湖北海棠(Malus.hupehensis)及近缘种的matK和ITS序列分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物分子系统学已广泛地应用于植物系统学研究的各级分类单元上,体现出了一定的应用前景和理论意义。苹果属(MalusMill)植物是我国一种重要的果树资源,其中湖北海棠(Malushupehensis)为典型的异源三倍体(2n=3X=51)种,公认为是一个杂种类群,种间普遍存在连续的变异类型,基于传统形态学分类方法很难进行种的确切判断和种间系统关系的分析。因此研究该属杂交类群的起源和种间遗传关系不仅有助于阐明该属植物系统演化和物种成机制,而且对杂交选育和开发利用也具有重要意义。
     本研究选取湖北海棠、山荆子、丽江山荆子、三叶海棠、毛山荆子等共100多份材料,通过分析nrDNAITS序列和cpDNAmatK序列,基本弄清了湖北海棠及其近缘种间的亲缘关系和杂交起源方式,主要研究结果如下:
     1.关于湖北海棠及其近缘种的亲缘关系
     ITS和matK序列分析表明湖北海棠与丽江山荆子和三叶海棠有较近的亲缘关系,其中浙江、安徽、江西等地区的湖北海棠与丽江山荆子亲缘关系较近,山东、陕西等地的湖北海棠与三叶海棠和山荆子亲缘关系较近。
     2.关于湖北海棠的杂交起源问题
     ITS序列加合位点显示湖北海棠起源与山荆子或毛山荆子与三叶海棠或丽江山荆子的杂交,并且存在基因渗透现象。不同地区种间亲缘关系差异显示湖北海棠可能为多点起源。
     3.一些苹果属种的分类地位的变更
     本研究不支持丽江山荆子作为变种的地位,恢复作为一个独立的种;鉴于三叶海棠和山荆子组有较近的亲缘关系,支持将三叶海棠从花楸组中移入山荆子组中;天目山仙人顶存疑种鉴定为湖北海棠的变种,确定为一新变种天目山海棠(Malushupehensisvar.tianmuensis)。
Molecular systematics has been invited into the phylogenetic study of plants and widely used on all taxonomic categories with great application potential and theoretical sigingicance.The genus Malus belonging to the Rosaceae family has become an improtant fruit resource in China. Malus hupehensis is a typical allotriploid being considered as a hybrid group. Malus species easily hybridize with each other, hybrids of morphological features vary frequently in nature and among cultivated genotypes, so it is difficult to identify and classify unknown or newly acquired accessions of Malus species by morphological features in nature. Therefore,it is helpful to have information on hybird origion and genetic relationships among these species.Any more,the research is needed for a well understanding of genetic variation and hybird origion in Malus.
     In present study, we collected100individuals presenting M.hupehensis, M.baccata, M.rockii, M.toringo,M.mandshurica and so on.The joint use of ITS and matK sequences analysis seeks to find the phylogenetic relationships between them and the hybrid origion of M.hupehensis.The main results were as follows:
     1.Relationship among M.hupehensis and its realtive species
     The analysis of ITS and matK sequences showed close relationship among M.hupehensis,M.toringo and M.rockii.The samples coming form Zhejiang, Anhui, Jiangxi privences have closer relationship with M.rockii,coming from Shandong, Shanxi prviences have closer relationship with M.toringo and M.baccata.
     2.Hybrid origins of M.hupehensis
     The adductive sites of ITS sequences showed that M.hupehensis derived from hybridization between M.baccata or M.mandshurica and M.rockii or M.toringo.,and existing gene permeation.The difference relationship between various localtions showed that the origion of M.hupehensis maybe multi-point.
     3.The taxon's positon of some species
     Molecular data dissupport the status of M.baccata var. rockii. Transfer M.toringo to Section baccatae from Section Sorbomalns based on the close relationship between them.The species located on Zhejiang tianmu mountain identified as M.hupehensis variety and named as M hupehensis var. tianmuensis.
引文
[1]张昀.生物进化[M].北京:北京大学出版社,1998.
    [2]黄原.分子系统学原理、方法及应用[M].北京:科学出版社,1998.
    [3]Hubby J L, Throckmorton L H. Protein differences in Drosophila. II. Comparative species genetics and evolutionary problems[J]. Genetics,1965,52(1):203.
    [4]Gottlieb L D. Enzyme differentiation and phylogeny in Clarkia franciscana, C. rubicunda and C. amoena[J]. Evolution,1973:205-214.
    [5]Zuckerkandl E, Pauling L. Molecules as documents of evolutionary history [J]. Journal of theoretical biology,1965,8(2):357-366.
    [6]Chase M W, Soltis D E, Olmstead R G, et al. Phylogenetics of seed plants:an analysis of nucleotide sequences from the plastid gene rbcL[J]. Annals of the Missouri Botanical Garden,1993:528-580.
    [7]Barraclough T. G., Vogler A. P. Detecting the geographical pattern of speciation from species鈥恖evel phylogenies [J]. The American Naturalist,2000,155(4):419-434.
    [8]Donoghue M J. Progress and prospects in reconstructing plant phylogeny [J]. Annals of the Missouri Botanical Garden,1994:405-418.
    [9]AGPII. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants:APG II[J]. Botanical Journal of the Linnean Society, London,2003,141:399-436.
    [10]Huber K T, Watson E E, Hendy M D. An algorithm for constructing local regions in a phylogenetic network[J]. Molecular Phylogenetics and Evolution,2001,19(1):1-8.
    [11]Kumar S, Tamura K, Nei M. MEGA3:integrated software for molecular evolutionary genetics analysis and sequence alignment[J]. Briefings in bioinformatics,2004,5(2):150-163.
    [12]Posada D, Buckley T R. Model selection and model averaging in phylogenetics:advantages of Akaike information criterion and Bayesian approaches over likelihood ratio tests[J]. Systematic biology,2004,53(5):793-808.
    [13]Kimura M. Evolutionary rate at the molecular level[J]. Nature,1968,217(5129):624.
    [14]吴平,张克云.后生动物起源时间的分子钟研究[J].古生物学报,2000,39(3):449-453.
    [15]邹喻苹.系统与进化植物学中的分子标记[M].北京:科学出版社,2001.
    [16]Turner R C, Holman R R, Cull C A, et al. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type2diabetes (UKPDS33)[J]. lancet,1998,352(9131):837-853.
    [17]葛颂.植物进化生物学[M].武汉:武汉大学出版社,1994.
    [18]Bullock W O, Fernandez J M, Short J M. XL1-Blue:a high efficiency plasmid transforming recA Escherichia coli strain with beta-galactosidase selection[J]. BioTechniques,1987,5(4):376-379.
    [19]方德秋,章文才.应用同工酶进行柑桔分类和进化研究[J].植物分类学报,1993,31(004):329-352.
    [20]Saito H, Nishikawa A, Gu J G, et al. CDNA Cloning and Chromosomal Mapping of Human N-Acetylglucosaminyltransferase-V[J]. Biochemical and biophysical research communications,1994,198(1):318-327.
    [21]陈学群,周光凡.芥菜脂酶同工酶分析[J].西南农业学报,1993,6(003):40-46.
    [22]Kawasaki N, Haishima Y, Ohta M, et al. Structural analysis of sulfated N-linked oligosaccharides in erythropoietin[J]. Glycobiology,2001,11(12):1043-1049.
    [23]Qiu Y L, Lee J, Bernasconi-Quadroni F, et al. The earliest angiosperms:evidence from mitochondrial, plastid and nuclear genomes[J]. Nature,1999,402(6760):404-407.
    [24]栗雨勤,张文英,谢俊良,等.主要作物新品种抗旱性鉴定指标的研究与应用[J].华北农学报,2006,21(B11):29-33.
    [25]程林,张耀甲,葛瑞昌,等.贝母属植物醋酶同工酶研究[J].1994,36(增刊):139-144
    [26]陈志秀.蜡梅17个品种过氧化物同工酶的研究[J].植物研究,1995,15(3):403-411.
    [27]苏应娟,刘启宏.湖北八角莲属植物过氧化物酶同工酶分析[J].武汉植物学研究,1994,12(1):44-48.
    [28]仇志军,郑素秋.西瓜品种资源亲缘关系的同工酶分析[J].湖南农学院学报,1994,20(003):222-227.
    [29]吕英民,吕增仁.应用同工酶进行杏属植物演化关系和分类的研究[J].华北农学报,1994,9(004):69-74.
    [30]李育农,李晓林.苹果属植物过氧化物酶同工酶酶谱的研究[J].西南农业大学学报,1995,17(005):371-377.
    [31]王中仁.植物等位酶分析[M].北京:科学出版社,1996.
    [32]Lane Jr W A, Davis S D. Collapsible dispenser pouch[Z]. Google Patents,1995.
    [33]葛颂.酶电泳资料和系统与进化植物学研究综述[J].武汉植物学研究,1994,12(1):71-84.
    [34]王中仁.植物遗传多样性和系统学研究中的等位酶分析[J].生物多样性,1994(02):44-47
    [35]赵衍,翁醒华,胡华萃,等.水稻叶绿体DNA的分离纯化及其限制酶切分析[J].浙江大学学报(理学版),1991,3:90-96
    [36]吴俊辉,舒煦,李朝銮.中国葡萄属植物叶绿体DNA的提取、纯化及分子量测定[J].云南植物研究,1994(02):12-18
    [37]Donoghue M J, Olmstead R G, Smith J F, et al. Phylogenetic relationships of Dipsacales based on rbcL sequences[J]. Annals of the Missouri Botanical Garden,1992:333-345.
    [38]Chase M W, Soltis D E, Olmstead R G, et al. Phylogenetics of seed plants:an analysis of nucleotide sequences from the plastid gene rbcL[J]. Annals of the Missouri Botanical Garden,1993:528-580.
    [39]Doerner R, Vogt T, Mergel V, et al. Ratio of cross sections for double to single ionization of He by85-400eV photons[J]. Physical review letters,1996,76(15):2654-2657.
    [40]黄永芬,汪清胤,孙德君,等.对TMV不同抗性番茄品种的叶绿体DNA限制性内切酶酶谱分析[J].植物研究,1995(03):35-39
    [41]杨金水, Walbot Virginia.水稻线粒体DNA酶切带型研究[J].遗传学报,1993(03):20-26
    [42]丁士友,顾红雅,瞿礼嘉,等.PCR产物的RFLP分析在黄芪亚族(豆科)系统学研究中的应用初探[J].植物学报,1995(02):33-38
    [43]Brachmann C B, Davies A, Cost G J, et al. Designer deletion strains derived from Saccharomyces cerevisiae S288C:a useful set of strains and plasmids for PCR-mediated gene disruption and other applications [J]. YEAST-CHICHESTER-,1998,14:115-132.
    [44]Schaal B A, Leverich W J, Rogstad S H. Comparison of methods for assessing genetic variation in plant conservation biology [J]. Genetics and conservation of rare plants,1991:123-134.
    [45]Williams J G K, Kubelik A R, Livak K J, et al. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers[J]. Nucleic acids research,1990,18(22):6531-6535.
    [46]Collins D, Mill R R, Miller M. Species separation of Taxus baccata, T. canadensis, and T. cuspidata (Taxaceae) and origins of their reputed hybrids inferred from RAPD and cpDNA data[J]. American journal of botany,2003,90(2):175-182.
    [47]李造哲.披碱草和野大麦杂交后代的遗传特性及育性研究[D].呼和浩特:内蒙古农业大学博士学位论文,2001.
    [48]Friesen N, Pollner S, Bachmann K, et al. RAPDs and noncoding chloroplast DNA reveal a single origin of the cultivated Allium fistulosum from A. altaicum (Alliaceae)[J]. American Journal of Botany,1999,86(4):554-562.
    [49]裴颜龙,邹喻苹,尹蓁,等.矮牡丹与紫斑牡丹RAPD分析初报[J].植物分类学报,1995(04):67-71
    [50]吴乃虎.基因工程原理[M].北京:科学出版社,1998.
    [51]王京兆,王斌,徐琼芳,等.用RAPD方法分析水稻光敏核不育基因[J].遗传学报,1995,22(1):53-58.
    [52]Ge S, Oliveira G C X, Schaal B A, et al. RAPD variation within and between natural populations of the wild rice Oryza rufipogon from China and Brazil[J]. Heredity,1999,82(6):638-644.
    [53]魏伟,王洪新,胡志昂,等.毛乌素沙地柠条群体分子生态学初步研究:RAPD证据[J].生态学报,1999,19(1):16-22.
    [54]Caraway V, Carr G D, Morden C W. Assessment of hybridization and introgression in lava-colonizing Hawaiian Dubautia (Asteraceae:Madiinae) using RAPD markers[J]. American Journal of Botany,2001,88(9):1688-1694.
    [55]孔令让,董玉琛.粗山羊草随机扩增多态性DNA研究[J].植物学报:英文版,1998,40(3):223-227.
    [56]汪小全,邹喻苹,张大明,等RAPD应用于遗传多样性和系统学研究中的问题[J].植物学报,1996,12(38):954-962.
    [57]Lee S W, Kim Y Y, Hyun J O, et al. Comparison of genetic variation in Pinus densiflora natural populations by allozyme and RAPD analysis[J]. Korean Journal of Breeding,1997,29:22-27
    [58]Muller K F, Borsch T, Hilu K W. Phylogenetic utility of rapidly evolving DNA at high taxonomical levels: Contrasting matK, trnT-F, and rbcL in basal angiosperms[J]. Molecular Phylogenetics and Evolution,2006,41(1):99-117.
    [59]苟本富,邹国林AFLP分子标记技术及其应用研究进展[J].渝西学院学报(自然科学版),2002,1(15):22-30.
    [60]张增翠,侯喜林.SSR分子标记开发策略及评价[J].遗传,2005,26(5):763-768.
    [61]谭月萍,黄建安,刘仲华,等.SSR分子标记及其在植物遗传分析中的应用[J].中国茶叶,2009(003):7-9.
    [62]郭瑞星,刘小红,荣廷昭,等.植物SSR标记的发展及其在遗传育种中的应用[J].玉米科学, 2005,13(2):8-11.
    [63]王建波.分子标记及其在植物遗传学研究中的应用[J].遗传HEREDITSAS (Beijing),2002,24(5):613-616.
    [64]Archibald J K, Wolfe A D, Johnson S D. Hybridization and gene flow between a day-and night-flowering species of Zaluzianskya (Scrophulariaceae ss, tribe Manuleeae)[J]. American Journal of Botany,2004,91(9):1333-1344.
    [65]Esselman E J, Jianqiang L, Crawford D J, et al. Clonal diversity in the rare Calamagrostis porteri ssp. insperata (Poaceae):comparative results for allozymes and random amplified polymorphic DNA (RAPD) and intersimple sequence repeat (ISSR) markers[J]. Molecular Ecology,1999,8(3):443-451.
    [66]Ayres D R, Strong D R. Origin and genetic diversity of Spartina anglica (Poaceae) using nuclear DNA markers[J]. American Journal of Botany,2001,88(10):1863-1867.
    [67]Camacho F J, Liston A. Population structure and genetic diversity of Botrychium pumicola (Ophioglossaceae) based on inter-simple sequence repeats (ISSR)[J]. American Journal of Botany,2001,88(6):1065-1070.
    [68]Rafalski A. Applications of single nucleotide polymorphisms in crop genetics [J]. Current opinion in plant biology,2002,5(2):94-100.
    [69]Root T L, Price J T, Hall K R, et al. Fingerprints of global warming on wild animals and plants[J]. Nature,2003,421(6918):57-60.
    [70]Soltis D E, Soltis P S. Choosing an approach and an appropriate gene for phylogenetic analysis [J]. Molecular systematics of plants Ⅱ:DNA sequencing,1998:1-42.
    [71]Cameron K M, Chase M W, Whitten W M, et al. A phylogenetic analysis of the Orchidaceae:evidence from rbcL nucleotide sequences[J]. American Journal of Botany,1999,86(2):208-224.
    [72]Setoguchi H, Osawa T A, Pintaud J C, et al. Phylogenetic relationships within Araucariaceae based on rbcL gene sequences[J]. American Journal of Botany,1998,85(11):1507-1516.
    [73]Korall P, Kenrick P. Phylogenetic relationships in Selaginellaceae based on rbcL sequences[J]. American journal of botany,2002,89(3):506-517.
    [74]Qiu Y L, Lee J, Bernasconi-Quadroni F, et al. The earliest angiosperms:evidence from mitochondrial, plastid and nuclear genomes [J]. Nature,1999,402(6760):404-407.
    [75]Chase M W, Soltis D E, Olmstead R G, et al. Phylogenetics of seed plants:an analysis of nucleotide sequences from the plastid gene rbcL[J]. Annals of the Missouri Botanical Garden,1993:528-580.
    [76]Hilu K W, Alice L A. Evolutionary implications of matK indels in Poaceae[J]. American Journal of Botany,1999,86(12):1735-1741.
    [77]Martin R M. Electronic structure:basic theory and practical methods[M]. Cambridge Univ Pr,2004.
    [78]Hilu K W, Borsch T, Miiller K, et al. Angiosperm phylogeny based on<011> matK sequence information[J]. American Journal of Botany,2003,90(12):1758-1776.
    [79]Richardson J E, Fay M F, Cronk Q C B, et al. A phylogenetic analysis of Rhamnaceae using rbcL and trnL-F plastid DNA sequences[J]. American Journal of Botany,2000,87(9):1309-1324.
    [80]Kim S, Park C W, Kim Y D, et al. Phylogenetic relationships in family Magnoliaceae inferred from ndhF sequences[J]. American Journal of Botany,2001,88(4):717-728.
    [81]Schnabel A, Wendel J F. Cladistic biogeography of Gleditsia (Leguminosae) based on ndhF and rpl16chloroplast gene sequences[J]. American Journal of Botany,1998,85(12):1753-1765.
    [82]Chase M W, Morton C M, Kallunki J A. Phylogenetic relationships of Rutaceae:a cladistic analysis of the subfamilies using evidence from RBC and ATP sequence variation[J]. American Journal of Botany,1999,86(8):1191-1199.
    [83]Graham S W, Olmstead R G. Utility of17chloroplast genes for inferring the phytogeny of the basal angiosperms[J]. American Journal of Botany,2000,87(11):1712-1730.
    [84]Cuenoud P, Savolainen V, Chatrou L W, et al. Molecular phylogenetics of Caryophyllales based on nuclear18S rDNA and plastid rbcL, atpB, and matK DNA sequences[J]. American Journal of Botany,2002,89(1):132-144.
    [85]Zomlefer W B, Williams N H, Whitten W M, et al. Generic circumscription and relationships in the tribe Melanthieae (Liliales, Melanthiaceae), with emphasis on Zigadenus:evidence from ITS and trnL-F sequence data[J]. American journal of botany,2001,88(9):1657-1669.
    [86]Reeves G, Chase M W, Goldblatt P, et al. Molecular systematics of Iridaceae:evidence from four plastid DNA regions[J]. American Journal of Botany,2001,88(11):2074-2087.
    [87]Davis C C, Anderson W R, Donoghue M J. Phylogeny of Malpighiaceae:evidence from chloroplast ndhF and trnL-F nucleotide sequences[J]. American Journal of Botany,2001,88(10):1830-1846.
    [88]Su Y C F, Smith G J D, Saunders R M K. Phylogeny of the basal angiosperm genus Pseuduvaria (Annonaceae) inferred from five chloroplast DNA regions, with interpretation of morphological character evolution[J]. Molecular Phylogenetics and Evolution,2008,48(1):188-206.
    [89]Kellogg E A, Bennetzen J L. The evolution of nuclear genome structure in seed plants[J]. American Journal of Botany,2004,91(10):1709-1725.
    [90]田欣,李德铢.DNA序列在植物系统学研究中的应用[J].云南植物研究,2002,24(2):170-184.
    [91]Baldwin B G, Sanderson M J, Porter J M, et al. The ITS region of nuclear ribosomal DNA:a valuable source of evidence on angiosperm phylogeny[J]. Annals of the Missouri Botanical Garden,1995:247-277.
    [92]Henrion B, Le Tacon F, Martin F. Rapid identification of genetic variation of ectomycorrhizal fungi by amplification of ribosomal RNA genes[J]. New Phytologist,1992:289-298.
    [93]Liston A, Robinson W A, Oliphant J M, et al. Length variation in the nuclear ribosomal DNA internal transcribed spacer region of non-flowering seed plants [J]. Systematic Botany,1996:109-120.
    [94]Baldwin B G, Markos S. Phylogenetic Utility of the External Transcribed Spacer (ETS) of18S-26S rDNA: Congruence of ETS and ITS Trees ofCalycadenia (Compositae)[J]. Molecular phylogenetics and evolution,1998,10(3):449-463.
    [95]Bellarosa R, Simeone M C, Papini A, et al. Utility of ITS sequence data for phylogenetic reconstruction of Italian Quercus spp.[J]. Molecular phylogenetics and evolution,2005,34(2):355-370.
    [96]Kay K M, Reeves P A, Olmstead R G, et al. Rapid speciation and the evolution of hummingbird pollination in neotropical Costus subgenus Costus (Costaceae):evidence from nrDNA ITS and ETS sequences[J]. American Journal of Botany,2005,92(11):1899-1910.
    [97]Kress W J, Liu A Z, Newman M, et al. The molecular phylogeny of Alpinia (Zingiberaceae):a complex and polyphyletic genus of gingers[J]. American journal of botany,2005,92(1):167-178.
    [98]Baum D A, Small R L, Wendel J F. Biogeography and floral evolution of Baobabs Adansonia, Bombacaceae as inferred from multiple data sets[J]. Systematic Biology,1998,47(2):181-207.
    [99]Downie S R, Katz-Downie D S, Spalik K. A phylogeny of Apiaceae tribe Scandiceae:evidence from nuclear ribosomal DNA internal transcribed spacer sequences[J]. American Journal of Botany,2000,87(1):76-95.
    [100]Schwarzbach A E, Ricklefs R E. Systematic affinities of Rhizophoraceae and Anisophylleaceae, and intergeneric relationships within Rhizophoraceae, based on chloroplast DNA, nuclear ribosomal DNA, and morphology [J]. American Journal of Botany,2000,87(4):547-564.
    [101]Stanford A M, Harden R, Parks C R. Phylogeny and biogeography of Juglans (Juglandaceae) based on matK and ITS sequence data[J]. American Journal of Botany,2000,87(6):872-882.
    [102]Groth-Malonek M, Heinrichs J, Schneider H, et al. Phylogenetic relationships in the Lejeuneaceae (Hepaticae) inferred using ITS sequences of nuclear ribosomal DNA[J]. Organisms Diversity&Evolution,2004,4(1-2):51-57.
    [103]Torres A M, Morton C M. Molecular and morphological phylogenetic analysis of Brachiaria and Urochloa (Poaceae)[J]. Molecular phylogenetics and evolution,2005,37(1):36-44.
    [104]Baldwin B G. Molecular phylogenetics of Calycadenia (Compositae) based on ITS sequences of nuclear ribosomal DNA:chromosomal and morphological evolution reexamined[J]. American Journal of Botany,1993:222-238.
    [105]Widmer A, Baltisberger M. Molecular evidence for allopolyploid speciation and a single origin of the narrow endemic Draba ladina (Brassicaceae)[J]. American Journal of Botany,1999,86(9):1282-1289.
    [106]Lihova J, Aguilar J F, Marhold K, et al. Origin of the disjunct tetraploid Cardamine amporitana (Brassicaceae) assessed with nuclear and chloroplast DNA sequence data[J]. American journal of botany,2004,91(8):1231-1242.
    [107]Church S A, Taylor D R. Speciation and hybridization among Houstonia (Rubiaceae) species:the influence of polyploidy on reticulate evolution[J]. American journal of botany,2005,92(8):1372-1380.
    [108]Tate J A, Aguilar J F, Wagstaff S J, et al. Phylogenetic relationships within the tribe Malveae (Malvaceae, subfamily Malvoideae) as inferred from ITS sequence data[J]. American Journal of Botany,2005,92(4):584-602.
    [109]Tank D C, Sang T. Phylogenetic utility of the glycerol-3-phosphate acyltransferase gene:evolution and implications in Paeonia (Paeoniaceae)[J]. Molecular phylogenetics and evolution,2001,19(3):421-429.
    [110]Bayly M J, Ladiges P Y. Divergent paralogues of ribosomal DNA in eucalypts (Myrtaceae)[J]. Molecular phylogenetics and evolution,2007,44(1):346-356.
    [I11]Buckler-IV E S, Ippolito A, Holtsford T P. The evolution of ribosomal DNA:divergent paralogues and phylogenetic implications [J]. Genetics,1997,145(3):821-827
    [112]Gernandt D S, Liston A, Pinero D. Variation in the nrDNA ITS of Pinus subsection Cembroides:implications for molecular systematic studies of pine species complexes[J]. Molecular Phylogenetics and Evolution,2001,21(3):449-467.
    [113]Harpke D, Peterson A. Non-concerted ITS evolution in Mammillaria (Cactaceae)[J]. Molecular phylogenetics and evolution,2006,41(3):579-593.
    [114]Ochieng J W, Henry R J, Baverstock P R, et al. Nuclear ribosomal pseudogenes resolve a corroborated monophyly of the eucalypt genus Corymbia despite misleading hypotheses at functional ITS paralogs[J]. Molecular phylogenetics and evolution,2007,44(2):752-764.
    [115]Razafimandimbison S G, Kellogg E A, Bremer B. Recent origin and phylogenetic utility of divergent ITS putative pseudogenes: acase study from Naucleeae (Rubiaceae)[J]. Systematic biology,2004,53(2):177-192.
    [116]Won H, Renner S S. The internal transcribed spacer of nuclear ribosomal DNA in the gymnosperm Gnetum[J]. Molecular phylogenetics and evolution,2005,36(3):581-597.
    [117]Mayol M, Rossello J A. Why nuclear ribosomal DNA spacers (ITS) tell different stories in Quercus[J]. Molecular Phylogenetics and Evolution,2001,19(2):167-176.
    [118]Baldwin B G, Sanderson M J, Porter J M, et al. The ITS region of nuclear ribosomal DNA: a valuable source of evidence on angiosperm phylogeny[J]. Annals of the Missouri Botanical Garden,1995:247-277.
    [119]Yang Y W, Lai K N, Tai P Y, et al. Molecular phylogenetic studies of Brassica, Rorippa, Arabidopsis and allied genera based on the internal transcribed spacer region of18S-25S rDNA[J]. Molecular phylogenetics and evolution,1999,13(3):455-462.
    [120]Muir G, Fleming C C, Schlotterer C. Three divergent rDNA clusters predate the species divergence in Quercus petraea (Matt.) Liebl. and Quercus roburL[J]. Molecular Biology and Evolution,2001,18(2):112-119.
    [121]Buckler E S, Holtsford T P. Zea ribosomal repeat evolution and substitution patterns.[J]. Molecular Biology and Evolution,1996,13(4):623-632.
    [122]Hillis D M, Moritz C, Porter C A, et al. Evidence for biased gene conversion in concerted evolution of ribosomal DNA[J]. Science,1991,251(4991):308-310.
    [123]Bailey D R, Feldman T J, Rajaraman A. System and method for locating web-based product offerings[Z]. Google Patents,2004.
    [124]Istvan F, Kiyohisa M, Masami M. Nucleotide sequence of the transcription initiation region of a rat ribosomal RNAgene[J]. Gene,1982,18(2):115-122.
    [125]Hillis D M, Dixon M T. Ribosomal DNA: molecular evolution and phylogenetic inference[J]. Quarterly Review of Biology,1991:411-453.
    [126]Becerra J X. Evolution of Mexican Bursera (Burseraceae) inferred from ITS, ETS, and5S nuclear ribosomal DNA sequences[J]. Molecular phylogenetics and evolution,2003,26(2):300-309.
    [127]Lindqvist C, Motley T J, Jeffrey J J, et al. Cladogenesis and reticulation in the Hawaiian endemic mints (Lamiaceae)[J]. Cladistics,2003,19(6):480-495.
    [128]Chaw S M, Zharkikh A, Sung H M, et al. Molecular phytogeny of extant gymnosperms and seed plant evolution: analysis of nuclear18S rRNA sequences.[J]. Molecular Biology and Evolution,1997,14(l):56-68.
    [129]Chaw S M, Parkinson C L, Cheng Y, et al. Seed plant phytogeny inferred from all three plant genomes: monophyly of extant gymnosperms and origin of Gnetales from conifers[J]. Proceedings of the National Academy of Sciences,2000,97(8):4086-4091
    [130]Bowe L M, Coat G, DePamphilis C W. Phylogeny of seed plants based on all three genomic compartments: extant gymnosperms are monophyletic and Gnetales' closest relatives are conifers[J]. Proceedings of the National Academy of Sciences,2000,97(8):4092-4099
    [131]Sanderson M J, Doyle J A. Sources of error and confidence intervals in estimating the age of angiosperms from rbcL and18S rDNA data[J]. American Journal of Botany,2001,88(8):1499-1516.
    [132]Nickrent D L, Franchina C R. Phylogenetic relationships of the Santalales and relatives[J]. Journal of molecular evolution,1990,31(4):294-301.
    [133]Nickrent D L, Starr E M. High rates of nucleotide substitution in nuclear small-subunit (18S) rDNA from holoparasitic flowering plants[J]. Journal of Molecular Evolution,1994,39(1):62-70.
    [134]Alvarez I, Costa A, Feliner G N. Selecting single-copy nuclear genes for plant phylogenetics:a preliminary analysis for the Senecioneae (Asteraceae)[J]. Journal of molecular evolution,2008,66(3):276-291.
    [135]刘志鹏,王能飞,赵爱云,等.低拷贝核基因在异源多倍体植物中的进化与表达[J]. HEREDITAS (Beijing),2007,2:163-171.
    [136]Alvarez I, Wendel J F. Ribosomal ITS sequences and plant phylogenetic inference[J]. Molecular phylogenetics and evolution,2003,29(3):417-434.
    [137]Sang T. Utility of low-copy nuclear gene sequences in plant phylogenetics [J]. Critical Reviews in Biochemistry and Molecular Biology,2002,37(3):121-147.
    [138]Newton K J. Plant mitochondrial genomes:organization, expression and variation[J]. Annual Review of Plant Physiology and Plant Molecular Biology,1988,39(1):503-532.
    [139]Palmer J D. Contrasting modes and tempos of genome evolution in land plant organelles[J]. Trends in genetics,1990,6:115-120.
    [140]Palmer J D. Mitochondrial DNA in plant systematics:applications and limitations [J]. Molecular systematics of plants,1992:36-49.
    [141]BAI L. L., YANG Z. J., LIU C,等.小麦族物种线粒体基因许nJ8-nn抑4区域的序列多样性分析[J].作物学报,2007,33(5):805-813.
    [142]Medail F., Quezel P., Besnard G.,等Systematics, ecology and phylogeographic significance of Olea europaea L. ssp. maroccana (Greuter&Burdet) P. Vargas et al., a relictual olive tree in south鈥恮estMorocco[J]. Botanical Journal of the Linnean Society,2001,137(3):249-266.
    [143]Wolfe K H. Protein-coding genes in chloroplast DNA:compilation of nucleotide sequences, data base entries and rates of molecular evolution[J]. Cell culture and somatic cell genetics of plants,1991,7:467-482.
    [144]Duff R J, Nickrent D L. Phylogenetic relationships of land plants using mitochondrial small-subunit rDNA sequences[J]. American Journal of Botany,1999,86(3):372-386.
    [145]Wang X Q, Tank D C, Sang T. Phylogeny and divergence times in Pinaceae:evidence from three genomes[J]. Molecular Biology and Evolution,2000,17(5):773-781.
    [146]Meng S W, Chen Z D, Li D Z, et al. Phylogeny of Saururaceae based on mitochondrial matR gene sequence data[J]. Journal of plant research,2002,115(2):71-76.
    [147]Hiesel R, von Haeseler A, Brennicke A. Plant mitochondrial nucleic acid sequences as a tool for phylogenetic analysis[J]. Proceedings of the National Academy of Sciences,1994,91(2):634-657.
    [148]Bowe L M. Effects of RNA editing and gene processing on phylogenetic reconstruction.[J]. Molecular biology and evolution,1996,13(9):1159-1166.
    [149]Malek O, Lattig K, Hiesel R, et al. RNA editing in bryophytes and a molecular phylogeny of land plants.[J]. The EMBO journal,1996,15(6):1403-1410.
    [150]Duff R J, Nickrent D L. Phylogenetic relationships of land plants using mitochondrial small-subunit rDNA sequences[J]. American Journal of Botany,1999,86(3):372-386.
    [151]Anderberg A A, Rydin C, Kallersjo M. Phylogenetic relationships in the order Ericales sl:analyses of molecular data from five genes from the plastid and mitochondrial genomes[J]. American Journal of Botany,2002,89(4):677-687.
    [152]Hajibabaei M, Janzen D H, Burns J M, et al. DNA barcodes distinguish species of tropical Lepidoptera[J]. Proceedings of the National Academy of Sciences of the United States of America,2006,103(4):968-971.
    [153]Stockle M Y, Hebert P D N. Barcode of life[J]. Scientific American,2008,299(4):82-88.
    [154]Newmaster S G N S, Fazekas A J F A, Ragupathy S R S. DNA barcoding in land plants:evaluation of rbcL in a multigene tiered approach[J]. Botany,2006,84(3):335-341.
    [155]Kress W J, Wurdack K J, Zimmer E A, et al. Use of DNA barcodes to identify flowering plants[J]. Proceedings of the National Academy of Sciences of the United States of America,2005,102(23):8369-8379.
    [156]钱关泽.苹果属(Malus Mill.)分类学研究[D].南京林业大学植物学,2005.
    [157]Pampanini R. Magnolia biondii Pamp[J]. Nuov Giorn,1910,17:275-289.
    [158]Rehder A. Synopsis of the Chinese species of Pyrus,1915[C]. JSTOR.
    [159]Rehder A. New species, varieties and combinations. Acer sect. Macrantha[J]. Journal of Arnold Arboretum,1933,14:211-212.
    [160]吴征锚.中国种子植物属的分布区类型[J].云南植物研究,1991,1:991-1007.
    [161]吴征镒,周浙昆,李德铢,等.世界种子植物科的分布区类型系统[J].云南植物研究,2003,25(3):245-257.
    [162]郝日明,臧德奎,向其柏.木犀属(Osmanthus)的区系地理学研究[A][J].向其柏.中国桂花一申报桂花品种国际登录权论文集Ⅱ,2002:39-44.
    [163]郝日明.试论中国种子植物特有属的分布区类型[J].植物分类学报,1997,35(6):500-510.
    [164]塔赫他间A π.世界植物区系区划[M].北京:科学出版社,2011.
    [165]王雷宏.山荆子(Malus baccata (L.) Borkh.)变异式样研究[D].南京林业大学植物学,2008.
    [166]Dickson E E, Kresovich S, Weeden N F. Isozymes in North American Malus (Rosaceae):hybridization and species differentiation[J]. Systematic Botany,1991:363-375.
    [167]Lamboy W F, Yu J, Forsline P L, et al. Partitioning of allozyme diversity in wild populations of Malus sieversii L. and implications for germplasm collection[J]. Journal of the American Society for Horticultural Science,1996,121(6):982-987.
    [168]Marquard R D, Chan C R. Identifying Crabapple cultivars by isozymes[J]. Journal of the American Society for Horticultural Science,1995,120(5):706-709.
    [169]李育农,李晓林.苹果属植物过氧化物酶同工酶酶谱的研究[J].西南农业大学学报,1995,17(005):371-377.
    [170]Wagner I, Schmitt H P, Maurer W, et al. Isozyme polymorphism and genetic structure of Malus sylvestris (L.) Mill. native in western areas of Germany with respect to Malus x domestica Borkh[J]. Acta Hort,2004,663:545-550.
    [171]王家保,沈向.野生平邑甜茶变异性研究[J].果树学报,2002,19(002):79-82.
    [172]康明,黄宏文.湖北海棠的等位酶变异和遗传多样性研究[J].生物多样性,2002,10(4):376-385.
    [173]Simo Santalla P, Chu N T, Georges D. Characterisation of crabapple clones by isozyme electrophoresis,1998[C].
    [174]李晓林.苹果属植物酯酶同工酶分析[J].西南农业大学学报,1997,19(2):105-111.
    [175]陈曦,汤庚国,郑玉红,等.苹果属山荆子遗传多样性的RAPD分析[J].西北植物学报,2008,28(10):1954-1959.
    [176]周志钦,成明昊,宋洪元,等.苹果属小金海棠的遗传多样性初步研究[J].生物多样性,2001,9(2):145-150.
    [177]张开春,李荣旗RAPD技术—检测平邑甜茶遗传一致性的有效方法(简报)[J].农业生物技术学报,1997,5(2):201-202.
    [178]石琰璟,沙广利,黄粤,等RAPD早期鉴定平邑甜茶与B9的杂交群体[J].生物技术,2005,14(5):39-41.
    [179]石琰璟,沙广利,黄粤,等.平邑甜茶变异后代的辐射RAPD鉴定[J].生物技术,2004,14(006):26-28.
    [180]Dunemann F, Kahnau R, Schmidt H. Genetic relationships in Malus evaluated by RAPD'fingerprinting'of cultivars and wild species[J]. Plant Breeding,1994,113(2):150-159.
    [181]Zhou Z Q, Li Y N. The RAPD evidence for the phylogenetic relationship of the closely related species of cultivated apple[J]. Genetic Resources and Crop Evolution,2000,47(4):353-357.
    [182]张冰冰,梁英海,田彬彬,等.山楂海棠RAPD亲缘关系研究[J].吉林农业大学学报,2007,29(5):507-510.
    [183]张冰冰,梁英海,田彬彬,等.17个苹果属野生植物种的RAPD亲缘关系研究[J].中国果树,2008(002):24-26.
    [184]石胜友,梁国鲁,成明昊,等.变叶海棠起源的AFLP分析[J].园艺学报,2005,32(5):802-806.
    [185]石胜友,成明昊,梁国鲁,等.变叶海棠遗传多样性的AFLP分析[J].园艺学报,2006,33(2):381-384.
    [186]石胜友,成明昊,胡玉林,等.用AFLP分析小金海棠的起源[J].园艺学报,2008,35(2):281-284.
    [187]李英慧,韩振海,许雪峰,等.苹果属小金海棠种的遗传一致性研究[J].园艺学报,2002,29(6):571-572.
    [188]郭翎,周世良,张佐双,等.苹果属种,杂交种及品种之间关系的AFLP分析[J].林业科学,2009,45(004):33-40.
    [189]Coart E, Vekemans X, Smulders M J M, et al. Genetic variation in the endangered wild apple (Malus sylvestris (L.) Mill.) in Belgium as revealed by amplified fragment length polymorphism and microsatellite markers[J]. Molecular Ecology,2003,12(4):845-857.
    [190]高源,刘凤之,曹玉芬,等.苹果属种质资源亲缘关系的SSR分析[J].果树学报,2007,24(2):129-134.
    [191]Benson L L, Lamboy W F, Zimmerman R H. Molecular identification of Malus hupehensis (Tea crabapple) accessions using simple sequence repeats[J]. HortScience,2001,36(5):961-966.
    [192]Hokanson S C, Lamboy W F, Szewc-McFadden A K, et al. Microsatellite (SSR) variation in a collection of Malus (apple) species and hybrids[J]. Euphytica,2001,118(3):281-294.
    [193]蔡青,姜立杰,张晓明,等.苹果主栽品种的SSR分子标记鉴别[J].中国农学通报,2007,23(7):129-134.
    [194]唐建民,周世良,成明昊,等.用RAPD和SSR分子标记鉴定小金海棠F1代杂种实生苗的研究[J].中国农学通报,2006,22(2):36-40.
    [195]Kitahara K, Matsumoto S, Yamamoto T, et al. Molecular characterization of apple cultivars in Japan by S-RNase analysis and SSR markers[J]. Journal of the American Society for Horticultural Science,2005,130(6):885-892.
    [196]楚爱香,汤庚国.观赏海棠SRAP-PCR反应体系优化及引物筛选[J].湖北农业科学,2008,47(012):1394-1397.
    [197]郭大勇,徐育海,张靖国,等.湖北海棠种内遗传变异的SRAP分析[J].果树学报,2009,26(6):886-890.
    [198]Robinson J P, Harris S A, Juniper B E. Taxonomy of the genus Malus Mill.(Rosaceae) with emphasis on the cultivated apple, Malus domestica Borkh.[J]. Plant Systematics and Evolution,2001,226(1):35-58.
    [199]冯婷婷.变叶海棠(Malus toringoides Hughes)杂种起源的新分子证据[D].西南大学,2007.
    [200]唐建民,周志钦,冯婷婷,等.基于细胞核ITS序列的变叶海棠起源新证据[J].果树学报,2009,26(003):265-270.
    [201]Forte A V, Ignatov A N, Ponomarenko V V, et al. Phylogeny of the Malus (apple tree) species, inferred from the morphological traits and molecular DNA analysis[J]. Russian Journal of Genetics,2002,38(10):1150-1161.
    [202]Harris S A, Robinson J P, Juniper B E. Genetic clues to the origin of the apple [J]. TRENDS in Genetics,2002,18(8):426-430.
    [203]Robinson J P, Harris S A, Juniper B E. Taxonomy of the genus Malus Mill.(Rosaceae) with emphasis on the cultivated apple, Malus domestica Borkh.[J]. Plant Systematics and Evolution,2001,226(1):35-58.
    [204]康明,黄宏文.湖北海棠的等位酶变异和遗传多样性研究[J].生物多样性,2002,10(4):376-385.
    [205]Benson L L, Lamboy W F, Zimmerman R H. Molecular identification of Malus hupehensis (Tea crabapple) accessions using simple sequence repeats[J]. HortScience,2001,36(5):961-966.
    [206]邵文豪,汤庚国.山东泰山地区湖北海棠唐群间变异的研究[J].亚热带资源与环境学报,2007,2(1):54-59.
    [207]马洪菊,何平.湖北海棠不同居群形态变异的数量分析[J].西南师范大学学报:自然科学版,2002,27(4):559-562.
    [208]张靖国.湖北海棠遗传多样性的SSR分析[D][D].华中农业大学,2007.
    [209]郭大勇,徐育海,张靖国,等.湖北海棠种内遗传变异的SRAP分析[J].果树学报,2009,26(6):886-890.
    [210]郭大勇,徐育海,张靖国,等.湖北海棠种内遗传变异的SRAP分析[J].果树学报,2009,26(6):886-890.
    [211]梁国鲁.中国苹果属(Malus)植物的核型比较研究[J].西南农业大学学报,1986,11(1):106-117.
    [212]梁国鲁.中国苹果属植物染色体观察[J].植物分类学报,1987,25(6):437-441.
    [213]梁国鲁,李育农,李晓林.苹果属植物染色体基数X=17起源的细胞遗传学研究[J].果树学报,1994,4.
    [214]梁国鲁,李晓林.中国苹果属植物染色体研究[J].植物分类学报,1993,31(003):236-251.
    [215]程家胜,刘捍中,韩礼星,等.关于苹果属果树亲缘关系的初步探索——过氧化物酶同工酶分析[J].园艺学报,1986,13(1):1-8.
    [216]陈曦.湖北海棠(Malus hupehensis)不同居群变异式样及遗传多样性的研究[D].南京林业大学植物学,2009.
    [217]Ji Y, Fritsch P W, Li H, et al. Phylogeny and classification of Paris (Melanthiaceae) inferred from DNA sequence data[J]. Annals of botany,2006,98(1):245-256.
    [218]KATO H, KAWANO S, TERAUCHI R, et al. Evolutionary biology of Trillium and related genera (Trilliaceae) I. Restriction site mapping and variation of chloroplast DNA and its systematic implications[J]. Plant Species Biology,1995,10(1):17-29.
    [219]Osaloo S K, Utech F H, Ohara M, et al. Molecular systematics of Trilliaceae I. Phylogenetic analyses of Trillium using matK gene sequences[J]. Journal of Plant Research,1999,112(1):35-49.
    [220]Osaloo S K, Kawano S. Molecular systematics of Trilliaceae II. Phylogenetic analyses of Trillium and its allies using sequences of rbcL and matK genes of cpDNA and internal transcribed spacers of18S-26S nrDNA[J]. Plant Species Biology,1999,14(1):75-94.
    [221]Johnson L A, Soltis D E. Phylogenetic inference in Saxifragaceae sensu stricto and Gilia (Polemoniaceae) using matK sequences[J]. Annals of the Missouri Botanical Garden,1995:149-175.
    [222]周延清.DNA分子标记在植物研究中的应用[M].北京:化学出版社,2005.
    [223]Chaw S M, Chang C C, Chen H L, et al. Dating the monocot-dicot divergence and the origin of core eudicots using whole chloroplast genomes[J]. Journal of Molecular Evolution,2004,58(4):424-441.
    [224]Johnson L A, Soltis D E. matK DNA sequences and phylogenetic reconstruction in Saxifragaceae s. str.[J]. Systematic Botany,1994:143-156.
    [225]Rehder J E. Effect of manganese-sulphur ratio on the rate of anneal of black-heart malleable iron[J]. Transactions,1948,56:138-151.
    [226]成明昊,金强.变叶海棠多样性的区系地理学研究]J].西南农业大学学报,1999,21(2):130-136.
    [227]石胜友,梁国鲁,成明昊,等.变叶海棠起源的AFLP分析[J].园艺学报,2005,32(5):802-806.
    [228]Campbell C S, Wojciechowski M F, Baldwin B G, et al. Persistent nuclear ribosomal DNA sequence polymorphism in the Amelanchier agamic complex (Rosaceae).[J]. Molecular Biology and Evolution,1997,14(1):81-90.
    [229]Baldwin B G, Sanderson M J, Porter J M, et al. The ITS region of nuclear ribosomal DNA:a valuable source of evidence on angiosperm phylogeny[J]. Annals of the Missouri Botanical Garden,1995:247-277.
    [230]White T J, Bruns T, Lee S, et al. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics[J]. PCR protocols A guide to methods and applications,1990:315-322.
    [231]何正文,刘运生,陈立华,等.正交设计直观分析法优化PCR条件[J].湖南医科大学学报, 1998,23(4):403-404.
    [232]马大龙,杨国亭,穆立蔷,等.赤松外生菌根ITS-PCR体系的建立及优化[J].林业科技,2010(005):25-28.
    [233]范辉,高晓霞,冯昌文,等.番荔枝科植物鹰爪内生真菌rDNA ITS-PCR扩增条件的优化[J].西北农业学报,2008,17(5):61-64.
    [234]肖龙骞,朱华.植物nrDNA ITS致同进化不完全现象及其进化意义[J].西北植物学报,2009(008):1708-1713.
    [235]Mai J C, Coleman A W. The internal transcribed spacer2exhibits a common secondary structure in green algae and flowering plants[J]. Journal of Molecular Evolution,1997,44(3):258-271.
    [236]Bayly M J, Ladiges P Y. Divergent paralogues of ribosomal DNA in eucalypts (Myrtaceae)[J]. Molecular phylogenetics and evolution,2007,44(1):346-356.
    [237]Buckler-IV E S, Ippolito A, Holtsford T P. The evolution of ribosomal DNA:divergent paralogues and phylogenetic implications [J]. Genetics,1997,145(3):821.
    [238]Harpke D, Peterson A. Non-concerted ITS evolution in Mammillaria (Cactaceae)[J]. Molecular phylogenetics and evolution,2006,41(3):579-593.
    [239]Ochieng J W, Henry R J, Baverstock P R, et al. Nuclear ribosomal pseudogenes resolve a corroborated monophyly of the eucalypt genus Corymbia despite misleading hypotheses at functional ITS paralogs[J]. Molecular phylogenetics and evolution,2007,44(2):752-764.
    [240]Mayol M, Rossello J A. Why nuclear ribosomal DNA spacers (ITS) tell different stories in Quercus[J]. Molecular Phylogenetics and Evolution,2001,19(2):167-176.
    [241]Yoong Lim K, Kovarik A, Matyasek R, et al. Gene conversion of ribosomal DNA in Nicotiana tabacum is associated with undermethylated, decondensed and probably active gene units[J]. Chromosoma,2000,109(3):161-172.
    [242]Hegarty M J, Hiscock S J. Hybrid speciation in plants:new insights from molecular studies [J]. New Phytologist,2005,165(2):411-423.
    [243]Sang T, Crawford D J, Stuessy T F. Documentation of reticulate evolution in peonies (Paeonia) using internal transcribed spacer sequences of nuclear ribosomal DNA:implications for biogeography and concerted evolution[J]. Proceedings of the National Academy of Sciences,1995,92(15):6813-6829.
    [244]石胜友,成明昊,胡玉林,等.用AFLP分析小金海棠的起源[J].园艺学报,2008,35(2):281-284.
    [245]张元元.栽培苹果(Malus domestica Borkh.)及其近缘种间的分子谱系关系研究[D].西南大学果树学,2009.
    [246]郭大勇,徐育海,张靖国,等.湖北海棠种内遗传变异的SRAP分析[J].果树学报,2009,26(6):886-890.
    [247]张靖国.湖北海棠遗传多样性的SSR分析[D].华中农业大学,2007.