana E, Tarttelin E, Jay M, Evans K, Moore T, Bhattacharya S, Inglehearn CF. Evidence for a major retinitis pigmentosa locus on 19q13. 4(fuP1 1)and assotiation with a unique bimodal expressivity phenotyp. Am J Hum Genet, 1996, 59(4): 864-71
    [106] Uechi T, Tanaka T, Kenmochi N. A complete map of the human ribosomal protein genes: assigment of 80 genes to the cytogenetic map and implication for human disorders. Gemomics, 2001, 72(3): 223-30
    [107] 周晓,吴德昌,程书钧,胡迎春,舒为群,李刚.α粒子诱导人支气管上皮细胞转化相关基因的分离与克隆.中华放射医学与防护杂志,1999,19(3):177-99.
    [108] 蒋义国,陈家垄,陈学敏,冯苏妹,易菲.二羟环氧苯并芘诱导致癌相关差异表达cDNA序列的克隆.中华肿瘤杂志,2002,24(3):239-42
    [109] 祁震宇,惠国桢,李瑶,唐榕,周宗祥,夏放,顾少华,应康,谢毅.脑胶质瘤患者全长新基因的获得及初步研究.中华医学杂志,2001,81(18):1124-7
    [110] 张云汉,殷智榕,温洪涛,陈东,高冬玲,姜国忠.食管癌相关基因片段的筛选与鉴定.河南医科大学学报,2001,36(5):519-21
    [111] 葛世丽,李刚,陈伟,楼铁柱,吴德昌.SAGE方法分析永生化BEP2D细胞及α粒子诱发恶性转化BEP2D细胞的基因表达.癌症,2001,20(1):12-7
    [112] Chester KA, Robson L, Begent RH, Talbot IC, Pringle JH, Primrose L, Macpherson AJ, Boxer G, Southall P, Malcolm AD. Identification of a human ribosomal protein mRNA with increased expression in colorectal tumors. Biochim Biophys Acta, 1989, 1009(3): 297-300
    [113] Pogue-Geile K, Geiser JR, Shu M, Miller C, Wool IG, Meisler AI, Pipas JM. Ribosomal protein genes are overexpressed in colorectal cancer: isolation of a cDNA clone encoding the human s3 ribosomal protein. Mol Cel Biol, 1991, 11(8): 3842-9
    [114] Denis MG, Chadeneau C, Lecabellec MT, LeMoullac B, LeMevel B, Meflah K, Lustenberger P. Overexpression of the S13 ribosomal protein in actively growing cells. Int J Cancer, 1993, 55(2): 275-80
    [115] 陈汉春,孟巧.K562细胞中氯化血红素诱导性表达基因的研究.中华血液学杂志,2003,24(4):185-9
    [116] 杨劲松,郑新民,陈诗书.PTP0t高表达致NIH3T3细胞恶变早期相关基因的筛选与鉴定.生物化学与生物物理学报,2002,34(5):601-7
    [117] Welsh JB, Zarrinkar PP, Sapinoso LM, Kern SG, Behling CA, Monk BJ, Lockhart DJ, Burger RA, Hampton GM. Analysis of gene expression profiles in normal and neoplasitc ovarian tissue somples identifies can didate molecular markers of epithelial ovarian cancer. Proc Natl Acad Sci USA, 2001, 98(3): 1176
    [118] 卢丽娜,王汉平,谢健晋.卵巢癌相关基因筛选的初步研究.中国实用妇科与产科杂志,2002,18(4):221-4
    [119] 易广才,单详年,邵振堂.基因芯片在宫颈癌、卵巢癌和乳腺癌相关基因表达研究中的运用.临床与实验病理学杂志,2003,19(4):375-81
    [120] Tang H, Hornstein E, Stolovich M, Levy G, Livingstone M, Templeton D, Avruch J, Meyuhas O. Amino acid-induced translation of TOP mRNAs is fully dependent on phosphatidylinositol 3-kinase-mediated signaling, is partially inhibited by rapamycin, and is independent of S6K1 and rpS6 phosphorylation. Mol Cell Biol, 2001, 21(24): 8671-83
    [121] Tuxworth WJ Jr, Shiraishi H, Moschella PC, Yamane K, McDermott PJ, Kuppuswamy D. Translational activation of 5'-TOP mRNA in pressure overload myocardium. Basic Res Cardiol, 2008, 103(1): 41-53
    [122] Monk BJ, Tewari KS. The spectrum and clinical sequelae of human papillomavirus infection. Gynecol Oncol, 2007, 107(Suppl 1): S6-13
    [123] Kuang E, Tang Q, Maul GG, Zhu F. Activation of p90 ribosomal S6 kinase by ORF45 of Kaposi's sarcoma-associated herpesvirus and its role in viral lytic replication. J Virol, 2008, 82(4): 1838-50
    [124] Bertram J, Palfner K, Hiddemann W, Kneba M. Overexpression of ribosomal proteins L4 and L5 and the putative alternative elongation factor PTI-1 in the doxorubicin resistant human colon cancer cell line LoVoDxR. Eur J Cancer, 1998, 34(5): 731-6
    [125] 姜润德,张立新,岳文,朱运峰,路浩军,刘昕,岑信棠,关新元,李春海.人鼻咽癌顺铂耐药细胞系(CNE2/DDP)的建立及耐药相关基因的筛选.癌症,2003,22(4):337-45
    [126] 朱宁希,郑树,徐荣臻,虞荣喜.S3核糖体蛋白基因的过表达与K562/DOX细胞耐药性的关系.中华血液学杂志,2003,24(3):141-3
    [127] Wang X, Lan M, Shi YQ, Lu J, Zhong YX, Wu HP, Zai HH, Ding J, Wu KC, Pan BR, Jin JP, Fan DM. Diferential display of vincristine-resistance related genes in gastric cancer SGC7901 cell. World J Gastroenterol, 2002, 8(1): 54-9
    [128] Oliner JD, Kinzler KW, Meltzer PS, George DL, Vogelstein B. Amplification of a gene encoding a p53-associated protein in human sarcomas. Nature, 1992, 358(6381): 80-3
    [129] Ladanyi M, Cha C, Lewis R, Jhanwar SC, Huvos AG, Healey JH. MDM2 gene amplification in metastatic osteosarcoma. Cancer Res, 1993, 53(1): 16-8
    [130] Reifenberger G, Liu L, Ichimura K, Schmidt EE, Collins VP. Amplification and overexpression of the MDM2 gene in a subset of human malignant gliomas without p53 mutations. Cancer Res, 1993, 53(12): 2736-9
    [131] Sheikh MS, Shao ZM, Hussain A, Fontana JA. The p53-binding protein MDM2 gene is differentially expressed in human breast carcinoma. Cancer Res. 1993, 53(14): 3226-8
    [132] Kasper HU, Schneider-Stock R, Mellin W, G(u|¨)nther T, Roessner A. P53-protein accumulation and MDM2-protein overexpression in gastric carcinomas. No apparent correlation with survival. Pathol Res Pract, 1999, 195(12): 815-20
    [133] de Rozieres S, Maya R, Oren M, Lozano G. The loss of mdm2 induces p53-mediated apoptosis. Oncogene, 2000,19(13):1691-7
    [134] Schenk-Braat EA, van Mierlo MM, Wagemaker G, Bangma CH, Kaptein LC. An inventory of shedding data from clinical gene therapy trials. J Gene Med, 2007,9(10):910-21
    [135] Peng Z. Current status of gendicine in China: recombinant human Ad-p53 agent for treatment of cancers. Hum Gene Ther, 2005,16(9):1016-27
    [136] Ohashi M, Kanai F, Ueno H, Tanaka T, Tateishi K, Kawakami T, Koike Y, Ikenoue T, Shiratori Y, Hamada H, Omata M. Adenovirus mediated p53 tumour suppressor gene therapy for human gastric cancer cells in vitro and in vivo. Gut, 1999,44(3):366-71
    [137] Sisk EA, Soltys SG, Zhu S, Fisher SG, Carey TE, Bradford CR. Human papillomavirus and p53 mutational status as prognostic factors in head and neck carcinoma. Head Neck, 2002,24(9):841-9
    [138] Poeta ML, Manola J, Goldwasser MA, Forastiere A, Benoit N, Califano JA, Ridge JA, Goodwin J, Kenady D, Saunders J, Westra W, Sidransky D,Koch WM. TP53 mutations and survival in squamous-cell carcinoma of the head and neck. N Engl J Med, 2007,357(25):2552-61
    [139] Ireland AP, Shibata DK, Chandrasoma P, Lord RV, Peters JH, DeMeester TR. Clinical significance of p53 mutations in adenocarcinoma of the esophagus and cardia. Ann Surg, 2000,231(2): 179-87
    [140] Sarbia M, Porschen R, Borchard F, Horstmann O, Willers R, Gabbert HE.p53 protein expression and prognosis in squamous cell carcinoma of the esophagus. Cancer, 1994,74(8):2218-23
    [141] Meng RD, Shih H, Prabhu NS, George DL, el-Deiry WS. Bypass of abnormal MDM2 inhibition of p53-dependent growth suppression.Clin Cancer Res, 1998,4(1):251-9
    [142] Kim HJ, Cho HI, Han YH, Park SY, Kim DW, Lee DG, Kim JH, Shin WS, Paik SY, Kim CC, Hong YS, Kim TG. Efficient transduction with recombinant adenovirus in EBV-transformed B lymphoblastoid cell lines.J Biochem Mol Biol, 2004,37(3):376-82
    [143] Chen X, Bargonetti J, Prives C. p53, through p21 (WAF1/CIP1), induces cyclin D1 synthesis. Cancer Res, 1995,55(19):4257-63
    [144] Zinkel S, Gross A, Yang E. BCL2 family in DNA damage and cell cycle control. Cell Death Differ, 2006,13(8):1351-9
    [145] Meng Y, Tang W, Dai Y, Wu X, Liu M, Ji Q, Ji M, Pienta K, Lawrence T, Xu L. Natural BH3 mimetic (-)-gossypol chemosensitizes human prostate cancer via Bcl-xL inhibition accompanied by increase of Puma and Noxa. Mol Cancer Ther, 2008,7(7):2192-202
    [146]Suzuki A, Tsutomi Y, Akahane K, Araki T, Miura M. Resistance to Fas-mediated apoptosis: activation of caspase 3 is regulated by to Fas-mediated apoptosis: activation of caspase 3 is regulated by cell cycle regulator p21WAFl and IAP gene family ILP. Oncogene,1998,17(8):931-9
    [147]Steinman RA, Johnson DE. p21WAF1 prevents down-modulation of the apoptotic inhibitor protein c-IAP1 and inhibits leukemic apoptosis. Mol Med, 2000,6(9):736-49
    [148]Baptiste-Okoh N, Barsotti AM, Prives C. Caspase 2 is both required for p53-mediated apoptosis and downregulated by p53 in a p21-dependent manner. Cell Cycle, 2008,7(9): 1133-8
    [149]Gunther T, Schneider-Stock R, Hackel C, Kasper HU, Pross M,Hackelsberger A, Lippert H, Roessner A. Mdm2 gene amplification in gastric cancer correlation with expression of Mdm2 protein and p53 alterations. Mod Pathol, 2000,13(6):621-6
    [150]Guan M, Rodriguez-Madoz JR, Alzuguren P, Gomar C, Kramer MG,Kochanek S, Prieto J, Smerdou C, Qian C. Increased efficacy and safety in the treatment of experimental liver cancer with a novel adenovirus-alphavirus hybrid vector. Cancer Res, 2006,66(3): 1620-9
    [151]Sagawa T, Takahashi M, Sato T, Sato Y, Lu Y, Sumiyoshi T, Yamada Y,Iyama S, Fukaura J, Sasaki K, Hamada H, Miyanishi K, Takayama T,Kato J, Niitsu Y. Prolonged survival of mice with multiple liver metastases of human colon cancer by intravenous administration of replicable ElB-55K-deleted adenovirus with E1A expressed by CEA promoter. Mol Ther, 2004,10(6):1043-50
    [152]Takayama K, Reynolds PN, Adachi Y, Kaliberova L, Uchino J, Nakanishi Y, Curiel DT. Vascular endothelial growth factor promoter-based conditionally replicative adenoviruses for pan-carcinoma application.Cancer Gene Ther, 2007,14(1): 105-16
    [153]Gonzalez-Nicolini V, Sanchez-Bustamante CD, Hartenbach S,Fussenegger M. Adenoviral vector platform for transduction of constitutive and regulated tricistronic or triple-transcript transgene expression in mammalian cells and microtissues. J Gene Med,2006,8(10): 1208-22
    [154]van Beusechem VW, van den Doel PB, Gerritsen WR. Conditionally replicative adenovirus expressing degradation-resistant p53 for enhanced oncolysis of human cancer cells overexpressing murine double minute 2.Mol Cancer Ther, 2005,4(6): 1013-8
    [155] Graat HC, Carette JE, Schagen FH, Vassilev LT, Gerritsen WR, Kaspers GJ, Wuisman PI, van Beusechem VW. Enhanced tumor cell kill by combined treatment with a small-molecule antagonist of mouse double minute 2 and adenoviruses encoding p53. Mol Cancer Ther,2007,6(5): 1552-61
    [156] Huang Y, Tyler T, Saadatmandi N, Lee C, Borgstrom P, Gjerset RA.Enhanced tumor suppression by a p14~(ARF)/p53 bicistronic adenovirus through increased p53 protein translation and stability. Cancer Res,2003,63(13):3646-53