Cre/loxP位点特异性重组酶系统联合SV40LTAg诱导人黑素细胞可逆永生化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
白癜风是一种常见的后天性局部脱色素性皮肤病,据国内外统计其发病率约为0.5~2%,且有逐年增高趋势。白癜风的病因和发病机制尚未明确,病理表现为皮损局部表皮和毛囊中的黑素细胞(melanocytes,MC)减少或缺失,从而使黑素合成减少或缺失,临床表现为境界清楚的色素脱失斑。近年来,国外学者研究表明,白癜风患者皮损局部和全身均可检测到针对MC表面抗原的自身抗体和细胞毒性CD8+T细胞,认为白癜风是一种自身免疫性脱色素性皮肤病。白癜风的治疗比较困难,目前有很多治疗方法,主要包括光化学治疗、内服药物治疗、外用药物治疗以及外科治疗,前三种治疗方法都存在疗效个体差异大、副作用大等不足,外科治疗主要包括自体表皮移植、自体MC移植和异体MC移植等方法,其中自体MC移植是疗效最肯定、副作用最小的方法,因而外科治疗已经成为白癜风治疗研究的热点。
     目前临床应用于移植治疗的MC主要来源于患者自身正常皮肤分离的MC体外培养。成人表皮中MC含量极少,只占表皮细胞的2%左右,正常情况下体外培养的MC生长缓慢、增殖能力极为有限,常需使用促MC生长因子如经典的霍乱毒素(cholera toxin,CT)、十四烷酰佛波醇乙酯(12-o-tetradecanoylphorbol-13-acetate,TPA)以及近年逐渐被重视的碱性成纤维细胞生长因子(basic fibroblast growth factor,bFGF)、转铁蛋白、氢化可的松、牛垂体提取物等。我们应用黑素细胞专用培养基M254及添加剂HMGS(包含TPA、bFGF、转铁蛋白、氢化可的松和牛垂体提取物等),进行成人正常表皮MC的分离与培养,经系列生物学鉴定细胞表型和生物学功能正常,同时观察到MC体外传代最多不超过10代,能得到的MC数量有限,远不能满足临床移植治疗所需,极大地限制了MC移植治疗的临床应用。因此,MC的来源已经成为白癜风及其它脱色素性皮肤病外科治疗发展的瓶颈,需要积极探索MC体外大量培养的有效方法和途径,为自体MC移植提供安全、有效且可大量反复使用的移植供体。
     组织工程学的原理是利用人工的功能性组织替代功能障碍的器官或组织,其中,细
Vitiligo is a common skin disease characterized by the development of white macules and patches associated with local melanocyte loss and/or destruction. The incidence of vitiligo is approximately 0.5 to 2 percent and increasing year by year. The etiology of vitiligo is not completely known, but the observation of circulating antimelanocytic antibodies and CD8 (+) T lymphocytic infiltrations at the margins of lesions in the majority of patients has lent support to the hypothesis that it is an autoimmune disease, whch results in therapeutic difficulties. Patients affected with this ailment have received the benefit of topical and oral medications to fight depigmentation, oral 8-methoxy psoralens and sunlight exposure was initially the only really effective treatment– described over half a century ago– but now there is a whole change of therapies for treating depigmented skin. Though there have many methods to treat vitiligo, such as photochemotherapy, drug treatment and topica therapy, etc., most of them have some side effects or individual difference in therapeutic outcoming. Over the past three decades, diverse surgical methods have been developed. Epidermal grafting, minigrafting, thin dermoepidermal grafts, epidermal suspensions, individual hair gafts and in vitro cultured melanocytes either with epidermal membranes or with pure melanocyte suspensions, are the basic procedures published to date, although a few modifications of some techniques have also been described. Each of these methods has been reported with varying degrees of successful repigmentation and also with a few side effects.
     Cultured pure melanocyte grafting is a successful repigmentation method of vitiligo therapy. The cultured melanocytes are isolated primarily from normal epidermis of vitiligo patients. The contents of melanocytes in epidermis are very limited which account approximately only 2 percent in total epidermal cells. In vitro cultured melanocytes have no reproductive activity and limited growth ability, some growth factors were used usually in
引文
1. Jacobson DL, Gange SJ, Rose NR, et al. Epidemiology and estimated population burden of selected autoimmune diseases in the United States.Clin Immunol Immunopathol. 1997; 84(3): 223-243.
    2. Bystryn JC. Immune mechanisms in vitiligo. Clin Dermatol. 1997; 84(5): 853-861.
    3. Hirobe T, Wakamatsu K, Ito S, et al. Stimulation of the proliferation and differentiation of mouse pink-eyed dilution epidermal melanocytes by excess tyrosine in serum-free primary culture. J Cell Physiol. 2002; 191(2): 162-172.
    4. Steitz J, Wenzel J, Gaffal E, et al. Initiation and regulation of CD8+T cells recognizing melanocytic antigens in the epidermis: implications for the pathophysiology of vitiligo. Eur J Cell Biol. 2004; 83(11-12): 797-803.
    5. Lu Y, Zhu WY, Tan C, et al. Melanocytes are potential immunocompetent cells: evidence from recognition of immunological characteristics of cultured human melanocytes. Pigment Cell Res. 2002; 15(6): 454-460.
    6. Ongenae K, Van-Geel N, Naeyaert JM.Evidence for an autoimmune pathogenesis of vitiligo. Pigment Cell Res. 2003; 16(2): 90-100.
    7. Kemp EH, Waterman EA, Weetman AP. Autoimmune aspects of vitiligo. Autoimmunity. 2001; 34(1): 65-77.
    8. Kiichiro D.PUVA therapy: current concerns in Japan. J Dermatol Sci. 1999; 19(1):89-105.
    9. Njoo MD, Westerhof W. Vitiligo: Pathogenesis and treatment. Am J Clin Dermatol.2001; 2(2):167-181.
    10. Falabella R. Surgical treatment of vitiligo: why, when and how. Europ Acad of Dermatoly and Venereol.2003; 17(4):518-520.
    11. Liu JY, Hafner J, Dragieva G,et al. Bioreactor microcarrier cell culture system (Bio-MCCS) for large-scale production of autologous melanocytes.Cell Transplant. 2004; 13(7-8): 809-816.
    12. Kostovic K, Nola I, Bucan Z,et al. Treatment of vitiligo: current methods and new approaches. Acta Dermatovenerol Croat. 2003; 11(3): 163-170.
    13. Czajkowski R.Comparison of melanocytes transplantation methods for the treatment of vitiligo. Dermatol Surg. 2004; 30(11): 1400-1405.
    14. Arita Y, Santiago-Schwarz F, Coppock DL. Survival mechanisms induced by 12-O-tetradecanoylphorbol-13-acetate in normal human melanocytes include inhibition of apoptosis and increased Bcl-2 expression. Melanoma Res. 2000; 10(5): 412-420.
    15. Duval C, Smit NP, Kolb AM, et al. Keratinocytes control the pheo/eumelanin ratio in cultured normal human melanocytes. Pigment Cell Res. 2002; 15(6): 440-446.
    16. Yang F, Abdel-Malek Z, Boissy RE.Effects of commonly used mitogens on the cytotoxicity of 4-tertiary butylphenol to human melanocytes. In Vitro Cell Dev Biol Anim. 1999; 35(10): 566-570.
    17. Graeven U, Rodeck U, Karpinski S, et al. Modulation of angiogenesis and tumorigenicity of human melanocytic cells by vascular endothelial growth factor and basic fibroblast growth factor. Cancer Res. 2001; 61(19): 7282-7290.
    18. Deveci M, Gilmont RR, Terashi H, et al. Melanocyte-conditioned medium stimulates while melanocyte/keratinocyte contact inhibits keratinocyte proliferation. J Burn Care Rehabil. 2001; 22(1): 9-14.
    19. Fauza DO.Tissue engineering: current state of clinical application. Curr Opin Pediatr. 2003; 15(3): 267-271.
    20. Cancedda R, Bianchi G, Derubeis A, et al. Cell therapy for bone disease: a review of current status. Stem Cells. 2003; 21(5): 610-619.
    21. Csete M.Cellular transplantation. Anesthesiol Clin North America. 2004; 22(4): 887-901.
    22. Oshima H, Inoue H, Matsuzaki K, et al. Permanent restoration of human skin treated with cultured epithelium grafting--wound healing by stem cell based tissue engineering. Hum Cell. 2002; 15(3): 118-128.
    23. Voziyanov, Konieczka JH, Stewart AF, et al. Stepwise manipulation of DNA specificity in Flp recombinase: progressively adapting Flp to individual and combinatorial mutations in its target site. J Mol Biol. 2003;326(1): 65-76.
    24. Hardouin N, Nagy A. Gene-trap-based target site for cre-mediated transgenic insertion. Genesis.2000; 26(2):245-252.
    25. Sundaresan G, Paulmurugan R, Berger F, et al. MicroPET imaging of Cre/loxP-mediated conditional activation of a herpes simplex virus type 1 thymidine kinase reporter gene. Gene Therapy.2004;11(5): 609-618.
    26. Kobayashi N, Fujiwara T, Westerman KA, et al. Prevention of acute liver failure in rats with reversibly immortalized human hepatocytes. Science.2000; 287(5456): 1258-1262.
    27. Eaton MJ, Herman JP, Jullien N, et al. Immortalized chomaffin cells disimmortalized with Cre/lox site-directed recombination for use in cell therapy for pain after partial nerve injury. Exp Neurol. 2002; 175(1): 49-60.
    28. Cai J,Ito M,Westerman KA, et al. Construction of a non-tumorigenic rat hepatocyte cell line for transplantation: reversal of hepatocyte immortalization by site-specific excision of the SV40 T antigen. J Hepatol. 2000; 33(5): 701-708.
    29. Allain JE, Dagher I, Mahieu-Caputo D, et al. Immortalization of a primate bipotet epithelial liver stem cell. Proc Natl Acad Sci U.S.A. 2002; 99(6): 3639-3644.
    30. Beachy TM, Cole SL, Cavender JF, et al. Regions and activityies of simian virus 40 T antigen that cooperate with an activited ras oncogene in transforming primary rat embryo fibroblasts. J Virol. 2002; 76(7):3145-315.
    31. Poulin DL, Kung AL, De-Caprio JA.p53 targets simian virus 40 large T antigen for acetylation by CBP. J Virol.2004; 78(15): 8245-8253.
    32. Westerman KA, Leboulch P. Reversible immortalization of mammalian cells mediated by retroviral transfer and site-specfic recombination. Proc Natl Acad Sci U.S.A. 1996; 93(17): 8971-8976.
    33. 段小红,吴军正,毛勇,等.SV40 诱导髁骨软骨细胞永生化的实验研究.中华口腔医学杂志.2001;36(1): 14-16.
    34. Inoue H, Nojima H,Okayama H,et al. High efficiency transformation of Escherichia coli with plasmids. Gene.1990;96(1):23-28.
    35. Krishna KJ, Satnam B, Vaseem P,et al.SV40 Mediated Immortalization. Exp Cell Res.1998; 245(1): 1-7.
    36. Ali SH, DeCaprio JA. Cellular transformation by SV40 large T antigen: interaction with host proteins. Semin Cancer Biol.2001;1(1): 15-23.
    37. Chen W, Hahn WC. SV40 early region oncoproteins and human cell transformation. Histol Histopathol.2003;18(2): 541-550.
    38. Bocchetta M, Miele L, Pass HI, et al. Notch-1, a novel activity of SV40 required for growth of SV40-transforrmed human mesothelial cells. Oncogene.2003; 22(1): 81-89.
    39. Cole SL, Tevethia MJ. Simian virus 40 large T antigen and two independent T-antigen segments cells to apoptosis following genotoxic damage. J Virol. 2002; 76(16): 8420- 8432.
    40. Yu Y, Alwine JC. Human cytomegalovirus major immediate-early proteins and simian virus 40 large T antigen and inhibit apoptosis through activaton of the phosphatidylinositide 3′-OH kinase pathway and the cellular kinase Akt. J Virol. 2002; 76(8):3731-3738.
    41. Horton RM, Hunt HD, Ho SN, et al. Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension. Gene.1989;77(1):61-68.
    42. Warrens AN, Jones MD, Lechler RI. Splicing by overlap extension by PCR using asymmetric amplification: an improved technique for the generation of hybird proteins of immunological interest. Gene. 1997;186(1):29-35.
    43. Koksoy S, Phipps AJ, Hayes KA, et al. SV40 immortanlization of feline fibrolasts as targets for MHC-restricted cytotoxic T-cell assays. Vet Immunol Immunopathol. 2001; 79(3-4):285-295.
    44. Macera Bloch L, Houghton J, Lenahan M, et al. Termination of lifespan of SV40-transfeformed human fibroblasts in crisis is due to apoptosis. J Cell Physiol. 2002; 190(3):332-344.
    45. Betz BL, Strobeck MW,Reisman DN,et al. Re-expression of hSNF5/ INI1/ BAF47 in pediatric tumor cells leads to G1 arrest associated with induction of p16ink4a and activation of RB. Oncogene.2002; 21(34): 5193-5203.
    46. Chen Q, Liang D, Fromm LD, et al. Inhibition of lens fiber cell morphogenesis by expression of a mutant SV40 large T antigen that binds CREB-binding protein/p300 but not pRb. J Biol Chem. 2004; 279(17): 17667-17673.
    47. 王新文,金岩,刘源,等.SV40 大 T 抗原对人皮肤成纤维细胞生物学行为的影响. 第四军医大学学报.2003; 24(6): 506-509.
    48. Sullivan CS, Pipas JM.T antigens of simian virus 40: molecular chaperones for viral replication and tumorigenesis. Microbiol Mol Biol Rev.2002;66(2): 179-202.
    49. Vilchez RA, Butel JS.Simian virus 40 and its association with human lymphomas. Curr Oncol Rep.2003;5(5): 372-379.
    50. Voorhoeve PM, Agami R.Unraveling human tumor suppressor pathways: a tale of the INK4A locus. Cell Cycle.2004;3(5): 616-620.
    51. Baluchamy S, Rajabi HN, Thimmapaya R, et al. Repression of c-Myc and inhibition of G1 exit in cells conditionally overexpressing p300 that is not dependent on its histone acetyltransferase activity. Proc Natl Acad Sci U.S.A. 2003;100(16): 9524-9529.
    52. Barbanti Brodano G, Sabbioni S, Martini F,et al. Simian virus 40 infection in humans and association with human diseases: results and hypotheses. Virology. 2004;318(1): 1-9.
    53. Tobias M, Dagmar W, Hansj?rg H, et al. Transcriptionally regulated immortalization overcomes side effects of temperature-sensitive SV40 large T antigen. Biochemi and Biophysi Res Communi. 2005; 27(3): 734-741.
    54. Liu P, Jenkins NA, Copeland NG. A highly efficient recombineering-based method for generating conditional knockout mutations. Genome Res. 2003;13(6): 476-484.
    55. Yang Y, Seed B. Site-specific gene targeting in mouse embryonic stem cells with intact bacterial artificial chromosomes. Nat Biotechnol. 2003;21(7): 447-451.
    56. 夏隆庆, Zouboulis CH, Karasagakis K,等.人体黑素细胞培养技术.中华皮肤科杂志.1991;24(2):120-121.
    57. Ando H, Itoh A, Mishima Y, et al. Correlation between the number of melanosomes, tyrosinase mRNA levels, and tyrosinase activity in cultured murine melanoma cells in response to various melanogenesis regulatory agents. J Cell Physiol. 1995; 163(5): 608- 614.
    58. Eisinger M, Marko O. Selective proliferation of normal human melanocytes in vitro in the presence of phorbol ester and cholera toxin. Proc Natl Acad Sci USA.1982; 79(12): 2018- 2022.
    59. Lei TC, Vieira WD, Hearing VJ. In vitro migration of melanoblasts requires matrix metalloproteinase-2: implications to vitiligo therapy by photochemotherapy. Pigment Cell Res. 2002; 15(6): 426-432.
    60. Mujtaba S, He Y, Zeng L, et al. Structural mechanism of the bromodomain of the coactivator CBP in p53 transcriptional activation. Mol Cell. 2004;13(2): 251-263.
    61. Barbucci R, Magnani A, Lamponi S, et al. The use of hyaluronan and its sulphated derivative patterned with micrometric scale on glass substrate in melanocyte cell behaviour. Biomaterials. 2003; 24(6): 915-926.
    62. Kim DS, Park SH, Park KC.Transforming growth factor-beta1 decreases melanin synthesis via delayed extracellular signal-regulated kinase activation. Int J Biochem Cell Biol. 2004; 36(8): 1482-1491.
    63. Slominski A, Pisarchik A,Zbytek B,et al. Functional activity of serotoninergic and melatoninergic systems expressed in the skin.J Cell Physiol. 2003; 196(1): 144-153.
    64. Schanke A, Jongsma MJ, Bisschop R, et al. Single UVB overexposure stimulates melanocyte proliferation in murine skin, in contrast to fractionated or UVA-1 exposure. J Invest Dermatol. 2005; 124(1): 241-247.
    65. Weber A. Immortalization of hepatic progenitor cells Immortalisation des cellules progénitrices hépatiques. Pathologie Biologie.2004;52(1): 93-96.
    66. Chistiane K, Yoshihiko A,Ilpo H, et al. Immortalization by large T-antigen of the adult epididymal duct epithelium. Molecular and Cell Endo. 2004;216(1):83-94.
    67. Phillips AW,Zhang P,Truckenmiller ME,et al. Platelet-derived growth factor -producing cells immortalized from rat mesencephalon with SV40 large T antigen transduced by an AAV vector. Restor Neurol Neurosci. 2003; 21(1-2): 1-10.
    68. Tobias M, Hansj?rg H, Dagmar W.Transcriptional control of SV40 T-antigen expression allows a complete reversion of immortalization. Nucleic Acids Res.2004;32(18): 5529- 5538.
    69. Juan W, Wei-bin S, Chun L, et al. Establishment and identification of fibroblast clones expressing human bone morphogenetic protein. Journal of Nanjing Medical University. 2005;19(1):51-54.
    70. Andrew ML, David WA, Steven MB, et al. Evaluating virus-transformed cell tumorigenicity. J Viro Meth. 1999; 79(1):41-50.
    71. Kudo Y, Hiraoka M, Kitagawa S, et al. Establishment of human cementifying fibroma cell lines by transfection with temperature-sensitive Simian Virus-40 T-antigen gene and htert gene. Bone. 2002; 30(5): 712-717.
    72. Gregory D,Van Duyne.A Structural view of Cre/loxP site-specific recombination.Annu Rev Biophys Biomol Struct. 2001; 30(1):87-104.
    73. Sternberg N, Hamilton D. Bacteriophage P1 site-specific recombination .I. Recombination between LoxP sites. J Mol Biol.1981;150(4):467-486.
    74. Ghosh K, Van-Duyne GD.Cre-loxP biochemistry. Methods.2002;28(3): 374-383.
    75. Kaartinen V, Nagy A.Removal of the floxed neo gene from a conditional knockout allele by the adenoviral Cre recombinase in vivo. Genesis. 2001; 31(3): 126-129.
    76. Arin MJ, Longley MA, Wang XJ, et al. Focal activation of a mutant allele defines the role of stem cells in mosaic skin disorders. J Cell Biol. 2001;152(6):645-649.
    77. Hayashi S, McMahon AP. Efficient recombination in diverse tissues by a tamoxifen- inducible form of Cre: a tool for quantily regulated gene activation/ inactivation in the mouse. Dev Biol. 2002; 244(2): 305-318.
    78. Schnutgen F, Doerflinger N, Calleja C, et al. A directional strategy for monitoring Cre-mediated recombination at the cellular level in the mouse. Nat Biotechnol. 2003;21(6): 562-565.
    79. Kile BT, Hentges KE, Clark AT, et al. Functional genetic analysis of mouse chromosome 11.Nature.2003; 425(1):81-86.
    80. Ray MK,Fagan SP,Brunicardi FC. The Cre-loxP system: a versatile tool for targeting genes in a cell- and stage-specific manner. Cell Transplant.2000; 9(6): 805-815.
    81. Berghella L, DeAngelis L, Colletta M, et al. Reversible immortalization of human myogenic cells by site-specific excision of a retrovirally trdnsferred onco-gene. Human Gene Therapy.1999;10(9):1607-1617.
    82. 丁道芳.医学科学研究基本方法.辽宁科学技术出版社.1988:296-297.
    83. 龙子江 , 白玫 , 樊彦 , 等 . 化学脱色法制备白癜风动物模型 . 安徽中医学院学报.1997;16(6):60-62.
    84. Mal’tsev VI, Kalinzhnaia LD, Gubko LM. Experience in introduing the method of placental therapy in vitiligo in Ukraine. Lik Sprava. 1995;(7-8):123-125.
    85. Wang X, Erf GF. Apoptosis in feathers of Smyth line chickens with autoimmune vitiligo. J Autoimmun. 2004;22(1): 21-30.
    86. Austin LM, Boissy RE. Mammalian tyrosinase-related protein-1 is recognized by autoantibodies from vitiligious Smyth chickens. An avian model for human vitiligo. Am J Pathol. 1995;146(6):1529-1541.
    87. Erf GF, Trejo-Skalli AV, Smyth JR. T cells in regenerating feathers of Smyth line chickens with vitiligo. Clin Immunol Immunopathol. 1995;76(2):120-126.
    88. Erf GF, Smyth JR. Alterations in blood leukocyte populations in Smyth line chickens ith autoimmune vitiligo. Poult Sci. 1996;75(2):351-356.
    89. Van-den-Wijngaard R, Wankowicz-Kalinska A, Pals S, et al. Autoimmune melanocyte destruction in vitiligo. Lab Invest.2001;81(8):1061-1067.
    90. Lengagne R, Le-Gal FA, Garcette M,et al. Spontaneous vitiligo in an animal model for human melanoma: role of tumor-specific CD8+ T cells. Cancer Res. 2004; 64(4): 1496- 1501.
    91. Palermo B, Campanelli R, Garbelli S, et al. Specifeic cytotoxic T lymphocyte responses against Melan-A/MART1, tyrosinase and gp100 in vitiligo by the use of major histocompatibility complex/peptide tetramers: the role of cellular immunity in the etiopathogenesis of vitiligo. J Invest Dermatol. 2001;117(2):326-332.
    92. Lang KS, Caroli CC, Muhm A ,et al. HLA-A2 restricted, melanocyte-specific CD8(+) T lymphocytes detected in vitiligo patients are related to disease activity and predominantly directed against MelanA/MART1. J Invest Dermatol. 2001;116(6):891-897.
    93. Van Elsas A, Hurwitz AA, Allison JP. Combination immunotherapy of B16 melanoma using anti-cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) and granulocyte/macrophage colony-stimulating factor(GM-CSF)-producing vaccines induces rejectio of subcutaneous and metastatic tumors accompanied by autoimmune depigmentation. J Exp Med. 1999;190(3):355-366.
    94. Le Gal FA, Avril MF, Bosq J, et al. Direct evidence to support the role of antigen-specific CD8(+) T cells in melanoma-assocoated vitiligo. J Invest Dermatol. 2001; 17(12): 1464- 4170.
    95. Eisenberg M, Llewellyn DM, Moran K, et al. Successful engraftment of cultured human epidermal allograft in a child with recessive dystrophic epidermolysis bullosa. Med J Aust.1987;147(6):520-521.
    96. Yoshida M, Hirotsu S, Nakahara M, et al. Histamine is involved in ultraviolet B-induced pigmentation of guinea pig skin. J Invest Dermatol. 2002;118(2):255-260.
    97. Pal P, Mallick S, Mandal SK, et al. A human placental extrat: in vivo and in vitro assessments of its melanocytes growth and pigment-inducing activities. Int J Dermatol. 2002;41(11):760-767.
    98. Peters EM, Tobin DJ, Botehkareva N, et al. Migration of melanoblastes into the developing murine hair follicle is accompanied by transient c-Kit expression. J Histochem. 2002;50(6):751-766.
    99. Yu HS. Melanocyte destruction and repigmentation in vitiligo: a model for nerve cell damage and regrowth. J Biomed Sci. 2002; 9(6 Pt 2): 564-573.
    100. 卢涛,高天文,刘玉峰等.白癜风同种异体黑素细胞移植初步研究.中国皮肤性病学杂志.2001;15(4):240-245.
    101. Hedley Susan J; Layton Christopher; Heaton Martin; et al. Fibroblasts play a regulatory role in the control of pigmentation in reconstructed human skin from skin types I and II. Pigment Cell Res. 2002; 15(1): 49-56.
    1. Krishna KJ, Satnam B, Vaseem P,et al.SV40 Mediated Immortalization. Exp Cell Res.1998;245(1): 1-7.
    2. Tevethia MJ, Lacko HA, Conn A.Two regions of simian virus 40 large T-antigen independently extend the life span of primary C57BL/6 mouse embryo fibroblasts and cooperate in immortalization.Virology.1998;243(2):303-306.
    3. Reilly CF. Rat vascular smooth muscle cells immortalized with SV40 large T antigen possess defined smooth muscle cell characteristics including growth inhibition by heparin. J Cell Physiol.1990;142(2):342-347.
    4. Su RT, Bradford L. Keratin synthesis in SV40-transformed human keratinocytes after transient supertrans fection with Harvey murine sarcoma viral DNA.Exp CellRes.1993;205(2):403-408.
    5. Miquel C, Gaghowx P, Durand C, et al. Establishment and characterization of cell line LSV5 that retains the altered adhesive properties of human junctional epidermolysis bullosa keratinocyte.Exp Cell Res.1996;224(2):279-283.
    6. Webber MM, Bello D, Kleinman HK, et al. Prostate specific antigen and androgen receptor induction and characterization of an immortalized adult human prostatic epithelial celll ine.Carcinogenesis.1996;17(8):1641-1645.
    7. Racusen LC, Monteil C, Sgrinoli A, et al. Cell lines with extended invitro growth potential from human renal proximal tubule: Characterization, responsetoinducers, and comparison with established cell lines. J Lab Clin Med.1997;129(3):318-324.
    8. Hougton A, Oyajobi B, Foster G, et al. Immortalization of human marrow stromal cells by retroviral transduction with a temperature sensitive oncogene: Identification of bipotential precursor cells capable of directed differentiation to either an osteoblast or adipocyte phenotype.Bone.1998;22(10):7-11.
    9. Inga R, Carol R. Two conditional tsA mutant simian virus 40 T antigens display marked difference in the rmalinactivation. J Virology.1992;66(11):6517-6521.
    10. Ali SH, DeCaprio JA. Cellular transformation by SV40 large T antigen: interaction with host proteins. Semin Cancer Biol. 2001:11(1): 15-23.
    11. Chen W, Hahn WC.SV40 early region oncoproteins and human cell transformation. Histol Histopathol.2003;18(2): 541-550.
    12. Poulin DL, Kung AL, DeCaprio JA.p53 targets simian virus 40 large T antigen for acetylation by CBP. J Virol.2004;78(15): 8245-8253.
    13. SullivanCS,Baker AE,Pipas JM. Simian virus 40 infection disrupts p130-E2F and p107- E2F complexes but does not perturb pRb-E2F complexes. Virology.2004;320(2): 218-228.
    14. Cicchillitti L,Fasanaro P,Biglioli P,et al. Oxidative stress induces protein phosphatase 2A-dependent dephosphorylation of the pocket proteins pRb, p107, and p130. J Biol Chem.2003;278(21): 19509-19517.
    15. Vilchez RA, Butel JS.Simian virus 40 and its association with human lymphomas. Curr Oncol Rep.2003; 5(5): 372-379.
    16. Sullivan CS, Pipas JM.T antigens of simian virus 40: molecular chaperones for viralreplication and tumorigenesis. Microbiol Mol Biol Rev.2002;66(2): 179-202.
    17. Voorhoeve PM, Agami R.Unraveling human tumor suppressor pathways: a tale of the INK4A locus. Cell Cycle.2004;3(5): 616-620.
    18. Betz BL, Strobeck MW,Reisman DN,et al. Re-expression of hSNF5/INI1/BAF47 in pediatric tumor cells leads to G1 arrest associated with induction of p16ink4a and activation of RB. Oncogene.2002;21(34): 5193-5203.
    19. Baldi A,Groeger AM, Esposito V, et al. Expression of p21 in SV40 large T antigen positive human pleural mesothelioma: relationship with survival. Thorax. 2002; 57(4): 353-356.
    20. Vivo C, Lecomte C,Levy F, et al. Cell cycle checkpoint status in human malignant mesothelioma cell lines: response to gamma radiation. Br J Cancer. 2003;10; 88(3): 388 -395.
    21. Rodway H,Llanos S,Rowe J,et al. Stability of nucleolar versus non-nucleolar forms of human p14(ARF). Oncogene.2004;23(37): 6186-6192.
    22. Itahana K,Dimri GP,Hara E, et al. A role for p53 in maintaining and establishing the quiescence growth arrest in human cells. J Biol Chem. 2002; 277(20): 18206-18214.
    23. Mujtaba S, He Y, Zeng L, et al. Structural mechanism of the bromodomain of the coactivator CBP in p53 transcriptional activation. Mol Cell. 2004;13(2): 251-263.
    24. Chen Q, Liang D, Fromm LD, et al. Inhibition of lens fiber cell morphogenesis by expression of a mutant SV40 large T antigen that binds CREB-binding protein/p300 but not pRb. J Biol Chem.2004;279(17): 17667-17673.
    25. Baluchamy S, Rajabi HN, Thimmapaya R, et al.Repression of c-Myc and inhibition of G1 exit in cells conditionally overexpressing p300 that is not dependent on its histone acetyltransferase activity. Proc Natl Acad Sci U.S.A. 2003;100(16): 9524-9529.
    26. Ianari A,Gallo R, Palma M, et al. Specific role for p300/CREB-binding protein-associated factor activity in E2F1 stabilization in response to DNA damage. J Biol Chem.2004; 279(29): 30830-30835.
    27. Barbanti Brodano G, Sabbioni S, Martini F,et al. Simian virus 40 infection in humans and association with human diseases: results and hypotheses.Virology.2004;318(1): 1-9.
    28. Tobias M, Dagmar W, Hansj?rg H, t al. ranscriptionally regulated immortalization overcomes side effects of temperature-sensitive SV40 large T antigen. Biochem and Biophysi Res Communi. 2005; 27(3):734-741.
    1. Ghosh K, Van-Duyne GD.Cre-loxP biochemistry. Methods. 2002;28(3):374-383.
    2. Kile BT, Hentges KE, Clark AT, et al. Functional genetic analysis of mouse chromosome 11.Nature. 2003; 425(1):81-86.
    3. Voziyanov A, Konieczka JH, Stewart AF, et al. Stepwise manipulation of DNA specificity in Flp recombinase: progressively adapting Flp to individual and combinatorial mutations in its target site. J Mol Biol. 2003;326(1): 65-76.
    4. Liu P, Jenkins NA, Copeland NG. A highly efficient recombineering-based method for generating conditional knockout mutations. Genome Res. 2003;13(6): 476-484.
    5. Van-Duyne GD. A structural view of cre-loxp site-specific recombination. Annu Rev Biophys Biomol Struct. 2001;30(1): 87-104.
    6. Awatramani R, Soriano P, Rodriguez C, Mai JJ, et al. Cryptic boundaries in roof plate and choroid plexus identified by intersectional gene activation. Nat Genet. 2003; 35(1): 70-75.
    7. Belteki G, Gertsenstein M, Ow DW,et al. Site-specific cassette exchange and germline transmission with mouse ES cells expressing phiC31 integrase. Nat Biotechnol. 2003; 21(3):321-324.
    8. Yang Y, Seed B. Site-specific gene targeting in mouse embryonic stem cells with intact bacterial artificial chromosomes. Nat Biotechnol. 2003;21(4): 447-451.
    9. Arin MJ, Longley MA, Wang XJ, et al. Focal activation of a mutant allele defines the role of stem cells in mosaic skin disorders. J Cell Biol. 2001;152(5):645-649.
    10. Gong S, Zheng C, Doughty ML, et al. A gene expression atlas of the central nervous system based on bacterial artificial chromosomes. Nature. 2003;425(7): 917-925.
    11. Sternberg N, Hamilton D. Bacteriophage P1 site-specific recombination .I. Recombination between LoxP sites. J Mol Biol.1981;150(4):467-486.
    12. Sauer B, Henderson N. Site-specific DNA recombination in mammalian cells by the Cre recombinase of bacteriophage P1.Proc Nad Acad Sci USA. 1988;85(14): 5166- 5170.
    13. Rimi nton DS. Gene targeting technology and advances in the pathophysiology of inflammation. Pathology. 2002; 34(2): 109-114.
    14. Baer A, Bode J. Coping with kinetic and thermodytonamic barriers: RMCE, an efficient strategy for the targeted integrathe tion of transgenes. Curr Opin Biotechnol. 2001;12(3):473-480.
    15. Bode J, Schlake T, Iber M, et al. The transgeneticist’s toolbox: novel methods for the targeted modification of eukaryotic genomes. Biol Chem. 2000;381(8):801-813.
    16. Hardouin N, Nagy A. Gene-trap-based target site for cre-mediated transgenic insertion. Genesis.2000; 26(2): 245-252.
    17. Sauer B, Mc-Dermott J.DNA recombination with a heterospecific Cre homolog identified from comparison of the pac-c1 regions of P1-related phages. Nucleic Acids Res. 2004; 32 (20): 6086-6095.
    18. Hansen J, Floss T, Van Sloun P, et al. A large-scale, gene-driven mutagenesis approach for the functional analysis of the mouse genome. Proc Natl Acad Sci U.S.A. 2003;100(24):9918-9922.
    19. Araki K, Araki M, Yamamura K.Site-directed integration of the cre gene mediated by Cre recombinase using a combination of mutant lox sites. Nucleic Acids Res. 2002; 30(19): e103.
    20. Wakita T,Katsume A, Kato Jet al.Possible role of cytotoxic T cells in acute liver injury in hepatitis C virus cDNA transgenic mice mediated by Cre/loxP system.J Med Virol. 2000; 62(3): 308-317.
    21. Hasan MT, Schonig K, Berger S, et al. Long-term, noninvasive imaging of regulated gene expres- vertesion in living mice. Genesis.2001; 29(1): 116-122.
    22. Yang B, Gillespie A, Carlson EJ,et al.Neonatal mortality in an aquaporin-2 knock-in mouse model of recessive nephrogenic diabetes insipidus.J Biol Chem. 2001;26; 276(4): 2775-2779.
    23. Hayashi S, McMahon AP. Efficient recombination in diverse tissues by a tamoxifen-inducible form of Cre: a tool for quantily regulated gene activation/ inactivation in the mouse. Dev Biol. 2002; 244(3): 305-318.
    24. Schnutgen F, Doerflinger N, Calleja C, et al. A directional strategy for monitoring Cre-mediated recombination at the cellular level in the mouse. Nat Biotechnol. 2003; 21(5): 562-565.
    25. Ray MK,Fagan SP,Brunicardi FC.The Cre-loxP system: a versatile tool for targeting genes in a cell- and stage-specific manner. Cell Transplant.2000; 9(6): 805-815.
    26. Schwenk F, Kuhn R,Angrand PO,et al. Temporally and spatially regulated somatic mutagenesis in mice. Nucleic Acids Res. 1998;15;26(6): 1427-1432.
    27. Heintz N. BAC to the future: the use of bac transgenic mice for neuroscience research. Nat Rev Neurosci. 2001; 2(6): 861-870.
    28. Zou MX, Butcher DT,Sadikovic B,et al.Characterization of functional elements in the neurofibromatosis (NF1) proximal promoter region. Oncogene. 2004;23(2): 330- 339.
    29. Kitamoto T, Nakamura K, Nakao K, et al.Humanized prion protein knock-in by Cre-induced site-specific recombination in the mouse. Biochem Biophys Res Commun. 1996;24; 222(3): 742-747.
    30. Ramirez A, Page A, Gandarillas A,et al.A keratin K5 Cre transgenic line appropriate for tissue-specific or generalized Cre-mediated recombination. Genesis. 2004; 39(1): 52-57.
    31. Walz K, Caratini-Rivera S, Bi W, et al. Modeling contiguous gene syndromes by chromosome engineering in mice: phenotypic consequences of gene dosage imbalance. Mol Cell Biol. 2003;23(12):3646-3655.
    32. Yoshimura I,Suzuki S,Hayakawa M.Application of Cre-loxP system to the urinary tract and cancer gene therapy. Mol Urol. 2001; 5(2): 81-84.
    33. Branda CS, Dymecki SM.Talking about a revolution: The impact of site-specific recombinases on genetic analyses in mice. Dev Cell. 2004; 6(1):7-28.