粗糙管带插入物复合强化传热技术的实验与数值研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
管壳式换热器在化工、动力、石油、冶金等许多领域有着重要的应用。传统光滑管换热器换热速率低,传热存在限度。采用强化传热技术则可以弥补这一不足,按是否需要外力,传热强化技术分为主动强化与被动强化。被动强化由于可靠性高,操作能耗低,结构简单而更为广泛的应用,在众多被动强化传热技术中,粗糙管与管内插入物是比较常见且实用的强化技术。粗糙管可以依靠肋结构促进近壁区的传热,但难以进一步强化主流区的传热;插入物通过置换管内中心区与近壁区的流体,提高管内的传热速率。粗糙管与插入物的配合,则可以充分利用两者的协同效应,使近壁区和中心区达到协同的复合强化传热,这对获得高效的传热性能有重要意义。
     结合数值模拟,首先分析了内插旋流片的缩放管管内的局部温度场与速度场,发现旋流片产生的自旋流容易衰减,层流的强化传热机理与湍流时相异。然后基于高粘度流体的有效传热温差特性,对光滑管、内插旋流片的光滑管、缩放管、内插旋流片的缩放管四种流道内的传热温差、有效传热系数、热流密度及温差利用率进行了分析。结果表明,旋流片通过流体置换,均化流场,在有旋流片段可通过提高有效传热温差与有效传热系数的双重途径强化传热,在旋流片下游可继续依靠有效传热温差的缓变特性继续维持较高的传热速率。缩放管则通过粗糙肋面的微距置换与破坏热边界的发展,提高了有效传热系数与有效传热温差。当旋流片与缩放管配合时,可充分发挥两者的协同效应,使热阻分布趋于合理,弥补了单纯采用缩放管只能对近壁区传热强化而无法促进中心区对流传热的缺点,使近壁区和中心区产生互补的协同传热强化。
     以90%甘油为工质,实验研究了层流条件下,光滑管和缩放管内分别插入不同结构形式的旋流片时的传热和流阻性能。结果表明实验条件范围内,小扭率,大旋转角及多的旋流片个数有利于传热综合性能的提高;层流时,相对光滑管,缩放管空管,光滑管内插旋流片,缩放管内插旋流片的传热综合性能都得到改善。
     采用数值模拟对内插双扭带的缩放管进行了数值模拟,并与经验公式进行了验证。考察了一系列结构参数对缩放管空管与内插双扭带的缩放管传热与流动特性的影响。结果表明,缩放管通过在扩张段产生横向涡,作用于收缩段,提高近壁区流体的湍流强度,从而使传热强化,而缩放管与双扭带的配合使用,则可以同时发挥横向涡与纵向涡的叠加优势,尽可能的提高传热速率。虽然缩放管加双扭带的复合强化传热技术的传热综合因子低于对应的缩放管空管,但是仍大于1,仍是一种高效的强化传热方法。
     以硫酸工业中吸收工序中的98%硫酸为研究工质,分析了不同流态、旋流片结构参数对98%硫酸强化传热的影响。结果表明,热态跟冷态的规律相似,小扭率有利于层流传热综合性能的提高,大扭率有利于湍流传热综合性能的提高。层流时,内插旋流片的缩放管对场协同改善显著,而湍流时不及层流明显。
     实验研究了以水为工质时横纹管与缩放管的传热与流动特性,数值分析了不同肋高与肋型对横纹管传热与流动特性的影响,在恒壁温条件下,对缩放管的结构参数进行了优化。结果表明,横纹管的传热速率大于缩放管,但是阻力亦大于缩放管,因此其传热综合性能反而不如缩放管。横纹管的传热速率对低肋高较为敏感,而阻力特性对高肋高更为敏感。在横纹管内肋上镶嵌外凸肋能有效抑制流动分离,提高局部传热速率,因而从总体上提高传热综合性能。节距长度、肋高与节距比对缩放管传热综合性能都有较大影响,在可实施的结构参数范围内提升了缩放管的传热综合性能。
Shell and tube heat exchangers are widely used in many fields, such as chemicalengineering, power engineering, petroleum and metallurgy industries. Traditional plain tubeused in many heat exchangers has the shortage of low heat transfer which leads to poorthermal performance. However, the techniques of heat transfer enhancement can overcomethis shortcoming. According to whether external power is needed, the techniques for heattransfer enhancement can be divided into two categories. One is the active strengtheningtechnique and the other is the passive one. Due to its less energy consumption, easieroperation and higher reliability, the passive strengthening techniques are more commonlyused in the engineering. Among these passive strengthening techniques, rough tubes and tubeinserts are practical and popular. Rough tubes can improve heat transfer in the near-wall zoneby employing the rough rib structure, but it can’t further improve heat transfer in themainstream zone. Tube inserts can improve heat transfer by mixing fluid between the nearwall zone and mainstream zone. The coordination of these two heat transfer enhancementtechniques can make full use of their advantage, improving heat transfer in both near wallzone and mainstream zone, which has a great significance to acquire a higher efficient thermalperformance.
     The local temperature and velocity field in the converging-diverging tube (CD) fitted withthe evenly spaced twisted tapes (ESTT) is discussed firstly via numerical simulation. It isfound that the self-sustaining flow tend to decay swift, which indicates that a heat transfermechanism different from that in turbulent flow. Based on the characteristic of effective heattransfer temperature difference (EHTT), the characteristics of temperature, effective heattransfer coefficient (EHTC), heat flux and temperature utilization ratio in the plain tube, plaintube fitted with the ESTT, CD and CD fitted with the ESTT are investigated. The obtainedresults show that the ESTT can enhance both EHTT and EHTC in the section with ESTT andcan maintain a higher heat transfer rate by using the slowly varying characteristic of EHTTdownstream of ESTT. For bare CD, it can improve EHTT and EHTC by rough rib withdestroying the development of thermal boundary layer and microspur replacement. When theESTT is used simultaneously with the CD, it creates a synergy of compound heat transfer enhancement in the near wall zone and the mainstream zone.
     Laminar heat transfer and flow characteristics by using90%glycerol as working fluid areexperimentally performed in the plain tube and CD fitted with ESTT, respectively. It is foundthat under investigated experimental conditions the ESTTs with smaller twisted ratio, biggerrotation angle and short gap distance are in favor of improving thermal performance.Compared with the plain tube, the thermal performances of CD, plain tube fitted with ESTTand CD fitted with ESTT are improved.
     Turbulent heat transfer and flow characteristics by using water as working fluid in the CDfitted with twin twisted tapes are investigated. First, the model is verified with the publishedliteratures. Second, a series of geometric parameters of the bare CD and CD fitted with twintwisted tapes are performed. The results show that the CD can improve heat transfer byemploying a pair of transverse vortices in the converging section. The cooperation of CD withtwin twisted tapes can exploit the superimposed advantage from transverse vortices andlongitudinal vortices to improve heat transfer. Although the CDs fitted with twin twisted tapeshave a lower thermal performance than their counterparts of bare CDs, their overall thermalperformances are greater than unity.
     A numerical study is implemented to analyze the heat transfer and fluid flowcharacteristic of98%sulfuric acid based on an industrial background of absorption process insulfuric acid industry. The results indicate that CD fitted with ESTT has a better overallthermal performance than bare CD under laminar flow, but has a lower overall thermalperformance than bare CD under turbulent flow. Small twist ratio of ESTT is more efficient toimprove overall thermal performance under laminar flow but large twist ratio is more efficientunder turbulent flow.
     Heat transfer and flow characteristics of transverse groove tube (TG) and CD by usingwater as working fluid are experimentally investigated. Effects of different rib height and ribtype on the heat transfer and flow behaviors of TG are numerically analyzed. Moreover, underconstant temperature condition, the geometric parameters of CD are optimized. It is foundthat the heat transfer coefficient of TG is higher than that of CD, but its flow resistance is alsohigher than its counterpart. Hence, the overall thermal performance of TG is lower than thatof CD. The heat transfer of TG is more sensitive to the cases with lower rib height; however, the flow characteristic tends to be opposite. It is discovered that by mounting outwarddirection rib on the inward rib the flow separation of ribs can be effectively suppressed andthe local heat transfer on ribs can be improved, resulting in a better overall thermalperformance. Pitch length, rib height and pitch ratio have great influence on the overallthermal performance of CD. With the optimization the thermal performance of CD can beenhanced under available geometric parameters.
引文
[1]江泽民.对中国能源问题的思考[J].上海交通大学学报,2008,42(3):345-359
    [2]中国的能源状况与政策[R].北京:中国人民共和国国务院新闻办公室,2007
    [3] Zhou N.,Levine M.D.,Price L.Overview of current energy-efficiency policies inChina[J].Energy Policy,2010,38(11):6439-6452
    [4]王和德.2010年中国能源与世界能源生产和消费对比[J].煤炭工程,2012,s1:86-90
    [5] Bergles A.E.Heat transfer enhancement-the maturing of second-generation heat transfertechnology[J].Heat transfer Engineering,1997,18(1):47-55
    [6] Kuppan T.,钱颂文,等.换热器设计手册[M].北京:中国石化出版社,2004
    [7] Bergles A.E.ExHFT for fourth generation heat transfer technology[J].ExperimentalThermal and Fluid Science,2002,26(2-4):335-344
    [8]杨世铭,陶文铨.传热学[M].第四版.北京:高等教育出版社,2006
    [9] Goldstein R.J.,Ibele W.E.,Patankar S.V.,et al.Heat transfer-a review of2003literature[J].International Journal of Heat and Mass Transfer,2006,49(3-4):451-534
    [10] Gunes S.,Manay E.,Senyigit E.,et al.Approach for optimization of design parametersin a tube with coiled wire inserts[J].Applied Thermal Engineering,2011,31(14-15):2568-2577
    [11] Sparrow E.M.,Prata A.T.Numerical solutions for laminar flow and heat transfer ina periodically converging-diverging tube, with experimental confirmation[J].Numericalheat transfer,1983,6(4):441-461
    [12] Rainieri S.,Pagliarini G.Convective heat transfer to temperature dependent propertyfluids in the entry region of corrugated tubes[J].International Journal of Heat and MassTransfer,2002,45(22):4525-4536
    [13] Zimparov V.Enhancement of heat transfer by a combination of a single-start spirallycorrugated tubes with a twisted tape[J].Experimental Thermal and Fluid Science,2002,25(7):535-546
    [14] Vicente P.G.,García A.,Viedma A.Experimental investigation on heat transfer andfrictional characteristics of spirally corrugated tubes in turbulent flow at differentPrandtl numbers[J].International Journal of Heat and Mass Transfer,2004,47(4):671-681
    [15] Vicente P.G.,García A.,Viedma A.Heat transfer and pressure drop for low Reynoldsturbulent flow in helically dimple tubes[J].International Journal of Heat and MassTransfer,2002,45(3):543-553
    [16] Wang Y.,He Y.L.,Lei Y.G.,et al.Heat transfer and hydrodynamics analysis ofa novel dimpled tube[J].Experimental Thermal and Fluid Science,2010,34(8):1273-1281
    [17] Zhang Z.G.,Xu T.,Fang X.M.Experimental study on heat transfer enhancementof a helically baffled heat exchanger combined with three-dimensional finnedtubes[J].Applied Thermal Engineering,2004,24(14-15):2293-2300
    [18] Date A.W.Flow in tube containing twisted tapes[J].Heating and VentilationEngineering,1973,47:240-249
    [19] Sarma P.K.,Subrahmanyam T.,Kishore P.S.,et al.Laminar convective heat transferwith twisted tape inserts in a tube[J].International Journal of Thermal Sciences,2003,42(9):821–828
    [20] Ray S.,Date A.W.Friction and heat transfer characteristics of flow through square ductwith twisted tape insert[J].International Journal of Heat and Mass Transfer,2003,46(9):889-902
    [21]洪蒙纳,邓先和,黄阔,等.缩放管内间隔插入旋流片的复合强化传热[J].华南理工大学学报,2008,36(3):16-19
    [22]王杨君,邓先和,李志武.管内周期性自旋流的强化传热实验[J].石油化工设备,2006,35(4):1-4
    [23] Visser J.E.,Rozendal P.F.,Hoogstraten H.W.,et al.Three-dimensional numericalsimulation of flow and heat transfer in the Sulzer SMX static mixer[J].ChemicalEngineering Science,1999,54(13-14):2491-2500
    [24] Sivashanmugam P.,Suresh S.Experimental studies on heat transfer and friction factorcharacteristics of turbulent flow through a circular tube fitted with helical screw-tapeinserts[J].Applied Thermal Engineering,2007,27(1):1292-1298
    [25]向东,陈礼,陈清华.管内旗形件后掠角对油类介质对流换热的影响[J].重庆大学学报,1995,18(2):68-73
    [26] Habchi C.,Lemenand T.,Valle D.D.,et al.Alternating mixing tabs in multifunctionalheat exchanger-reactor[J]. Chemical Engineering and Processing: ProcessIntensification,2010,49(7):653-661
    [27] Kaci H.M.,Habchi C.,Lemenand T.,et al.Flow structure and heat transfer inducedby embedded vorticity[J].International Journal of Heat and Mass Transfer,2010,53(17-18):3575-3584
    [28]喻九阳,王泽武,冯兴奎.单弓形隔板开孔试验研究[J].石油化工设备,2004,33(2):4-6
    [29] Kral D.,Stehlik P.,Van Der Ploeg H.J.Helical baffles in shell-and-tube heatexchangers, part I: experimental verification[J].Heat transfer engineering,1996,17(1):93-101
    [30] Dong Q.W.,Wang Y.Q.,Liu M.S.Numerical and experimental investigation ofshellside characteristics for RODbaffle heat exchanger[J]. Applied ThermalEngineering,2008,28(7):651-660
    [31] Deng X.H.,Deng S.J.Investigation of heat transfer enhancement of roughened tubebundles supported by ring or rod supports[J].Heat transfer engineering,1998,19(2):21-27
    [32]彭洁,于恩林,姜伟.螺旋槽管换热过程的三维速度场与温度场耦合数值模拟[J.热能动力工程,2007,22(4):395-398
    [33]崔海亭,姚仲鹏,杨英俊.螺旋槽纹管管内单相油传热及流阻的实验研究[J].化工机械,2001,28(3):132-134
    [34] Dong Y.,Li H.X.,Chen T.Pressure droop,heat transfer and performance ofsingle-phase turbulent flow in spirally corrugated tubes [J].Experimental Thermal andFluid Science,2001,24(3-4):131-138
    [35] Barab A., Rainieri S., Spiga M. Heat transfer enhancement in corrugatedtube[J].International Communications in Heat and Mass Transfer,2002,29(3):313-322
    [36] Naphon P.,Nuchjapo M.,Kurujareon J.Tube side heat transfer coefficient and frictionfactor characteristics of horizontal tubes with helical rib[J].Energy Conversion andManagement,2006,47(18-19):3031-3044
    [37] Kalinin E.K.,Dreytser G.A.,Zakirov S.G.,et al.Improvement of heat transferin tubular heat transfer exchangers by the use of grooved tubes[J].Heat Transfer-SovietResearch,1981,13(4):30-40
    [38]兰州石油机械研究所.换热器(中)[M].北京:烃加工出版社,1998:26-64
    [39]邓先和.壳程流体纵向冲刷管壳式换热器传热强化问题的研究[D].广州:华南理工大学,1990
    [40]罗小平.壳程轴流型换热器流阻和传热的预测及结构优化[D].广州:华南理工大学,1996
    [41]邓先和,王世平,林培森,等.花瓣状翅片管套管间润滑油强化传热性能[J].化工学报,1994,45(2):253-256
    [42]楼波,梁平,许家济等.花瓣管强化电站冷油器传热的试验与分析[J].华北电力技术,2003,11:26-28
    [43]赵晓曦,邓先和,陆恩锡.空心环支撑菱形翅片管油冷器的传热性能[J].石油化工设备,2003,32(1):1-3
    [44]赵晓曦,邓先和,陆恩锡.螺旋折流板菱形翅片管换热器的传热与流阻性能[J].化工学报,2003,54(3):387-389
    [45]肖金花,钱才富,王凤林.波纹管对高黏度介质的强化传热研究[J].北京化工大学学报,2007,34(1):53-57
    [46]王杨君.带平行流分隔板管壳式换热器壳侧控涡流场均化与传热性能研究[D].广州:华南理工大学,2002
    [47] Gentry C.C.Rod-baffle Heat Exchanger Technology[J].Chemical EngineeringProgress,1990,7:48-57
    [48]吴金星,董其伍,刘敏珊,等.折流杆换热器壳程湍流和传热的数值模拟[J].高校化学工程学报,2006,20(2):213-216
    [49]陈世醒,张克铮,张强.螺旋折流板换热器的开发与研究(Ⅰ)—高粘度流体下的中试研究[J].抚顺石油学院学报,1998,18(3):31-35
    [50]陈世醒,张克铮,张强.螺旋折流板换热器的开发与研究(Ⅱ)—低粘度流体的中试研究[J].抚顺石油学院学报,1998,18(3):36-38
    [51]王素华,王树立,赵志勇.螺旋折流板换热器流动特性研究[J].石油化工高等学校学报,2001,14(1):64-67
    [52]王玉琴,宋天民,张国福,等.螺旋折流板管壳式换热器壳程传热性能及压降的研究[J].节能技术,2008,26(6):502-504
    [53]张剑飞,李欣,吴扬,等.螺旋折流板换热器层流流动与换热的数值模拟[J].工程热物理学报,2007,28(5):853-855
    [54]董其伍,刘敏珊,苏立建.管壳式换热器研究进展[J].化工设备与管道,2006,43(6):18-22
    [55]马重芳,顾维藻,张玉明,等.强化传热[M].北京:科学出版社,1990:122-150
    [56]叶楚宝,施龙生,蔡志清.SK型静态混合器用于高黏度介质的强化传热[J].石化技术与应用,2006,24(2):118-120
    [57] García A.,Vicente P.G.,Viedma A.Experimental study of heat transfer enhancementwith wire coil inserts in laminar-transition-turbulent regimes at different Prandtlnumbers[J].International Journal of Heat and Mass Transfer,2005,48(21-22):4640-4651
    [58] García A,Solan J P,Vicente P G,et al.The influence of artificial roughness shape onheat transfer enhancement: Corrugated tubes, dimpled tubes and wire coils[J].AppliedThermal Engineering,2012,35:196-201
    [59] Manglik R.M.,Bergles A.E.Heat transfer and pressure drop correlations fortwisted-tape inserts in isothermal tubes:part I-laminar flows[J].Journal of HeatTransfer,1993,115(4):881-889
    [60] Manglik R.M.,Bergles A.E.Heat transfer and pressure drop correlations fortwisted-tape inserts in isothermal tubes: part II—transition and turbulentflows[J].Journal of Heat Transfer,1993,115(4):890-897
    [61] Al-Fahed S.F.,Chakroun W.Effect of tube-tape clearance on heat transfer for fullydeveloped turbulent flow in a horizontal isothermal tube[J].International Journal of HeatFluid Flow,1996,17(2):173-178
    [62] Al-Fahed S.,Chamra L.M.Pressure drop and heat transfer comparison for bothmicro-fin tube and twisted-tape inserts in laminar flow[J].Experimental Thermal andFluid Science,1999,18(4):323-333
    [63] Saha S.K.,Dutta A.Thermohydraulic study of laminar swirl flow through a circulartube fitted with twisted tapes[J].Journal of Heat Transfer,2001,123(1):417-427
    [64] Saha S.K.,Dutta A.,Dhal S.K. Friction and heat transfer characteristics of laminarswirl flow through a circular tube fitted with regularly spaced twisted-tapeelements[J].International Journal of Heat and Mass Transfer,2001,44(22):4211-4223
    [65] Naga Sarada S.,Sita Rama Raju A.V.,Kalyani Radha K.,et al.Enhancement of heattransfer using varying width twisted tape inserts[J].International Journal of EngineeringScience and Technology2010,2(3):107-118
    [66] Eiamsa-ard S.,Wongcharee K.,Sripattanapipat S.3-D Numerical simulation ofswirling flow and convective heat transfer in a circular tube induced by means ofloose-fit twisted tapes[J].International Communications in Heat and Mass Transfer,2009,36(9):947-955
    [67] Saha S.K.,Mallick D.N.Heat transfer and pressure drop characteristics of laminarflow in rectangular and square plain ducts and ducts with twisted-tape inserts[J].Journalof Heat Transfer,2005,127(9):966-977
    [68] Pramanik D.,Saha S.K.Thermohydraulics of laminar flow through rectangular andsquare ducts with transverse ribs and twisted tapes[J].Journal of Heat Transfer,2006,128(10):1070-1080
    [69] Eiamsa-ard S.Study on thermal and fluid flow characteristics in turbulent channel flowswith multiple twisted tape vortex generators[J].International Communications in Heatand Mass Transfer,2010,31(4):644–651
    [70]吴双应,辛明道.扭带管内油的受迫对流换热实验[J].重庆大学学报,1995,18(1):13-117
    [71] Wongcharee K.,Eiamsa-ard S.Friction and heat transfer characteristics of laminar swirlflow through the round tubes inserted with alternate clockwise and counter-clockwisetwisted-tapes[J].International Communications in Heat and Mass Transfer,2011,38(3):348–352
    [72] Eiamsa-ard S.,Wongcharee K.,Eiamsa-ard P.,et al.Heat transfer enhancement in atube using delta-winglet twisted tape inserts[J].Applied Thermal Engineering,2010,30(4):310-318
    [73] Eiamsa-ard S.,Nivesrangsan P.,Chokphoemphun S.,et al.Influence of combinednon-uniform wire coil and twisted tape inserts on thermal performancecharacteristics[J].International Communications in Heat and Mass Transfer,2010,37(7):850-856
    [74] Seemawute P.,Eiamsa-ard S.Thermohydraulics of turbulent flow through a roundtube by a peripherally-cut twisted tape with an alternate axis[J]. InternationalCommunications in Heat and Mass Transfer,2010,37(6):652-659
    [75] Eiamsa-ard S.,Wongcharee K.,Eiamsa-ard P.,et al.Thermohydraulic investigationof turbulent flow through a round tube equipped with twisted tapes consisting of centrewings and alternate-axes[J].Experimental Thermal and Fluid Science,2010,34(8):1151-1161
    [76] Wongcharee K.,Eiamsa-ard S.Heat transfer enhancement by twisted tapes withalternate-axes and triangular, rectangular and trapezoidal wings[J]. ChemicalEngineering and Processing,2011,50():211-219
    [77] Thianpong C.,Eiamsa-ard P.,Eiamsa-ard S.Heat transfer and thermal performancecharacteristics of heat exchanger tube fitted with perforated twisted-tapes[J].Heat andMass Transfer,2012,48(6):881-892
    [78] Eiamsa-ard S.,Promvonge P.Thermal characteristics in round tube fitted with serratedtwisted tape[J].Applied Thermal Engineering,2010,30(13):1673-1682
    [79] Saha S.K.,Gaitonde U.N.,Date A.W.Heat transfer and pressure drop characteristicsof laminar flow in a circular tube fitted with regularly spaced twisted-tapeelements[J].Experimental Thermal and Fluid Science,1989,2(3):310-322
    [80] Saha S.K.,Gaitonde U.N.,Date A.W.Heat transfer and pressure drop characteristicsof turbulent flow in a circular tube fitted with regularly spaced twisted-tapeelements[J].Experimental Thermal and Fluid Science,1990,3(6):632-640
    [81] Guo Z.Y.,Li D.Y.,Wang B.X.A novel concept for convective heat transferenhancement[J].International Journal of Heat and Mass Transfer,1998,41(14):2221-2225
    [82]过增元,黄素逸.场协同原理与强化传热新技术[M].北京:中国电力出版社,2004
    [83] Guo Z.Y.,Tao W.Q.,Shah R.K.The field synergy (coordination) principle andits applications in enhancing single phase convective heat transfer[J].InternationalJournal of Heat and Mass Transfer2005,48(9):1797-1807
    [84] Tao W.Q., He Y.L.,Wang Q.W.,et al.A unified analysis on enhancing singlephase convective heat transfer with field synergy principle[J].International Journal ofHeat and Mass Transfer,2002,45(24):4871-4879
    [85] Tao W.Q.,Guo Z.Y.,Wang B.X.Field synergy principle for enhancing convectiveheat transfer-its extension and numerical verification [J].International Journal of Heatand Mass Transfer,2002,45(18):3849-3856
    [86]孟继安.基于场协同理论的纵向涡强化换热技术及其应用[D].北京:清华大学,2003
    [87]孟继安,陈泽敬,李志信,等.管内对流换热的场协同分析及换热强化[J].工程热物理学报,2003,24(4):652-654
    [88]苏欣,程新广,孟继安,等.层流场协同方程的验证及其性质[J].工程热物理学报,2005,26(2):289-291
    [89]陈颖,邓先和,丁小江.缩放管内湍流对流换热(Ⅰ)─场协同控制机理[J].化工学报,2004,55(11):1759-1763
    [90] Guo J.F.,Xu M.T.,Cheng L.Numerical investigations of circular tube fitted withhelical screw-tape inserts from the viewpoint of field synergy principle[J].ChemicalEngineering and Processing,2010,49(4):410-417
    [91]陈群,任建勋,过增元.流体流动场协同原理及其在减阻中的应用[J].科学通报,2008,53(4):489-492
    [92] Liu W.,Liu Z.C.,Ming T.Z.,et al.Physical quantity synergy in laminar flow fieldand its application in heat transfer enhancement [J].International Journal of Heat andMass Transfer,2009,52(19-20):4669–4672
    [93]陶文铨,何雅玲.场协同原理在强化传热与脉管制冷机性能改进中的应用(上)[J].西安交通大学学报,2002,36(11):1101-1105
    [94]陶文铨,何雅玲.场协同原理在强化传热与脉管制冷机性能改进中的应用(下)[J].西安交通大学学报,2002,36(11):1106-1110
    [95]施明恒,王海,郝英力.离心力场作用下多孔介质中强制对流换热的研究[J].工程热物理学报,2002,23(4):473-475
    [96]施明恒,王海.离心力场作用下对流换热场协同理论的实验验证[J].上海理工大学学报,2003,25(4):346-349
    [97]郭平生,华贲,韦绍波.温度场与电场在奇异热电效应中的协同[J].华南理工大学学报(自然科学版),2002,30(4):7-10
    [98]郭平生,华贲,李忠.超声波场强化解吸的机理分析[J].高校化学工程学报,2002,16(6):614-620
    [99]郭平生,韩光泽,张妮,等.超声波场强化解吸速率的机理及场协同分析[J].高校化学工程学报,2006,20(2):300-305
    [100]杨立军.磁场作用下的对流换热及其场协同分析[D].北京:清华大学,2003
    [101] Hua B.,Guo P.S.The study of field synergy theory in transfer processes[A].ImayishiN.,ed.Proceedings of2001IAMS International Seminar on Material for Use inLithium Batteries and Transport Phenomena in Materials Processing[C].Kasuga,Kyushu University,2001:107-115
    [102]韩光泽,华贲,魏耀东.传递过程强化的新途径-场协同[J].自然杂志,2002,24(5):273-277
    [103]陈颖.复杂通道中湍流与热传递的场协同研究[D].广州:华南理工大学,2003
    [104]黄维军.气侧传热界面粗糙肋形的结构优化研究[D].广州:华南理工大学,2006
    [105]欧阳荣.缩放管的改型研究及其在自然对流换热下的传热强化[D].广州:华南理工大学,2004
    [106]王杨君.管壳式换热器中自旋流的强化传热研究[D].广州:华南理工大学,2005
    [107]洪蒙纳.缩放管内带衰减性自旋流的复合强化传热研究[D].广州:华南理工大学,2008
    [108]马晓旭.自然对流条件下空气在缩放管内与旋流片的复合强化传热研究[D].广州:华南理工大学,2009
    [109]邓先和,邓颂九.管壳式换热器管间支承物[P].中国,8921835.3,1990
    [110]邓先和,邓颂九.管间支撑物的结构对横纹槽管管束传热强化性能的影响[J].化工学报,1992,43(1):62-68
    [111]赵晓曦.多种新型管壳式换热器的壳程传热强化问题研究[D].广州:华南理工大学,2003
    [112]邓先和,张亚君,潘朝群,等.旋流网板支承管束的管壳式换热器及其强化传热方法[P].中国,ZL200410051657.7,2005
    [113]邓先和,洪蒙纳,周水洪,等.带间隔分置旋流片的复合强化传热管[P].中国,ZL200610035832.2,2006
    [114]周水洪.衰减性自旋流强化传热的机理分析及优化[D].广州:华南理工大学,2007
    [115]徐伟.四种管壳式换热器壳程流速分布、流动阻力及传热实验研究[D].广州:华南理工大学,2006
    [116]何兆红.矩形管束换热器的传热与流阻研究[D].广州:华南理工大学,2010
    [117]曾文良.大型轴流管壳式换热器流动与传热的若干关键问题研究[D].广州:华南理工大学,2009
    [118]邓先和,张亚军.壳侧多通道并流进出口结构的管壳式换热器[P].中国:CN1719176,2006
    [119]蒋夫花.大型轴流管壳式换热器中的深度换热[D].广州:华南理工大学,2011年
    [120]邓先和,蒋夫花.换热器壳程流路分析及折流与逆流换热偏差[J].华南理工大学学报,2010,38(8):12-16
    [121]徐国想,邓先和等.强化传热技术及其在硫酸转化系统中的应用进展[J].化工进展,2001,20(11):23-27
    [122]邓先和.空心环管壳式换热器工业应用概况[J].化工进展,1997,5:35-38
    [123]邓先和,陈详明,张志孝.空心环管壳式换热器工业化应用回顾[J].有色冶炼,2001,3:4-5
    [124]邓先和,华贲等.空心环管壳式换热器在南京烷基苯厂的工业应用[J].石油炼制与化工,1995,26(4):32-35
    [125] Fluent6.3.26User’s guide [CP].Fluent Incorporated,2006
    [126]王杨君,邓先和,洪蒙纳,等.管内周期性自旋流强化传热的结构优化[J].化工学报,2006,57(11):2554-2561
    [127] Agarwal S.K.,Raja R.M.Heat transfer augmentation for the flow of a viscous liquidin circular tubes using twisted tape insets[J].International Journal of Heat and MassTransfer,1996,39(17):3547-3557
    [128] Sarma P.K.,Subrahmanyam T.,Kishore P.S.,et al.Laminar convective heat transferwith twisted tape inserts in a tube[J].International Journal of Thermal Sciences,2003,42(9):821-828
    [129] Chen Y.,Deng X.H.,Ding X.J.,et al.Convection heat transfer of fully developedturbulent flow in shaped tubes with a new concept[J].International Communications inHeat and Mass Transfer,2004,31(3):355-364
    [130]洪蒙纳,邓先和,黄阔,等.缩放管内间隔插入旋流片的复合强化传热[J].华南理工大学学报,2008,36(3):16-19
    [131]谢劲松.甘油[M].北京:轻工业出版社,1984:150-155
    [132]谢端绶,璩定一,苏元复.化工工艺算图,第一册,常用物料物性数据[M].北京:化学工业出版社,1982
    [133] Webb R.L.,Eckert E.R.G.Application of rough surfaces to heat exchangerdesign[J].International Journal of Heat and Mass Transfer,1972,15(9):1647-1658
    [134] Moffat R.J.Using uncertainty analysis in the planning of an experiment[J].Journal ofFluids Engineering,1985,107(2):173-178
    [135] Sieder E.N.,Tate G.E.Industrial and Engineering Chemistry[M].1936,28:1429
    [136] Marner W.J.,Bergles A.E.Augmentation of highly viscous laminar heat transferinside tubes with constant wall temperature[J].Experimental Thermal and FluidScience,1989,2(3):252-267
    [137] Chang S.W.,Jan Y.J.,Liou J.S.Turbulent heat transfer and pressure drop in tubefitted with serrated twisted tape[J].International Journal of Thermal Sciences,2007,46(5):506-518
    [138] Eiamsa-ard S.,Thianpong C.,Eiamsa-ard P.Turbulent heat transfer enhancement bycounter/co-swirling flow in a tube fitted with twin twisted tapes[J].ExperimentalThermal and Fluid Science,2010,34(1):53-62
    [139] Zhang C. Y., Cheng T. M. Three-dimensional numerical simulation ofthermal-hydraulic performance of a circular tube with edgefold-twisted-tapeinserts[J].Journal of Hydrodynamics,Ser.B,2010,22(5):662-670
    [140] Guo J.,Fan A.W.,Zhang X.Y.,et al.A numerical study on heat transfer and frictionfactor characteristics of laminar flow in a circular tube fitted with center-clearedtwisted tape[J].International Journal of Thermal Science,2011,50(7):1263-1270
    [141] Doo J.H.,Yoon H.S.,Ha M.Y.Study on improvement of compactness of a plateheat exchanger using a newly designed primary surface[J].International Journal ofHeat and Mass Transfer,2010,53(25-26):5733-5746
    [142] Lin Z.M.,Sun D.L.,Wang L.B.The relationship between absolute vorticity fluxalong the main flow and convection heat transfer in a tube inserting a twistedtape[J].Heat and Mass Transfer,2009,45(11):1351-1363
    [143] Incropera F.P.,Witt P.D.,Bergman T.L.,et al.Fundamentals of heat and masstransfer[M].John-Wiley&Sons,Hoboken,2006
    [144] Tao Y.B.,He Y.L.,Wu Z.G.Three-dimensional numerical study and field synergyprinciple analysis of wavy fin heat exchangers with elliptic tubes[J].InternationalJournal of Heat and Fluid Flow,2007,28(6):1531-1544
    [145]刘少武,赵树起.硫酸生产技术-炉气的净化与三氧化硫的吸收[M].北京:化学工业出版社,1986:297-310
    [146]南京化学工业公司设计院.硫酸工艺设计手册-物化数据篇[M].南京:化工部硫酸工业科技情报中心站出版,1990:20-21,43
    [147] Vimal K.,Pooja G.,Nigam K.D.P.Fluid flow and heat transfer in curved tubes withtemperature-dependent properties[J].Industrial and Engineering Chemistry Research,2007,46(10)"3226-3236
    [148] Chen Y.,Deng X.H.,Ding X.J.,et al.A numerical analysis of thermal characteristicsof fully-developed turbulent flow with the field synergy theory[J].Journal of SouthChina University of Technology:Narural Science Edition,2003,31(7):42-47
    [149] Hong M.N.,Deng X.H.,Huang K.,et al.Compound heat transfer enhancementof a converging-diverging tube with evenly spaced twisted-tapes[J].Chinese Journalof Chemical Engineering,2007,15(6):814-820
    [150] Fernández-Seara Jose.,Uhía F.J.,Sieres J.,et al.A general review of the Wilsonplot method and its modifications to determine convection coefficients in heatexchange devices[J].Applied Thermal Engineering,2007,27(17-18):2745–2757
    [151] Shokouhmand H.,Salimpour M.R.,Akhavan-Behabadi M.A.Experimentalinvestigation of shell and coiled tube heat exchangers using wilsonplots[J].International Communications in Heat and Mass Transfer,2008,35(1):84-92
    [152]朱志彬.内置自旋弹簧换热管工作特性研究及管内液轮机流场分析[D].南宁:广西大学,2004年
    [153]赵晓曦.多种新型管壳式换热器的壳程传热强化问题研究[D].广州:华南理工大学,2003年
    [154]林洪亚.立式换热管内置聚丙烯自旋扭带工作特性及强化传热研究[D].南宁:广西大学,2007年
    [155]朱志彬.一种综合非线性回归法和Wilson图解法计算对流换热系数的新方法[J].化工机械,2008,35(4):197-201
    [156]叶猛.LiNO3熔融盐水平管内强制对流换热实验研究[D].北京:北京工业大学,2008年
    [157]李晓伟.通道湍流换热强化的数值与实验研究[D].北京:清华大学,2008年
    [158] Kays W.M.,Crawford M.E..Convective heat and mass transfer[M].2nd edition.NewYork:McGraw-Hill Book Company,1980:159-160