周期矩形半导体表面产生太赫兹波的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
虽然目前国际上对于太赫兹这个崭新的学术领域给予了极大的关注,但是由于对这个频段电磁波的产生和探测都具有极大的困难,所以到目前为止,人们对于这个领域所做的工作依然十分有限。相对于太赫兹波而言,光波段电磁波的波长过短,而微波波段的电磁波的波长又过长,所以这两种已经十分成熟的技术无法直接应用于太赫兹的领域。但随着超短激光脉技术的发展,太赫兹波技术在很多领域得到了大大的发展。
     过去几年,Drude-Lorentz方法是一种被广泛应用于产生太赫兹波的理论计算方法。本论文在Drude-Lorentz理论的基础上,应用半导体的边界条件,对太赫兹波作用在半导体表面的太赫兹波辐射公式进行了推导,研究模拟了半导体表面辐射的太赫兹波的各种特性,结果表明,在半导体表同上改变一些激发的条件,可以在半导体表面产生更强的太赫兹波的辐射。又在半导体表面为平面的基础上,研究了半导体表面为周期矩形时太赫兹的辐射情况,研究模拟发现,与半导体表面为平面的情况相比,可以得到成倍数增长的太赫兹波。本论文最后提出了一个实验方案,对半导体表面为周期矩形半导体表面辐射的情况的参数进行了优化设计,在最优化设计的情况下,要保证在周期半导体表面情况下太赫兹的辐射达到最强,必须使半导体表面为平面情况下的太赫兹波达到最强,这是由于周期矩形半导体表面看作是一系列半导体表面的叠加。
     本论文提出了一个增强太赫兹波源的设计思想,探讨了这种方法的优势,为太赫兹的发展增加了一种思路。
Terahertz signals were until recently an almost unexplored area of research due to the difficulties in generation and detection of electromagnetic fields at these wavelengths. Neither optical nor microwave techniques are directly applicable in the Terahertz range since optical wavelengths are too short and microwave wavelengths are too long compared to Terahertz field wavelengths. As The development of ultrafast optical techniques, the Terahertz technique has been boosted as a new area of research in many important applications.
     In the past year, Drude-Lorentz theory provides a normal way to calculate the Terahertz waves from photoconductor. In this paper, we present a theoretical framework allow us to investigate the radiation of Terahertz on the semiconductor surface. The formulation is based on Drude-Lorentz theory resulting upon imposing an appropriate boundary condition. Furthermore, we discuss the situation that the semiconductor surface is plane, under the circumstance, we use matlab to simulate the emission process, An increase in eimission power is observed when we change some parameters.We also have discussed the situation that the semiconductor surface is not completely plane but periodic rectanglar grooves, we find that the amplitude of the THz wave is increased linearly with increasing number of periods of the rectangular grooves. To ensure THz emission power reach peak when the semiconductor surface is periodic rectanglar grooves,we must ensure THz emission power also reach peak in the situation that the semiconductor surface is plane.
     To sum up, we give a design idea to improve the power of THz radiation, and we discuss the advantages that this precept has brings. It’s important to characterize the THz wave from the periodic rectangular grooves.
引文
[1]王少宏,许景周,汪力等. THz技术的应用及展望.物理, 2001, 30: 612-615
    [2] Ferguson B, Zhang X C. Materials for terahertz science and technology. Nature Materials, 2002, 1: 22-33
    [3] J W Fleming. High resolution submillimeter-wave Fourier-transform spectrometry of gases. IEEE Trans.Microwave Theory Tech., 1974, MTT-22: 1023-1025
    [4] Siegel P H. Terahertz Technology. IEEE Transactions on Microwave Theory and Techniques, 2002, 50(3): 910-928
    [5] Nagel M, Bolivar P H, Brucherseifer M, el al. Integrated THz technology for label-free genetic diagnostics. Appl. Phys. Lett., 2002, 80: 154-156
    [6] Dekorsy T, Auer H, Waschke C, et al. Emission of Submillimeter Electromagnetic Waves by Coherent Phonons. Phys. Rev. Lett., 1995, 74: 738-741
    [7] Markelz A G, Roitberg A, Heilweil E J. Pulsed terahertz spectroscopy of DNA bovine serum albumin and collagen between 1.0 and 2.0 THz. Chem. Phys. Lett., 2000, 320: 42-48
    [8] D R Grischkowsky. Nonlinear generation of sub-psec pulses of Thz electro-magnetic radiation by optoelectronics-Application to time-domain spectroscopy. Frontiers in Nonlinear Optics, 1993. 20-23
    [9] I Wilke, M Khazan, C T Rieck, et al. Terahertz surface resistance of high temperature superconducting thin films. Journal of Applied Physics, 2000, 87: 2928-2931
    [10] R Huber, F Tauser, A Brodschelm, et al. Ultrafast formation of many-particle interactions in a photoexcited electron-hole plasma. Letters to nature, 2001, 4992: 131-137
    [11] Peter M Corridon, Ricardo Ascázubi, Courtney Krest, et al. Time-domain terahertz spectroscopy of artificial skin. Proc. SPIE, 2006, 608007: 1-12
    [12] Max Khazan, Reinhold Meissner, Ingrid Wilde. Convertible transmission-reflection time-domain terahertz spectrometer. Rev. Sci. Ins, 2001, 72(8): 3427-3430
    [13] Michael Schall, Markus Walther, Carsten Winnewisser, et al. Subpicosecond time- resolved terahertz time-domain spectroscopy of transient carrier dynamics in semiconductors. Proc. SPIE, 1999. 220-221
    [14] E Knoesel, M Bonn, J Shan, et al. Charge Transport and Carrier Dynamics in Liquids Probed by THz Time-Domain Spectroscopy. Phy. Rev. Lett., 2001, 86(2): 340-343
    [15] Ernst Knosesl, Mischa Bonn, Feng Wang, et al. Conductivity of solvated electrons in hexane investigated with terahertz time-domain spectroscopy. Jou. Che. Phy., 2004, 121: 394-404
    [16] C Winnewisser, P Uhd lepsen, M Schall, et al. Electro-optic detection of THz radiation in LiTaO3, LiNbO3 and ZnTe. Appl. Phy. Lett., 1997, 70: 3069-3071
    [17] R A Cheville, D Grischkowsky. Time domain terahertz impulse ranging studies. Appl. Phys. Lett., 1995, 67: 1960-1962
    [18] R A Cheville, R W McGowan, D Grischkowsky. Time Resolved Measurements Which Isolate the Mechanisms Responsible for Terahertz Glory Scattering from Dielectric Spheres. Phys. Rev. Lett., 1998, 68: 269
    [19] M Brucherseifer, M Nagel, P Haring Bolivar, et al. Label-free probing of the binding state of DNA by time-domain terahertz sensing. Appl. Phys. Lett., 2000, 77: 4049- 4051
    [20] M Brucherseifer, P Haring Bolivar, H Kurz. Combined optical and spatial modulation THz-spectroscopy for the analysis of thin-layered systems. Appl. Phys. Lett., 2001, 81: 1791-1793
    [21] M Nagel, P Haring Bolivar, M Brucherseifer, et al. Integrated THz technology for label-free genetic diagnostics. Appl. Phys. Lett., 2002, 80: 154-156
    [22] H.Han, H Park, M Cho, et al. Terahertz pulse propagation in a plastic photonic crystal fiber. Appl. Phys. Lett., 2002, 80: 2634-2636
    [23] Zhiping Jiang, Ming Li, X C Zhang. Dielectric constant measurement of thin films by differential time-domain spectroscopy. Appl. Phys. Lett., 2000, 76: 3221-3223
    [24] M Li, G C Cho, T M Lu, et al. Time-domain dielectric constant measurement of thin film in GHz-THz frequency range near the Brewster angle. Appl. Phys. Lett., 1999, 74: 2113-2115
    [25]刘理,李刚,任惠茹. THz射线成像技术及其应用.光电子器件与技术, 2002, 39(9): 10-14
    [26] P R Smith, D H Auston, M C Nuss. Subpicosecond photoconducting dipole antennas.IEEE Journal of Quantum Electronics, 1988, 24: 255-260
    [27] O Mitrofanov, I Brener, M G. Wanke, et al. Near-field microscope probe for infrared time domain measurements. Appl. Phys. Lett., 2000, 77: 591-593
    [28] Q Chen, Zhiping Jiang, X C Zhang. All-optical THz imaging. IEEE Journal of Selected Topics in Quantum Electronics, 2001, 7: 608-614
    [29]孙博,姚建铨.基于光学方法的太赫兹辐射源.中国激光, 2006, 33(10): 1350-1357
    [30]姚建铨,路洋,张百钢等. THz辐射的研究和应用新进展.光电子·激光, 2005, 16(4): 504-509
    [31]张显斌,施卫.用短谐振腔结构优化THz电磁波参量振荡器的输出特性.物理学报, 2006, 55(10): 5238-5240
    [32]刘盛纲.太赫兹科学技术的新发展.中国基础科学·科学前沿, 2006, 1: 7-12
    [33] Martin van Exter, Ch Fattinger, D Grischkowsky. High-brightness terahertz beams characterized with an ultrafast detector. Optics Letters, 1989, 14: 1128-1130
    [34] F G Sun, Z P Jiang, X C Zhang. Analysis of terahertz pulse measurement with a chirped probe beam. Appl. Phys. Lett., 1998, 73: 2233-2235
    [35] Z P Jiang, X C Zhang. Electro-optic measurement of THz field pulses with a chirped optical beam. Appl. Phys. Lett., 1998, 72: 1945-1947
    [36] D Dragoman, M Dragoman. Terahertz fields and applications. Process in Quantum Electronics, 2004, 28: 1-66
    [37] X C Zhang, B B Hu, J T Darrow, et al. Generation of femtosecond electromagnetic pulses from semiconductor surfaces. Appl. Phys. Lett., 1990, 56: 1011-1013
    [38] D R Grischkowsky. Nonlinear generation of sub-psec pulses of THz electromagnetic radiation by optoelectronics-Application to time-domain spectroscopy. Frontiers in Nonlinear Optics, 1993, 63: 197-225
    [39] P Uhd Jepsen, R H Jacobsen, S R Keiding. Generation and detection of terahertz pulses from biased semiconductor antennas. J. Opt. Soc., 1996, 13: 2424
    [40] Daryoosh Saeedkia. Analysis and Design of a Photoconductive Integrated Photomixer/ Antenna for Terahertz Applications. IEEE Journal of Quantum Electronics, 2005, 41: 234-241
    [41] P Kuzel, M A Khazan, J Kroupa. Spatiotemporal transformations of ultra-short terahertz pulses. J. Opt. Soc. Am. B., 1999, 16: 1795-1800
    [42] J Gómez Rivas, J A Sánchez Gil, M Kuttge, et al. Optically switchable mirrors for surface Plasmon polaritons propagation on semiconductor surfaces. Physical Review, 2006, 74: 245324
    [43] H Page, S Malik, M Evans, et al. Waveguide coupled terahertz photoconductive antennas: Toward integrated photonic terahertz devices. Appl. Phys. Lett., 2008, 92: 163502