猪IFN-γ及其受体的生物学功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
IFN-γ是由机体内活化的T淋巴细胞和NK细胞产生的一种糖蛋白,丝裂原以及抗原特异性刺激的T细胞克隆也可产生和分泌。IFN-γ除具有抗病毒、抗胞内寄生菌、抗胞内寄生原虫、抗细胞增殖的作用外,还具有独特而强大的免疫调节功能,可促进MHCⅡ类抗原的表达,增强APC与T细胞的相互作用,增强Th细胞和CTL转化的能力等。IFN-γ有较为严格的种属特异性,不同物种之间通用使其活性降低或失去作用。IFN-γ活性形式为两条单体链结合形成的同型二聚体形式,单体没有生物学活性。IFN-γ作为机体免疫应答的产物,一方面是机体发挥免疫功能,清除胞内寄生病原体不可缺少的成分,与疾病的发生、发展有着密切的关系;另一方面,机体内IFN-γ分泌过量,可引起病理性反应。由于IFN-γ具有上述诸多重要的生物学活性,故其在疾病的诊断、治疗和预防等方面具有广阔的应用前景。但是,IFN-γ在临床应用时可引起发热、寒战、恶心等一系列的副作用,而且有些不良反应是不可逆的损害,这限制了其在临床中的应用。因此,开展新型、低毒副作用的pIFN-γ研究意义重大。此外,IFN-γ必须与受体相结合,通过受体的介导才能发挥其生物学效应,对其受体的研究将有利于明确IFN-γ的作用机制,进而发现疾病治疗和预防的新途径。
     本论文在对克隆的pIFN-γ基因进行适当的改造,去除其信号肽序列,将该基因与pGEX-4T-1载体上的谷胱甘肽S-转移酶(GST)拼接,然后在原核表达系统中进行表达,并对其诱导表达条件、蛋白纯化方法进行系统研究,最终获得了纯度高达95%的GST-pIFN-γ融合蛋白,产量为0.4~0.5g/L培养液。体外试验证实该重组蛋白具有较高的生物活性,可有效抑制PRV(DNA病毒)和FMDV(RNA病毒)的复制,并且具有稳定、不宜降解和低毒副作用的优点。开展了重组pIFN-γ体外抗弓形虫研究,结果表明pIFN-γ可诱导猪腹腔巨噬细胞产生抗虫作用,且随pIFN-γ量的增加抗弓形虫作用越明显,但任何浓度的重组pIFN-γ对弓形虫入侵PK15细胞无明显影响。对pIFN-γ诱导永生化细胞(PK15细胞)凋亡的作用及其对细胞端粒酶的影响进行了研究,结果发现在高浓度pIFN-γ的长时间诱导下,PK15细胞端粒酶显著下降,因此PK15细胞(肿瘤样细胞)发生凋亡,具体表现为细胞变圆脱落,DNA出现典型的“梯状带”,荧光染色可发现细胞核固缩,有凋亡小体出现;但如果用低浓度pIFN-γ进行诱导作用,PK15细胞端粒酶明显升高;该研究结果为IFN-γ临床治疗肿瘤提供了理论依据和指导。以表达纯化的GST-pIFN-γ作为抗原免疫BALB/C小鼠,取其脾细胞和SP2/0细胞融合,再经纯化的GST-pIFN-γ和的带组氨酸标签pIFN-γ作为包被抗原进行筛选,最终获得2株分泌pIFN-γ单抗的杂交瘤细胞株,经鉴定这两株单抗抗体亚类均属于IgG2a,轻链为κ型,对杂交瘤细胞株的染色体组型、单抗的稳定性及其识别的抗原位点等进行分析,结果证明所获2株单抗均表现稳定,可满足常规实验的要求。在对不同动物IFNGR两条链基因序列比对基础上,选择保守区段作为引物;然后分离猪外周血淋巴细胞,经刺激后提取细胞总RNA,应用RT-PCR方法克隆了猪IFNGR两条链基因,序列测定表明猪IFNGR1基因ORF为1413bp,共编码470个氨基酸;猪IFNGR2基因ORF为1110bp,共编码369个氨基酸。对不同物种IFNGR序列比较发现,不同物种间的差异比较大,据此推测这可能是IFN-γ种属特异性的重要原因之一。然后利用分子生物学软件对两条链进行结构预测,设计引物扩增猪IFNGR胞外区片段并对其进行原核表达,经鉴定该基因在原核中得到正确表达;开展了两条受体链胞外区对pIFN-γ抗病毒活性的影响研究,发现猪IFNGR1胞外区可降低pIFN-γ抗病毒活性,而IFNGR2胞外区可增强pIFN-γ抗病毒活性,由此可知猪IFNGR两条链均可结合pIFN-γ;此外,推测猪IFNGR1具有信号转导功能且是IFN-γ信号转导的主要执行者,而IFNGR2则在IFN-γ信号转导中起次要作用或没有信号转导的能力。
Interferon-gamma (IFN-γ) is a kind of glycoprotein generated by activated T cells and NK cells and could also be produced and secreted by T cells which were stimulated by mitogen or special antigen. Besides the function of antivirus, anti-intracellular bacteria and parasitic protozoa, anti-tumor, IFN-γhas also the distinct immune regulation function. It can promote expression of MHCⅡantigens, enhance the interaction between antigen present cells (APC) and T cells, accelerate differentiation of Th cells and cytotoxicity T lymphocyte (CTL), and so on. IFN-γposses strict species-specificity and the activity would be depressed or missed if it were in common use in different species. IFN-γneeds to form homodimer through combination of two monomer chains to have the bioactivity since the monomer chain do not have the bioactivity. As a product of host immune response, IFN-γis a necessary component to eliminate intracellular pathogen and is closely related to the nosogenesis and development of disease, on the other hand, if IFN-γwere over secreted, it would cause pathological reaction. Accordingly, IFN-γhas an extensive application in the aspects of diagnosis, therapy and disease prevention, however, IFN-γhas some side effect including fever, shakes, nausea, and so on. Furthermore, some side effect could cause nonreversible damage. All of these limited the clinical application of IFN-γand it is important to develop a new type IFN-γwith lower side effect. IFN-γexerts the biological activities through binding to its receptors which will transform the signal into intracellular. So the receptor play a critical role and the study on IFN-γreceptor (IFNGR) would be benefit to demonstrate the mechanism of IFN-γand find the new methods for treatment and prevention of clinical disease.
     In this paper, the cloned pIFN-γgene was reconstructed to cut off the signal sequence and fused with GST presented in the pGEX-4T-1 vector. The recombinant gene was expressed in prokaryotic expression system. A series of study was carried out such as induction conditions, recombinant protein purified methods and eventually the recombinant protein was obtained with the purity of up to 95% and the yield of 0.4~0.5 g per litre culture medium. In vitro experiment indicated that the purified protein had a higher bioactivity and could efficiently inhibit the replication of PRV and FMDV. In addition, the recombinant protein had a good stability and lower side effect. The effect of GST-IFN-γanti-toxoplasma gondii was studied and the results showed that pIFN-γcould induce the anti-toxoplasma gondii effect of the porcine abdominal macrophage cell, and the function of anti-toxoplasma goddii presented obviously with the increase of pIFN-γdose. But it could not induce PK15 cell to generate anti- toxoplasma goddii effec. pIFN-γhas the ability of inducing immortalized cells (PK15 cell) apoptosis. At the high concentration of pIFN-γ, the level of PK15 cell telomerase significantly decreased and apoptosis appeared, such as cell rounding and falling off and the“ladder pattern”of the DNA, pyknotic nucleus and apoptotic body appeared by fluorescein stain. However, at the low concentration of pIFN-γ, the level of PK15 cell telomerase significantly increased. This provided the direction of clinical treatment of the tumor with pIFN-γ. The BALB/C mice were immunized with purified GST-pIFN-γand then the spleen cell and SP2/0 were fused. The fusion cell was selected by GST-pIFN-γand pIFN-γwith His tag as antigens. Finally 2 hybridoma cell strains which secreted anti-pIFN-γmonoclonal antibody were obtained. The identification of the monoclonal antibody showed all of them belong to IgG2a subclass withκtype light chain. Analysis of the caryotype, antibody stability and antigen site showed that antibody was stable. After clustal alignment of IFNGR gene sequence from many species, conservative region was selected as primer to amplify porcine IFNGR gene. Porcine peripheral blood lymphocyte was isolated and stimulated in vitro, then total RNA was extracted. Porcine IFNGR two chain genes were cloned by RT-PCR method. Sequence analysis showed that porcine IFNGR1 ORF had 1413 bp, encoding 470 amino acid and porcine IFNGR2 ORF had 1110 bp encoding 369 amino acid. Sequence comparison showed that they were obviously different from those of other species and that is the possible reason that IFN-γpossesed species-specificity. The primers used to amplify extracellular region of IFNGR was designed based on the protein structure prediction. The amplified fragment was expressed in E.coli system. The study of relationship between IFNGR extracellular region and character of pIFN-γantivirus was carried out. The results showed IFNGR1 extracellular region decreased the antivirus activity of pIFN-γ, but IFNGR2 extracellular region increased the antivirus activity of pIFN-γ. These results proved that 2 chains of IFNGR has the function of binding pIFN-γ. In addition, according to the results, it can draw a conclusion that porcine IFNGR1 occupied mainly position in signal transmit, but IFNGR2 had occupied secondary position in signal transmit or not function of signal transmit.
引文
1. Abbas AK, Murphy KM, Sher A. function diversity of helper T lymphocytes[J]. Nature, 1996, 383: 787-795
    2. Abe J, Wakimoto H, Tsunoda R ,et al. In vivo antitumor effect of cytotoxic T lymphocytes engineered to produce IFN-gamma by adenovirus mediated genetic transduction[J]. Biochem Biophys Res Commun,1996,216:164-172
    3. Adolf GR. Human interferon omega: isolation of the gene, expression in Chinese hamster occcvary cells and characterization of the recombinant protein[J]. BIochimic Biophysical Acta, 1991, 108(9): 167-174.
    4. Agger EM, Andersen P. Tuberculosis subunit vaccine development: on the role of interferon-gamma[J]. Vaccine, 2001, 19(17-19): 2298-2302.
    5. Agger EM, Andersen P. Tuberculosis subunit vaccine development:on the role of interferon-gamma[J]. Vaccine,2001,19:2298-2302
    6. Aguet M, Dembic Z, Merlin G. Molecular cloning and expression of the human interferon-γ receptor[J]. Cell, 1994, 76:803.
    7. Akohiko Yano et al. Roles of IFN-γ on stage conversion of an obligate intracellular protozoan parasite,toxoplasma gondii[J]. Intern Rev Immunol, 2002, 21:405-421
    8. Antovani A, Bussolino F, Introna M. Cytokine regulation of endothelial cell function:from molecular level to the bedside[J]. Immunology Today, 1997, 18(5): 231-239.
    9. Arora SK. Analysis of intracellular cytokines using flowcytometry[J]. Methods Cell Sci, 2002, 24(1-3): 37-40.
    10. Arthur JL. Crisis intervention: The role of telomerase[J]. PNAS, 1999, 96: 3339-3341.
    11. Asai T, Storkus WJ, Whiteside TL. Evaluation of the modified ELISPOT assay for gamma-interferon production in cancer patients receiving antitumor vaccines[J]. Clin Diagn Lab Immunol, 2000, 7(2): 145-154.
    12. Aucoutorier J, Dupuis L, Ganne V. Adjuvants designed for veterinary and human vaccines[J]. Vaccine ,2001,19:2666~2672
    13. Bach EA, Aguet M, Schreiber RD. The interferonγreceptor: a paradigm for cytokine receptor signaling[J].Annu Rev Immunol, 1997, 15: 563.
    14. Baird AM, Gerstein RM, Berg LJ. The role of cytokine receptor signaling in lymphocyte development[J]. Curr Opoi Immunol, 1999,11:157~166
    15. Barbara AO. Transcriptional control of T cell development[J]. Curr Opoi Immunol, 2000,12: 301~306
    16. Benyoucef S, Hober D, De Groote D, et al. An interferon-gamma based Whole blood assay to detect T cell response to antigens in HIV-1 infected patients[J]. Pathol Biol(Paris), 1997, 45(5): 400-403.
    17. Billaut Mulot O, Idziorek T, Loyens M, et al. Modulation of cellular and humoral immune responses to a multiepitopic HIV-1 DNA vaccine by IL-18 DNA immunization/viral protein boost[J]. Vaccine,2001,19:2803-2811
    18. Bluyssen AR, Durbin JE, Levy DE. ISGF3 gamma p48, a specificity switch for interferon activated transcription factors[J]. Cytokine Growth Factor Rev, 1996, 7(1): 11-17.
    19. Boehm U, Klamp T, Groot M. Cellular response to interon-gamma[J]. Annal Rev Immunol, 1997, 15: 749-795.
    20. Bohne GUW. Toxoplasma gondii: strain- and host celldependent induction of stage differentiation[J]. J Euk Microbiol, 1994, 41(41): 10S–11S.
    21. Bromberg IF, Horvath CM, Wen Z, et al. Transcriptionally active stat1 is required for the anti-protiferative effects of both interferon-α and interferon-γ[J]. Proc Natl Acad Sci, 1996, 93: 7673-7678.
    22. Byrd CM, bolken TC, Jones KF, et al. Biological consequences of antigen and cytokine co-expression by recombinant streptococcus gordonii vaccine vectors[J]. Vaccine,2002,20: 2197~2205
    23. Campisi J. The biology of replicative senescence[J]. Eur J Cancer, 1997, 33:703-709.
    24. Cantin E, Tananmachi B, Openshaw H, et al. Gamma interferon(IFN-gamma)receptor null-mutant mice are more susceptile to herpes simplex virus typeⅠinfection than IFN-gamma ligand null-mutant mice[J]. J Virol, 1999, 73(6): 5196-5200.
    25. Cassatella MA, Hartman L, Perussia B, et al. Tumor necrosis factor and immune interferon-γ and upopolysaccharide enhancement of phagocyte of phagocyte respiratory burst capability, studies on gene expression of several NAPDH oxidase in human leukeemic myeloid cells[J]. J Chin Invest, 1989, 83: 1570-1579.
    26. Cerretti DP, Mckoreghan K, Larsen A, et al. Cloning, sequence, and expression of bovine interferon-gamma[J]. J imuunol, 1986, 136(12): 4561-4565.
    27. Chang CH, Flavell RA. ClassⅡtransativator regulates the expression of multiple gene involved in antigen presentation[J]. J Exp Med, 1995, 181(2): 765-767.
    28. Chang, L, Karin, M. Mammalian MAP kinase signalling cascades[J]. Nature, 2001, 410(6824): 37~40
    29. Charley B, McCullogh K, Martinod S. Antiviral and antigenic properties of recombinant porcine interferon-gamma[J]. Vet Immunol Immunopathol, 1998,19:95~103
    30. Cheevers WP, Beyer JC, Hotzel I. Plasmid DNA encoding interferon gamma inhibits antibody response to caprine arthritis-encephalitis virus (CAEV)surface protein encoded by a co-administered plasmid expressing CAVE env and tat genes[J]. Vaccine, 2001, 19: 3209-3215
    31. Chernajovsky Y, et al. DNA, 1984, 3: 297
    32. Chin YE, Kitagawam, Su WC, et al. Cell growth arrest and induction of cyclin-dependent kinase inhibitor P21 mediated by STAT1[J]. Science, 1996, 272: 719-722.
    33. Chow YH, Chiang BL, Lee YL, et al. Development of Th1 and Th2 populations and the nature of immune responses to Hepatitis B virus DNA vaccines can be modulated by codelivery of various cytokine genes[J]. J Immunol,1998,160:1320~1329
    34. Cockerill PN, Bert AG, Jenkins F. Human granulocyte-macrophage colony-stimulating factor enhancer function is associated with cooperative interactions between AP-1 and NFATp/c[J]. Mol Cell Biol, 1995,15(4):2071~2079.
    35. Cohen JI. Immuno Today, 1993, l4(9):126-130
    36. Darnell JEJ, Kerr IM, Stark GR. Jak STAT pathway and transcriptional activation in response to IFN and other extracellular signaling proteins[J]. Science, 1994, 264(5164): 1415-1421.
    37. Darnell JR, Kerr IM, Stark GR. Jak-stat pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins[J]. Science, 1994, 264: 1415-1421.
    38. Dayton MA, Knobloch TJ, Benjamin D. Human B cell lines express the interferon gamma gene[J]. Cytokine, 1992, 4(6): 454-460.
    39. De Vos J, Jourdan M, Tarte K, et al. JAK2 tyrosine kinase inhibitor tyrphostin AG490 downregulates the mitogen-activated protein kinase (MAPK) and signal transducer and activator of transcription (STAT) pathways and induces apoptosis in myeloma cells[J]. Br J Haematol. 2000, 109(4):823~828
    40. Devos K, Duerinck F, Audenhove K, et al. Cloning and expression of the canine interferon-γ gene[J]. J Interferon Res, 1992, 12: 95-102.
    41. Digby MR, Lowenthal JW. Cloning and expression of the chicken interferon-γgene[J]. Interferon Cyt. Res. 1995, 15: 939-945.
    42. Digby MR, Lowenthal JW. Cloning and expression of the chicken interferon-γ gene[J]. J Int Cyt Res, 1995, 15, 939-945.
    43. Dighe AS, Richards E, Old LJ, et al. Enchanced in vivo growth and resitance to rejection of tumor cells expressiondominant negative IFN-γ receptors[J]. Immunity, 1994, 1: 447-456.
    44. Dijikmans R, Vandenbroeck K, Beaken E, et al. Sequence of the porcine interferon- gamma gene[J]. Nucleic Acids research, 1990,18:42~59
    45. Dijkema R, Meide PH, Pouwels PH,et al.Cloning and expression of the chromosomal immune interferon gene of the rat[J]. EMBO J, 1985, 4: 761-767.
    46. Dijkmans R, Vandenbroeck K. Sequence of the porcine interferon gamma gene[J]. Nucleic Acids Res, 1990, 18: 4259-4261.
    47. Douglas PC, Kata M, Alf L. Cloning, sequence, and expression of bovine interferon-γ[J]. J Immunol, 1986, 12: 4561-4564.
    48. Drew P D, Lonergan M, Goldtein M E, et al. Regulation of MHC classⅠand beta 2-microglobulin gene expression in human neuronal cells Factor binding to conserved cis-acting regulatory sequences correlates with expression of the gene[J]. J Immunal, 1993, 150(8): 3300-3310.
    49. Duhe RJ, Farrar WL. Structural and mechanistic aspects of Janus kinases:how the two-faced god wields a double-edged sword[J]. Interferon Cytokine Res, 1998, 18: 1-5.
    50. Effros RB. Shortened telomeres in the expended cd28-cd8+ cell subset in HIV disease implicate replicative senescence in HIV pathogenesis[J]. AIDS, 1996, 10:17-18.
    51. Elewaut D, Kronenberg M. Molecular biology of NK T cell specificity and development[J]. Semin Immunol, 2000, 12(6): 561-568.
    52. Farrar MA, Schreiber RD. The molecular biology of interferon-gamma and its receptor[J]. Annual Rev Immunal, 1993, 11: 571-611.
    53. Feng J, Fuck WD, Wang SS, et al. The RNA component of human telomerase[J]. Science, 1995,269:1236-1241.
    54. Fidler IJ, Foglor WE, Kleinerman ES. Abrogation of species specificity for activation of tumoricidal properties in macrophages by recombinant mouse or human interferon-gamma encapsulated in liposomes[J]. J immunal, 1985, 135: 4298-4296.
    55. Fields ER, Seufzer BJ, Oltz EM, et al. A switch in distinct I kappa B alpha degradation mechanisms mediates constitutive NF-kappa B activation in mature B cells[J]. J Immunol, 2000, 164: 4762~4767.
    56. Fletcher TM, Salazar M, Chen SF, et al. Human telomerase inhibition by 7-deaza-2′-deoxypurine nucleoside triphosphates[J]. Biochemistry, 1996, 35:15611-15617.
    57. Fukao T, Frdcht DM, Yap G, et al. Inducible expression of STAT4 in dendritic cell and macrophages and its critical role in innate and adaptive immune respones[J]. J Immunol, 2001, 166(7): 4446-4455.
    58. Garra A. Cytokines induce the development of functionally heterogeneous T helper cell subsets[J]. Immunity, 1998, 8(3): 275-283.
    59. Gerondakis S, Strasser A, Metcalfet D, et al. Rel-deficient T cells exhibit defects in production of interleukin-3 and granulocyte-macrophage colony-stimulating factor[J]. Proc Natl Acad Sci USA, 1996, 93 (8): 3405~3409
    60. Gerotto M, Dalpero F, Pontisso P, et al. Two PKR inhibitor HCV proteins correlate with early but not sustained response to interferon[J]. Gastroenterology, 2000, 119(6): 1649-1655.
    61. Gina M, Pighetti MS, Lorraine M, et al. Specific immune responses of dairy cattle after primary inoculation with recombinant bovine interferon-γ as an adjuvant when vaccinating against mastitis[J]. AJVR, 1996, 57(6): 819-823.
    62. Glimcher LH, Singh H. Transcription factors in lymphocyte development-T and B cell get together[J].Cell, 1999, 96(1):13-23.
    63. Godkin JD, Bazer FW, Moffatt J, et al. Purification and properties of a major, low molecular weight protein released by the trophoblast of sheep blastocyst at day 13-21[J]. J Reprod Fertil,1982,65: 141-150.
    64. Gomez DE, Tejera AM, Olivero OA, et al. Irreversible telomere shortening by 3′-azido-2′,3′-dideoxythymidine(AZT) treatment[J]. Biochem Biophys Res Commun, 1998, 246:107-110.
    65. Gray PW, Goeddel DV. Structure of the human immune interferon gene[J]. Nature, 1982, 298: 859 -863.
    66. Gray PW, Lenung DW, pennica D, et al. Expression of human immune interferon cDNA in E.coli and monkey cells[J]. Nature, 1982, 295: 503-510.
    67. Grrenland AC, Morales MO, Vivano BL, et al. STAT recruifment by tyrosine phosphorylated cytokine receptor: an ordered reversible affinity-driven process[J]. Immunity, 1995, 2: 677-687.
    68. Guschin D, Rogers N, Briscoe J, et al. A major role for the protein tyrosine kinase JAK1 in the JAK/STAT signal transduction pathway in response to interleukin-6[J]. EMBO J. 1995, 14(7):1421~1429
    69. Hamilton SE, Pitta AE, Katipally RR, et al. Identification of determinants for inhibitor binding within the RNA active site of human telomerase using PNA scanning[J]. Biochemistry, 1997, 36:11873-13880.
    70. Haque SJ, Williams BR. Identification and characterization of an interferon(IFN) stimulated response element IFN stimulated gene factor3-independent signaling pathway for IFN-α[J]. J Biol Chem, 1994, 269(30): 19523-19529.
    71. Haque SJ, Williams BR. Signal transduction in the interferon system[J]. Semin Oncol. 1998, 25(1): 14-22
    72. Harhod AJ. Basic DNA and RNA protocols[M]. New Jersy:Humana Press.1999
    73. Harley CB, Futcher AB, Grider CW. Telomeres shorten during ageing of human fibroblasts[J]. Nature, 1990, 345:458-460.
    74. Harrington L, McPhail T, Mar V, et al. A mammalian telomerase-associated protein[J]. Science, 1997, 275:973-977.
    75. Harton JA, Ting JP. ClassⅡtransativator:mastering the art of major histocom-patibility complex expression[J]. Mol Cell Biol, 2000, 20(17): 6185-6194.
    76. Hatton RD, Weaver CT. T-bet or Not T-bet[J]. Science, 2003,302:993~994
    77. Haya L G , David F , Vijay C,et al. Cytotoxic activity of an interleukin-2-pseudomonas exotoxin chimeric protein produced in Escherichia coli[J]. Proc Natl Acad Sci USA, 1998,85:1922~1932
    78. Heim MH, Kerr IM, Stark GR, et al. Contribution of STAT SH2 groups to specific interferon signaling by the Jak-STAT pathway[J]. Science. 1995, 267(5202):1347~1349
    79. Hemmi S, Bohni R, Stark G. A novel member of the interferon receptor family complements functionality of the murine interferon gamma receptor in human cells[J]. Cell, 199476:803~810
    80. Horavth CM, Darnell JE. The state of the STSTs: recent developments in the study of signal transduction to the to the nucleus[J]. Curr Opin Cell boil, 1997, 9: 233-240.
    81. Horisberger MA. Interferon-induced human protein MxA is a GTPase which binds transiently to cellular protein[J]. J Virol,1992,66:4705~4709
    82. Hughesm H Campos AM, Godson DL, et al. Immunopotentiation of bovine herpes virus subunit vaccination by interleukin-2[J]. Immuiol, 1991, 74:461~466
    83. Israelski DM , Remington JS. Toxoplasmosis in the non-aids immunocompromised host[J]. Curr Clin Top Infect Dis, 1993, 3: 322
    84. Jeanna M, Piper MD, Tony TS, et al. Interferontherapy in primary care[J]. Prim Care Update ob/Gyns, 2001, 8(4): 163-169.
    85. Jin L, Sliz P, Chen L. An asymmetric NFAT1 dimer on a pseudo-palindromic kappa B-like DNA site[J]. Nat Struct Biol, 2003 ,10(10):807~811.
    86. John P C, Haya L G, Robert L, et al. Chimeric cytotoxin IL-2-PE40’ delays and mitigates adjuvant-induced arthritis in rats[J]. Proc Natl Acad Sci USA,1989,86:287~299
    87. Joseph C, Beyer, Roger W, et al. Cloning and expression of caprine interferon gamma[J].Gene, 1998, 210: 103-108.
    88. Kaiser P, Wain HM, Rothwell L. Structure of the chicken interferon-gamma gene and comparison to mammalian homologues[J]. Gene, 1998, 207: 25-32.
    89. Kalis CH, Collins MT, Hesselink JW, et al. Specificity of two tests for the early diagnosis of bovine paratuberculosis based on cell-mndiatedimmunity:the Johnin skin test and the gamma-interferon assay[J]. Veterinary Microbiology, 2003, 97: 73-86.
    90. Kalis CJ, Collins MT, Hesselink JW, et al. Specificity of two tests for early diagnosis of bovine paratuberlosis based on cell-mediated immunity: the Johnin skin test and the gamma interferon assay[J]. Veterinary microbiology, 2003, 97: 73-86.
    91. Kaplan DH, Greenlund AC, Tanner JW, et al. Identification of an interferon-γreceptorαchain sequence required for JAK-1binding[J]. Biol Chem, 1996, 271: 9-16.
    92. Kaplan DH, Shankaran V, Dighee AS, et al. Demonstration of an interferon-γ dependent tumor surveillance system in immunocopent mice[J]. Proc Natl Acad Sci, 1998, 95: 7556-7561.
    93. Kavaler E, Landman J, Chang Y, et al. Detecting human bladder carcinoma cells in voided urine samples by assaying for the presence of telomerase activity[J]. Cancer, 1998, 82:708-714.
    94. Kenji M, Akihiko U, Takehiro K, et al. Production of biologically active recombinant bovine interferon-γ by two different baculovirus gene expression systems using insect cells and silk worm larvae[J]. Cytokine, 2001, 13(1): 18-24.
    95. Kikkawa E, Yamashita M, Kimura M, et al. T(h)1/T(h)2 cell differentiation of developing CD4 single-positive thymocytes[J]. Int Immunol. 2002, 14(8):943~51.
    96. Kim JI, Ho IC, Grusby MJ, et al. The transcription factor C-maf controls the production of interleukin-4 but not other Th2 cytokine[J]. Immunity,1998:745~751
    97. Kim NW, Piatyszek MA, Prowse KR, et al. Specific association of human telomerase activity with immortal cells and cancer[J]. Science, 1994, 266:2011-2015.
    98. Kim TK, Maniatiis T. Regulation of interferon-gamma activated STAT by upqutin-proteasome pathway[J], Science, 1996, 273: 1717-1719.
    99. Kimm JJ, Yang J-S, Vancort TC, et al. Modulation of antigen-specific humoral responses in Rhesus macaques using cytokine cDNAs as DNA vaccine adjuvants[J]. J Virol, 2000,74:3427~ 3429
    100. Knobler RL, Greenstein JI, Johnson KP, et al. Systemic recombinant human interferon-βtreatment of relapsing-remitting multiple sclerosis: pilot study analysis and six-year follow-up[J]. J Interferon Res, 1993,13:333~340
    101. Kotenko SV, Pestka S. Jak-Stat signal transduction pathway through the eyes of cytokine class II receptor complexes[J]. Oncogene. 2000, 19(21):2557~2565
    102. Kubota Y, Koga T, Nakayama J. In vitro released interferon-gamma in the diagnosis of drug-induced anaphylaxis[J]. Eur J Dermatol, 1999, 9(7): 559-560.
    103. Kubota Y,Nakada T, Sasagawa I, et al. Elevated levels of telomerase activity in malignant pheochromocytoma[J]. Cancer, 1998, 82:176-179.
    104. Kuhen, Kellil, Samuel, et al. Mechanism of interferon action: functional characterization of positive and negative regulatory domains that regulate transcriptional activation of the human RNA-dependent protein kinase PKR promoter[J]. Virology, 1999, 254(1): 182-195.
    105. Kumar M, Behera AK, Matsuse H, et al. Intranasal IFN-γgene transfer protects BALB/C mice against respiratory syncytial virus infection[J]. Vaccine,2000,18:558~567
    106. Kuo CT, Leiden JM. Transcriptional regulation of T lymphocyte development and function[J]. Annu Rev Immunol,1999, 17:149-187
    107. Lalvani A. Spotting latent infection:the path to better tuberculosis control. Thorax,2003, 58(11): 916-918.
    108. Lambrecht B, Gonze M, Meulemans G, et al. Production of antibodies against chicken interferon-γ:demonstration of neutralizing activity anddevelopment of a quantitative ELISA[J]. Veterinary immunology and immunopathology[J], 2000, 74: 137-144.
    109. Lambrecht B, Gonze M, Morales D, et al. Comparison of biological activities of natural and recombinant chicken interferon-gamma[J]. Veternary Immunology and Immunopathology, 1999, 70: 256-267.
    110. Leaman DW, Leung S, Li X, et al. Regulation of STAT-dependent pathways by growth factors and cytokines[J]. FASEB J. 1996, 10(14):1578-88
    111. Lefevre F. Interferon-delta:the first member of a novel typeⅠinterferon family[J]. Biochimie, 1998, 80(8-9): 779-788.
    112. Leonard WJ, O'Shea JJ. Jaks and STATs: biological implications[J]. Annu Rev Immunol. 1998, 16: 293~322
    113. Leonard WJ. Role of Jak kinases and STATs in cytokine signal transduction[J]. Int J Hematol. 2001, 73(3):271~277
    114. Li XM, Chopra RK, Chou TY, et al. Mucosal IFN-gamma gene transfer inhibits pulmonary allergic responses in mice[J]. J Immunol,1996,157:3216~3219
    115. Liebana E, Aranaz A, Urquia JJ, et al. Evaluation of the gamma-interferon assay for eradication of tuberculosis in a goat herd[J]. Aust Vet J, 1998, 76(1): 50-53.
    116. Liebana E, Aranaz A, Urquia JJ, et al. Evaluation of the gamma-interferon assay for eradication of tuberculosis in goat herd[J]. Aust Vet J, 1998, 76(1): 50-53.
    117. Linbiad EB. Aluminium adjuvants[M]. In: Stewart Tull DES, 1995,21~35
    118. Lowenthal JW, Lambrecht B. Avian cytokines the natural approach to therapeutics[J]. Dev Comp Immunol, 2000, 24: 355-365.
    119. Luk SYS, et al. J Interferon Res, 1987, 7: 752
    120. Maeda S. Production of human alpha interferon in silkwork using baculo-virus vector[J]. Nature, 1985, 315: 502-504.
    121. Malmberg KJ, Levitsky V, Norell H, et al. IFN-γ protects short-term ovarian carcinoma cell lines from CTL lysis via a CD94/ N KG2A-dependent mechanism[J]. J Clin Invest, 2002, 110: 1515-1523.
    122. Malter JS. Regulation of mRNA stability in the nervous system and beyond[J]. J Neurosci Res, 2001, 66:311~316
    123. Mark LH, David WG. Soluble receptors in human disease[J]. J Leukocyte Bio, 1998,64:135~146
    124. Marster SA, Pennia D, Bach E, et al. Interferon-γ signals via a high-affinity multisubunit receptor complex that contains two types of polypetide chain[J]. Proc Natl Acad Sci USA, 1995, 92: 5401.
    125. Mazurek GH, Villarino ME. Guideline for using the QuantiFERON-TB test for diagnosing latent Mycobaterium tuberculosis infection[J]. Centers for Disease Control and Prevention. MMWR Recomm Rep, 2003, 52: 15-18.
    126. Michalski WP, Shiell BJ, Neil TE, et al. Recombinant chicken IFN-gamma expressed in Escherichia coli:Analysis of C-terminal truncation and effect on biologic activity[J]. J Int Cyt Res, 1999, 19: 383-392.
    127. Miller CM,et al. Cytokines, nitric oxide, heat shock proteins and virulence in toxoplasma[J]. Parasitol Today, 1999, 15: 418-422
    128. Miyamoto T, Lillehoj HS, Sohn EJ, et al. Production and characterization of monoclonal antibodies detecting chicken Interleukin-2 and the development of an antigen capture enzyme-linked immunosorbent assay[J]. Vet immu and immunopathology, 2001, 80: 245-257.
    129. Miyamoto T, Lillehoj HS, Sohn EJ, et al. Production and characterization of monolclonal antibodies detecting chicken interleukin-2 and the development of an antigen capture enzyme-linked immunosorbent assay[J].VeternaryImmunology and Immunopathology, 2001, 80: 245-257.
    130. Mory Y, et al. DNA, 1986, 5: 181
    131. Moser JM, Gibbs J, J ensen PE, et al. CD94/ N KG2A receptors regulate antiviral CD8+T cell responses [J ] .Nat Immunol, 2002, 3: 189-195.
    132. Mosmann T R, Sad S. The expanding Universe of T-cell subsets:Th1,Th2 and more[J]. Immunol Today, 1996,17 (3):138~146
    133. Muhlethaler-Mottet A,Di Berardino W,et al.Activator of the MHC classⅡtransativator CⅡTA by interferon-gamma requires cooperative interaction between Stat1 and USF-1[J]. Immunity, 1998, 8(2): 157-166.
    134. Mui L. The role of STATs in proliferation, differentiation, and apoptosis[J]. Cell Mol Life Sci, 1999, 55(12):1547~1558
    135. Muller U, Steinhoff U, Reis LFL, et al. Functional role of typeⅠand typeⅡ interferons in antiviral defense[J]. Science,1994,366:129~135
    136. Munn DH, et al. J Exp Med, 1995, 181: 127-136
    137. Murakami J, Nagai N, Ohama K, et al. Telomerase activity in ovarian tumors[J]. Cancer, 1997, 80:1085-1086.
    138. Murphy KM, Ouyang W, Farrar J D, et al. Signaling and transcrition in T helper development[J]. Aunu Rev Immunol, 2000, 18: 451-494.
    139. Nagata T, Ishikama S, Shimokawa E, et al. High level expression and purification of bioactive bovine interleukin-18 using a baculovirus system[J]. Veternary Immunology and Immunopathology, 2002, 87: 65-72.
    140. Naka T, Narazaki M, Hirata M, et al. Structure and function of a new STAT induced STAT inhibitor[J]. Nature,1997,387:924~929
    141. Nakamura TM, Morin GB, Chapman KB, et al. Telomerase catalytic subunit homologs from fission yeast and human. Science, 1997, 277:955-959.
    142. Nakatani K, Toshimi N, Mori H, et al. The significant role of telomerase activity in human brain tumors[J]. Cancer, 1997, 80:471-472.
    143. Nastala CL, Edington HD, Mckinney TG, et al. Recombinant IL-12 admisnistation induces tumor regression in association with interferon-γ production[J]. Immunol, 1994, 153: 1697-1760.
    144. Numa Y, Kawamoto K, Sakai N, et al. Flow Cytometric analysis of antineoplastic effects of interferon-alpha, beta and gamma labeled with fluorescein isothiocyanate on cultured brain tumors[J]. J Neurooncol, 1991, 11(3): 225-234.
    145. Nunberg JH, Dolye MV, York SM, et al. Interleukin-2 acts as an adjuvant to increase the potency of inactivated rabies virus vaccine[J]. Pro Natl Acad Sci, USA, 1989,86:4240~4243
    146. Nussler AK, Billiar TR. Inflammation, immunoregulation and inducible nitric oxide synthase[J]. J Leuk Biol, 1993, 54: 171-178.
    147. Odbileg R, Lee SI, Yoshida R, et al. Cloning and sequence analysis of llama cytokines related to cell-mediated immunity[J]. Veternary Immunology and Immunopathology, 2004, 102: 93- 102.
    148. Ojtek P, Michalski BJ, Shiell T. Recombinant chicken IFN-γ expression in Escherichia coli: analysis of C-terminal truncation and effect on biologic activity[J]. J int Cyt Res, 1999, 6: 383-392.
    149. O'Shea JJ, Notarangelo LD, Johnston JA, et al. Advances in the understanding of cytokine signal transduction: the role of Jaks and STATs in immunoregulation and the pathogenesis of immunodeficiency[J]. J Clin Immunol, 1997, 17(6):431~447
    150. Pace JL, Russell SW, Leblanc PA. Comparative effects of various classes of mouse interferons on macrophage activation for tumor cell killing[J]. J Immunol, 1985, 134: 977-981.
    151. Palmer MV, Waters WR, Whipple DL, et al. Evaluation of an in vitro blood-based assay to detect production ofinterferon-gamma by Mycobacterium bovis-infected white-tailed deer (Odocoileus virginianus)[J]. J Vet Diabn Invest, 2004, 16(1): 17-21.
    152. Parkinson EK, Newbold RF, Keith WN. The genetic basis of human keratinayte immortalisation in squamous cell carcinoma development: the role of telomerase reactivation[J]. Eur J Cancer, 1997, 33:727-734.
    153. Pellegrini S, Dusanter-Fourt I. The structure, regulation and function of the Janus kinases (JAKs) and the signal transducers and activators of transcription (STATs)[J]. Eur J Biochem. 1997, 248(3):615~633
    154. Periwal SB, Spagna K, et al. Statistical evaluation for detection of peptide specific interferon-γ secreting T-cells induced by HIV vaccine determined by ELISPOT assay. Journal of immunological Methods, 2005, 305: 128-134.
    155. Perler L, Pfister H, Schweizer M, et al. A bioassay for interferon type Ⅰbased on inhibition of Sendai virus growth[J]. Journal of Immunological Method, 1999, 222: 189-196.
    156. Pioli PA, Hamilton BJ, Connolly JE. Lactate dehydrogenase is an AU-rich element-binding protein that directly interacts with AUF1[J]. J Biol Chem. 2002 Sep 20;277(38):35738~35745.
    157. Prescott JF,Menzies PI,Hwang YT.An interferon-gamma assay for diagnosis of Corynebacterium pseudotuberculosis infection in adult sheep from a research flock[J]. Veterinary microbiology, 2002, 88: 287-297.
    158. Prudhomme GJ, Kono DH, Theofilopoulos AN. Quantitative polymerase chain reaction analysis reveals marked over expression of interleukin-1beta, interleukin-1 and interferon-gamma mRNA in the lymph modes of lupus prone mice[J]. Mol Immunol, 1995, 32:495~503
    159. Pusztai R, Tarodi B, Beladi I. Production and characterization of interferon induced in chicken leukocytes by concanavalin A[J]. Acta Virol, 1986, 30: 13-16.
    160. Raggo C, Monique H, Babiuk LA, et al. The in vivo effects of recombinant bovine herpesvirus-1 expression bovine interferon-γ[J]. Journal of General Virology, 2000, 81: 2665-2673.
    161. Rajagopalan S, Fu J, Long E O. Cutting edge: induction of IFN-gamma production but not cytotoxicity by the killer cell Ig-like receptor KIRZDL4 (CD158d) in resting NK cell[J]. Cell, 2001, 167: 1877~1881
    162. Rane SG, Reddy EP. Janus kinases:components of multiple signaling path ways[J]. Oncogene, 2000, 19: 5662-5679.
    163. Rao A, Luo C, Hogan PG. Transcription factors of NFAT family:regulation and function.[J]. Annu Rev Immunol, 1997,15:707~747
    164. Rautenschlein S, Sharma JM, Winslow BJ, et al. Embryo vaccination of turkeys against Newcastle disease infection with recombinant fowlpox virus constructs containing interferon as adjuvants[J]. Vaccine, 1999, 18(5-6): 426-433.
    165. Reddy DN, Reddy PG, Xue W, et al. Immnopotentiation of bovine respiratory disease virus vaccines by interleukin-1 and interleukin-2[J]. Vet Immunol Immopathol, 1993, 37:25~38
    166. Reddy PG, Blecha F, Minocha HC, et al. Bovine recombinant interleukin-2 augments immunity and resistance to bovine herpes virus infection[J]. Vet Immunol Immunopathol, 1989, 23: 61~74
    167. Rhodes SG, Graham SP, Simon P, et al. It is‘timing’important for cytokine polarization[J]. Trends in immunology, 2002, 23(5): 246-249.
    168. Roberts RM, Liu L, Guo Q, et al. The evolution of type Interferons[J]. J Interferon Cytokine Res, 1998, 18: 805-806.
    169. Rodriguez-Carreno M P, Lopez-Fuertes L, Revilla C, et al. Phenotypic characterization of porcine IFN-gamma-producing lymphocytes by flow cytometry. J Immunol Method, 2002, 259(1-2):171~179
    170. Rodriguz MF, Patino PJ, Montoya F, et al. Interleukin 4 and interferon-gamma secretion by antigen and mitogen-stimulated mononuclear cells in the hyper-IgE syndrome: no TH-2 cytokine pattern[J]. Ann Allergy AsthmaImmunol, 1998, 81(5): 443-447.
    171. Rosa FM, Cochet MM, Fellous M. Interferon and major histocompatibility complexs genes:a model to analyse eukaryotic gene regulation[J]. Interferon, 1986, 7: 48-87.
    172. Rostapshov VM, Chernov IP, Azhikina TL, et al. Effective method for obtaining long nucleotide chains on partially complementary templates: Processed bovine interferon-γ gene obtained from humanγ-interferon gene[J]. FEBS Letters, 1989, 249(2): 379-382.
    173. Rothel JS, Jones SL, Corner LA, et al. A sandwich Enzyme immunoassay for bovine interferon-gamma and its use for the detection of tuberculosis in cattle[J], Aust Vet, 1990, 67(4): 134-137.
    174. Rothel JS, Jones SL, Corner LA, et al. The gamma-interferon assay for diagnosis of bovine tuberculosis in cattle:conditiona affecting the production of gamma-interferon in whole blood culture[J]. Aust Vet J, 1992, 69(1): 1-4
    175. Rysiechi G, Gewert DR, Williams BGR, et al. J IFN Res, 1989, 9: 618
    176. Ryu DDY, Nam D-H. Recent progress in biomolecular engineering[J]. Biotechnol Prog, 2000, 16:2~16
    177. Sakatsume M, Igarashi K, Winestock KD, et al. The Jak kinase differentially associate with the α and β(accessory factor)chains of the interferonγreceptor to form a functional receptor unit capable of activating STAT transcription factors[J]. J Biol Chem, 1995, 270: 17528-17536.
    178. Sanbrook J, Fritsch EF, Maniatis T. Molecular coloning: A Laboratory Manual(3th ed)[M]. New York:Cold Spring Harbor Laboratory Press,2001,4~560
    179. Sasaki MG, Foccacia R, Messias-Reason IJ. Efficacy of granulocyte-macrophage colony-stimulating factor (GM-CSF) as a vaccine adjuvant for hepatitis B virus in patients with HIV infection. Vaccine. 2003, 21(31):4545-4549
    180. Scaceall J, Sondermeyer PB, Oranger F. Intracellular human gamma-interferon triggers an antiviral state in transformed murine L cells[J]. Proc Natl Acad Sci USA, 1987, 4, 2906-2910.
    181. Scheerlinck JPY. Functional and structural comparison of cytokine in different species[J]. Vet Immunol Immunopathol,1999,72:39~44
    182. Schijns VE, Scholtes NC, Zuilekom HI, et al. Facilitation of antibody forming response to viral vaccine antigens in young cats by recombinant baculovirus expressed feline interferon-gamma[J]. Vaccine, 2002, 20(13-14): 1718-1724.
    183. Schijns VE, Scholtes NC, Zuilekom HI, et al. Facilitation of antibody forming response to viral vaccine antigens in young cats by recombinant baculovirus expressed feline interferon-gamma[J]. Vaccine, 2002, 20(13-14): 1718-1724.
    184. Schijns VECJ. Modulation of antiviral immune response by exogenous cytokines: effects of tumer necrosis factor-α, interleukin-la, interleukin-2a interleukin-6 on the immunogenicity of an inactivated rabies vaccine. J Gen Virol,1994,75:55~63
    185. Schijns VF, Scholtes NC, Zuilekom HI, et al. Facilitation of antibody forming responses to viral vaccine antigens in young cats by recombinant baculovirus-expressed feline IFN-γ[J]. Vaccine, 2002, 20:1718~1724
    186. Schindler H, Lutz MB, Rollinghoff M, et al. The production of IFN-γ by IL-2/IL-18-activated macrophage requires STAT4 signaling and is inhibited by IL-4[J]. J Immunol, 2001, 166(5): 3075-3082.
    187. Schultz U, Kaspers B, Staeheli P. The interferon system of non-mammlian vertebrates[J]. Developmental&Comparative Immunology, 2004, 28: 499-508.
    188. Schultz U, Kock J, Schlicht HJ, Staeheli P. Recombinant duck interferon:a new reagent for studying the mode of interferon action against hepatitis B virus[J]. Virology, 1995, 212: 641- 649.
    189. Sekellick MJ, Ferrandino AF, Hopkins DA, et al. Chicken interferon gene: cloning, expression and analysis[J]. J Interferon Res, 1994, 14: 71-79.
    190. Sentsui H, Murakami K, Inoshima Y, et al. Anti-viral effect of recombinant bovine interferon-γ on bovine leukaemia virus[J]. Cytokine, 2001, 16(6): 227-231.
    191. Shay JW, Wright WE, Brasiskyte D, et al. E6 of human papillomavirus type-16 can overcome the M1 stageimmortalization in human mammary epithelial cells but not in human fibroblasts. Oncogene[J], 1993, 8:1407- 1413.
    192. Shen M, Haggblom C, Vogt M, et al. Characterization and cell cycle regulation of the related human telomeric proteins Pin2 and TRF1 suggest a role in mitosis[J]. Proc Natl Acad Sci USA , 1997, 94:13618-13623.
    193. Sherwood V, Burgert HG, Chen YH, et al. Improved growth of enteric adenovirus type 40 in a modified cell line that can no longer respond to interferon stimulation[J]. J Gen Virol, 2007, 88(1): 71-76
    194. Shtrichman R, Samuel C E. The role of gamma interferon in antimicrobial immunity[J]. Current opinion in microbiology, 2001, 4(3): 251-259.
    195. Silvai NM, et al. Toxoplasma gondii: in vivo expression of BAG-5 and cyst formation is independent of TNF p55 receptorand inducible nitric oxide synthase functions[J]. Microbes and Infection, 2002, 4: 261–270
    196. Simon MA, Dodson GS, Rubin GM. An SH3-SH2-SH3 protein is required for p21RAS1 activation and binds to sevenless and sos proteins in vitro[J]. Cell,1993,73(1):169~177
    197. Soder AI, Going JJ, Kaye SB, et al. Tumor specific regulation of telomerase RNA gene expression visulized by in situ hybridization. Oncogene, 1998, 16:979-983.
    198. Soh J. Identification and sequence of an accessory factor required for activation of the human interferon gamma receptor[J]. Cell,1994,76:793~802
    199. Song KD, Lillehoj HS, Choi KD, et al. Expression and functional characterization of recombinant chicken interferon-gamma[J]. Veternary Immunology and Immunopathology, 1997, 58: 321- 330.
    200. Song KD, Lillehoj HS, Choi KD, et al. Expression and functional characterization of recombinant chicken interferon-gamma[J]. Veternary Immunology and Immunopathology, 1997, 58: 321- 333.
    201. Stark GR, Kerr IM, Willians BR, et al. Hoe cells respond to interferon[J]. Annu Rev Biochem, 1998, 67: 227-264.
    202. Steiner BR, Hidaka K, Futcher B. Association of the Est1 protein with telomerase activity in yeast[J]. Proc Nati Acad Sci USA, 1996, 93:2817-2821.
    203. Stoecklin G, Lu M, Rattenbacher B, Moroni C.A constitutive decay element promotes tumor necrosis factor alpha mRNA degradation via an AU-rich element-independent pathway[J]. Mol Cell Biol. 2003,23(10):3506~3515
    204. Stoecklin G, Stoeckle P, Lu M, et al. Cellular mutants define a common mRNA degradation pathway targeting cytokine AU-rich elements[J]. RNA, 2001, 7(11):1578~1588.
    205. Street SE, Cretney E, Smyth MJ, et al. Perforin and interferon-γactivities indepently control tumor initiation,growth and metastasis[J]. Blood, 2001, 97: 192-197.
    206. Studier WA, Rosenberg JD, Dubendorff J. Use of T7 RNA polymerase to direct expression of cloned genes[J]. Methods Enzymol, 1990,185:60~89
    207. Subramaniam PS, Mujtaba MG, Paddy MR. The carboxyl terminus of interferon-gamma contains a functional polybasic nuclear localization sequence[J]. J Boolchem, 1999, 274: 403-307.
    208. Sun IL, et al. Biochem Mol Bio Int, l996, 38(1):175-180
    209. Sundrud MS, Grill SM, Ni D, et al. Genetic reprogramming of primary human T cells reveals functional plasticity in Th cell differentiation[J]. J Immunol. 2003, 171(7):3542-3549.
    210. Suto R, Srivastava PK. A mechanism for the specific immunogenicity of heat shock protein-chaperoned peptides[J]. science, 1995, 269(5230): 1585-1588.
    211. Tamura T, et a1. Biochem Biophys Res Commun, I996, 229(1):21-26
    212. Tan YH, et al. Proc Natl Acad Sci USA, 1970, 67:464
    213. Tanahashi N, Yokoto KY,Ahn JY.Molecular properties of the proreasome activator PA28 family proteins and gamma-interferon regulation. Genes cells, 1997, 2(3): 195-211.
    214. Tary-Lehmann M, Hricik DE, Justice AC, et al. Enzyme-linked immunosorbent assay spot detection ofinterferon-gamma and interleukin-5 producing cells as a predictive marker for renal allograft failure[J]. Transplantation, 1998, 66(2): 219-224.
    215. Tong KT, Song YM, Ying GG, et al. A pilot study of recombinant interferon-gamma gene[J]. Chinese Journal of Virology,1997,13(2):134~139
    216. Vandenbroeck K, Willems L, Billiau A, et al. Glycoform heterogeneity of porcine interferon- gamma expressed in SF9 cells[J]. Lymphok Cytok Res, 1994,13:253~258
    217. Walravens K, Wellemans V, Weynants V, et al. Analysis of the antigen-specific IFN-γ producing T-cell subsets in cattle experimentally infected with Mycobacterium bovis[J]. Veterinary Immunology and Immunopathology, 2002, 84: 29-41.
    218. Walter MR, Windsor WT, Nagabhusham TL, et al. Crystal structure of a complex between interferon-gamma and its soluble high-affinity receptor[J]. Nature, 1995, 376(20): 230-235.
    219. Wan JQ, Wu WX, Xia C, et al. Expression of porcine interferon-gamma in pichia pastoris and its effect of inhibiting porcine reproductive and respirtory syntrom virus[J]. Sheng Wu Gong Cheng Xue Bao, 2002, 18(6): 683-686.
    220. Wan JQ, Wu WX, Xia C, et al. Expression of porcine interferon-gamma in pichia pastoris and its effect of inhibiting porcine reproductive and respirtory syntrom virus[J]. Sheng Wu Gong Cheng Xue Bao, 2002, 18(6): 683-686.
    221. Wang Z, Hong J, Sun W, et al . Role of IFN-gamma in induction of Foxp3 and convension of CD4+ CD25- T cells to CD4+ Tregs[J]. J Clin Invest, 2006, 116: 2434-2441.
    222. Weining KC, Schultz U, Munster U, et al. Biological properties of recombinant chicken interferon-gamma[J]. Eur J Immunol, 1996, 26: 2440-2448.
    223. Wensky A, Marcondes MCG, Lafaille JJ. The role of IFN-gamma in the production of Th2 subpopulations: implications for variable Th2-mediated pathologies in autoimmunity. J Immunol. 2001, 167:3074~3081
    224. Wiley SR, Kubin MZ, Sedger LM, et al. Monocyte-mediated tumoricidal activity via tumor mecrosis factor-related cytokine, TRAIL[J]. J Exp Med, 1999, 189: 1343-1354.
    225. Winstall E, Gamache M, Raymond V. Rapid mRNA degradation mediated by the c-fos 3' AU-rich element and that mediated by the granulocyte-macrophage colony-stimulating factor 3' AU-rich element occur through similar polysome-associated mechanisms[J]. Mol Cell Biol, 1995, 15(7): 3796~3804
    226. Wu DL, Murakami K, Liu NH, et al. Expression of biologically active recombinant equine interferon-γ by two different baculovirus gene expression system using insect cells and silkworm larvae[J]. Cytokine, 2002, 20(2): 63-69.
    227. Wu W X, Xia C. Cloning and expression in Escherichia coli of porcine interferon- gamma gene[J]. Jounal of Agricultural Biotechnology, 2002,3:255~258
    228. Yashiro K, Lowenthal JW, Neil TE, et al. High-level production of recombinant chicken interferon-γ by Brevibacillus choshinensis[J]. Protein Expression and Purification, 2001, 23: 113-120.
    229. Yoshida H, Nishina H, Takimoto H, et al. The transcription factor NF-ATC1 regulates proliferation and Th2 cytokine production[J].Immunity,1998:115~124
    230. Young HA. Regulation of interferon-γgene expression[J]. J Int Cyt Res, 1996, 16: 563-568.
    231. Yun CH, Lillehoj HS, Choi KD. Chicken IFN-γ monoclonal antibodies and their application in Enzyme-linked immunosorbent assay[J]. Veterinary immunology and immunopathology, 2000, 73: 297-308.
    232. Yun CH, Lillehoj HS, Choi KD. Chicken IFN-γ monoclonal antibodies and their application in enzyme-linked immunosorbent assay[J]. Veternary Immunology and Immunopathology, 2000, 73: 297-308.
    233. Zhu XL, Kumar R, Mandal M, et al. Cell cycle-dependent modulation of telomerase activity in tumor cells[J]. Proc Natl Acad Sci USA, 1996, 93:6091-6095.
    234. Ziemiecki A, Harpur AG, Wilks AF. Jak protein tyrosine kinase: their role in cytokine signaling[J]. Trends Cell Biol, 1994, 4: 204-215.
    235. Zlotini KA, Yoshie O. Chemokines: A new classification system and their role in immunity[J]. Immunity, 2000,12 (1):121~127
    236. Baxevanis AD, Ouellette BFF. 生物信息学-基因和蛋白质分析的实用指南(李衍达等译)[M]. 北京:清华大学出版社, 2000
    237. 毕美霞, 杨渝珍, 舒平等.IL-2 重组毒素的克隆、表达及对 IL-2R+淋巴细胞的特异性细胞毒效应[J]. 中国免疫学杂志,2000,16(3):115~118
    238. 曹虹, 曹雪涛, 于益芝等. 重组腺病毒介导 IFN-γ 基因转染的巨噬细胞的体外免疫效应功能分析[J]. 1997,13(3):131~134
    239. 陈滨, 吴秋茜, 倪道明. GM-CSF 基因的表达调节[J].国外医学: 分子生物学分册, 1997,19 (6): 254~257
    240. 陈受霓, 史久华. 细胞因子用作治疗药物[J]. 国外医学——预防、诊断、治疗用生物制品分册, 2003, 26(3):117~121
    241. 陈晓萍, 徐飞. JAK-STAT 信号通路研究进展[J]. 自然杂志, 2003,25(3):149~152
    242. 程坚, 刘秀梵, 彭大新,等. 共表达 H9 亚型禽流行性感冒病毒血凝素基因和鸡Ⅱ型干扰素基因的重组鸡痘病毒构建及其免疫效力[J]. 病毒学报, 2003, 19(1): 52-55.
    243. 窦永喜. 猪干扰素-gamma 基因克隆、表达及其疫苗佐剂效应研究[硕士学位论文]. 北京: 中国农业科学院研究生院, 2004.
    244. 高建忠, 祝卫东. 黄玉帮. 干扰素的研究进展[J]. 动物医学, 2004, 21(1): 58-59.
    245. 郭瀛军, 吴丹, 陈蕊雯, 等. 猪干扰素-γ 基因的克隆、表达及其纯化[J].生物工程学报,2001,17(2):183~186
    246. 何艳, 叶庆林, 林德馨. Ras-MAPK 信号转导途径及其与肿瘤关系的研究进展[J]. 福建医科大学学报,2003,37:30~32
    247. 贺平, 汤钊猷. 细胞因子受体超家族与信号转导[J]. 生物化学与生物物理进展, 1998, 25(3): 201~204
    248. 侯云德. 干扰素研究进展[J]. 国外医学-分子生物学分册, 1979, (1): 315-321.
    249. 金伯泉. 细胞和分子免疫学[M]. 北京:科学出版社, 2001:131~239
    250. 金奇. 医学分子病毒学[M]. 北京: 科学出版社,2001:105~136
    251. 李求是, 杨贵珍. 细胞因子免疫佐剂效应在疫苗接种中的应用[J]. 国外医学:免疫学分册, 1994,2:92~95
    252. 李岩, 邵念鹏, 彭玉麟. IFN-γ 的研究与临床应用[J]. 河北科学院院报, 2001, 18(3): 174- 177.
    253. 李元, 陈松森, 王渭池. 基因工程药物[M]. 北京:化学工业出版社,2003:127~132
    254. 刘杰, 魏海明, 田志刚, 等. Th1/Th2 相关细胞因子基因检测方法的建立[J]. 中国免疫学杂志, 1999, 15: 550-552.
    255. 刘堰, 欧阳克清, 胡应和等. 新型基因重组白细胞介素-2 的研究与开发[J], 中国生物工程学报, 2002,22 (3):13~17
    256. 牟红梅, 陈宏, 张志平. 干扰素 IFN-τ 的分子结构和妊娠识别机理[J]. 中国兽医杂志, 2002, 28(3): 42-43.
    257. 彭大新, 刘秀梵, 程坚等. 共表达 MDV 糖蛋白 B 和鸡 γ-干扰素基因的重组鸡痘病毒的构建[J]. 微生物学报, 2002, 42(5): 611-615.
    258. 孙大业, 郭艳抹, 马力耕, 等. 细胞信号转导(第三版)[M]. 北京: 科学出版社,2001:28~40
    259. 孙树汉. 核酸疫苗[M]. 上海: 第二军医大学出版社. 2000,168~173
    260. 孙卫民, 王惠琴. 细胞因子研究方法学[M]. 北京:人民卫生出版社,1999:569~576
    261. 万建青, 吴文学, 夏春. 毕赤酵母表达猪干扰素-γ 基因及其抑制蓝耳病病毒效果[J]. 生物工程学报, 2002,18(6):683~686
    262. 汪家政, 范明. 蛋白质技术手册[M]. 北京:科学出版社,2000:1~182
    263. 王大成. 蛋白质工程[M]. 北京:化学工业出版社,2002:88~247
    264. 王斐, 历永建, 孙卫民. 细胞因子与全身性炎症反应综合征发身机理的研究进展[J].国外医学:免疫学分册, 1999,22(4):177~180
    265. 王海波, 徐来根, 应国光, 等. 基因工程人 γ 干扰素 C 端的结构分析及功能作用[J]. 生物工程学报, 1994, 10: 555
    266. 王世若, 王兴尤, 韩文瑜. 现代动物免疫学[ M].长春:吉林科学技术出版社,1996:21~40
    267. 温进坤, 韩梅. 医学分子生物学理论与技术[M]. 北京:科学出版社,2002:33~243
    268. 吴乃虎. 基因工程原理(第二版)[M]. 北京:科学出版,1998:51~112
    269. 叶秀华, 蔡建平, 汪明, 等. 重组鸡 γ 干扰素的抗球虫作用[J]. 中国兽医杂志, 2004, 40(7): 3-5.
    270. 殷震, 刘景华. 动物病毒学[M]. 北京: 科学出版社,1997:138~145
    271. 于恩庶. 弓形虫病学[M]. 福州: 福建科学技术出版社, 1992: 75-82.
    272. 翟中和, 王喜忠, 丁明孝. 细胞生物学[M]. 北京:高等教育出版社,2000:17~72.
    273. 张延龄, 张晖. 疫苗学[M]. 北京: 科学出版社,2004
    274. 赵晓光, 陆毅, 张福广. 结核菌素试验致过敏性休克[J]. 临床误诊误治, 2002, 15(2): 141-142.
    275. 周光炎. 免疫学原理[M]. 上海:上海科学技术文献出版社, 2001:82~99
    276. 朱厚础, 等译. 蛋白质纯化与鉴定实验指南[M]. 北京:科学出版社,2002:141~191
    277. 朱蕾. SOCS:细胞因子信号传导的负反馈抑制因子[J]. 国外医学免疫学分册, 2003,26(1):1~4
    278. 朱立平, 陈学清. 免疫学常用实验方法[M]. 北京:人民军医出版社,2000,151~169