UASB和ABR系统中产氢产乙酸菌群对OLR与pH的生态响应规律
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
环境污染和能源危机是困扰社会经济可持续发展和人类生存的两大难题。有机废水的厌氧生物技术将污染治理与能源回收有机结合,成为当前解决环境污染和能源短缺的一条重要途径,如何进一步提高厌氧生物反应器处理效能及运行稳定性是当前厌氧生物技术中亟待解决的关键问题。对厌氧生物处理理论的深入研究,是开发新技术和进一步提高系统处理效能和运行稳定性的基础。有机负荷率(OLR)和pH是厌氧生物处理系统的重要运行控制参数,其变化会对系统中微生物群落结构产生显著影响并进一步影响到系统的处理效能。研究厌氧生物处理系统中HPAs对有机负荷率(OLR)和pH的生态响应规律,揭示HPAs的动态变化与系统运行特征之间的内在联系,探索强化厌氧生物处理系统中产氢产乙酸作用的调控对策,对于进一步提高厌氧生物处理系统的运行效能及稳定性具有重要意义。
     本文选取UASB和ABR两种典型厌氧反应器为实验装置,以UASB和ABR的启动和运行为基础,分别考察了OLR和pH的变化对UASB和ABR运行效能及稳定性的影响,并采用聚合酶链式反应-变性梯度凝胶电泳(PCR-DGGE)指纹分析技术对系统中HPAs的演替规律进行解析。在此基础上,探讨UASB和ABR系统中HPAs演替与系统运行特征之间的内在联系,提出强化厌氧生物处理系统中产氢产乙酸作用的调控对策。
     根据UASB和ABR的构造及工艺特点,分别采用不同的启动方式对反应器进行启动。UASB采用“固定进水COD浓度,分阶段缩短水力停留时间(HRT)”的方式启动,经过180d的连续运行,在进水COD1000mg/L、HRT8h的条件下达到运行稳定,系统的COD去除率维持在90%以上,反应区出现大量成熟颗粒污泥。ABR采用低负荷启动方式进行启动,经过228天连续运行,在进水COD8000mg/L、HRT36h、OLR5.4kg COD/m~3·d的条件下达到稳定运行,产酸相和产甲烷相沿程得以有效分离。第1格室和第2格室以产酸发酵菌群为优势菌,为产酸相;而在第3格室和第4格室中HPAs和产甲烷菌占据优势地位,为产甲烷相。
     在UASB和ABR启动完成的基础上,研究了HPAs对OLR变化的生态响应规律。结果表明,随着OLR的逐步提升,UASB和ABR系统中HPAs发生了明显的演替过程。在OLR比较低(<10kg COD/m~3·d)时,具有较低最大比降解速率(Umax)和比生长速率(μ)的食丙酸产氢产乙酸菌Syntrophobacterwolinii为优势菌。而随着OLR的提升,具有较高Umax和μ的食丙酸产氢产乙酸菌Pelotomaculum propionicicum和P. schinkii依次演替成为系统中的优势菌。HPAs的演替强化了系统中的产氢产乙酸作用,使得UASB和ABR系统的处理效能得到显著提高。在UASB和ABR系统中,随着OLR大幅提升,系统的COD去除率均保持在92%以上。因此,在废水厌氧生物处理工程中,在反应器的启动期和稳定运行期,可通过人为的、定期的“制造”OLR冲击,促使反应器中HPAs发生演替,以此来强化系统中HPAs的产氢产乙酸作用,将有利于厌氧生物处理系统的长期稳定运行。
     在UASB系统中,pH的降低对HPAs的分布和优势度产生了显著影响,食丙酸产氢产乙酸菌Pelotomaculum schinkii在系统中的优势度随着系统内pH的下降而显著降低。而P. schinkii优势度的降低,导致UASB系统的COD去除率由91%下降到了68%,出水中丙酸残留增加到了1250mg/L。在UASB系统中,当pH为限制性生态因子时,HPAs的产氢产乙酸作用对厌氧生物处理过程的限制作用要大于产甲烷菌群。因此,在UASB的运行调控过程中,不仅要考虑产甲烷菌的生理生态特性,更要优先考虑HPAs的生理生态特性。
     ABR系统对pH的下降具有良好的缓冲性能,当进水pH由8.0逐级下降到6.0时,ABR系统整体的COD去除率均保持在93%以上。ABR良好的缓冲性能来自系统中主要功能菌群对pH下降的积极生态响应。当pH作为限制性生态因子时,进水pH的下降会使ABR系统产酸相的发酵类型发生转变,进而促进系统中HPAs的演替。在废水厌氧处理工程中,可通过对进水pH的调控,将ABR系统的产酸相控制在乙醇型发酵,为HPAs提供最适宜的底物,使得系统中的产氢产乙酸作用得以强化,进而提高系统的处理效能及运行稳定性。将ABR系统的产酸相控制在乙醇型发酵,在提高系统的处理效能及运行稳定性的同时,还可以实现同步产氢产甲烷。
Environmental pollution and the energy crisis are two problems that plaguedthe sustainable socio-economic development and human survival. Anaerobicbiotechnology has become an important route to solve environmental pollution andenergy shortage. How to enhance the efficiency and the stability of anaerobicbiotechnology are the key issues to be solved in the current. The study of anaerobicbiological theory is foundation to develop new technology and impove theefficiency and stability of anaerobic reactors. Organic load rate (OLR) and pH werevery important operation control parameters of anaerobic reactors, and whichchanges will impact on microbial community structure and furth affect theefficiency of anaerobic treatment systems. So it is the crucial for enhancing theefficiency and the stability of anaerobic digesters by strengthening function ofHPAs. While the response characteristics of HPAs to organic loading rate (OLR)and pH was basis to strengthen function of HPAs in digestors.
     An upflow anaerobic sludge blanket (UASB) reactor and an anaerobic baffledreactor (ABR) were chose. The impact of OLR and pH on performance of reactorswere investigated, respectively. The succession of HPAs was detected bypolymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE).On this basis, the intrinsic link between the HPAs succession and performance ofUASB and ABR was discussed, and then put forward the strategy of strengtheningHPAs. The study will lay the foundation of development high rate anaerobictreatment technology by strengthening HPAs.
     According to the structure and process characteristics of UASB and ABR, thereactors were started in different ways. UASB was started by fixing influent CODconcentration and phased shortening of hydraulic retention time (HRT).A steadystate was achieved with an influent COD1000mg/L and HRT8h after180dcontinuously running, a COD removal rate of90%was obtained and anaerobicgranular sludge was cultivated successfully. ABR was started at lower OLR, asteady state was obtained with an influent COD8000mg/L, HRT36h and OLR5.4kg COD/m~3·d after228d continuously running, and microbial-phase separationwas achieved in the ABR. The acidogenic phase was formed in the first twocompartments, while the methanogenic phase was formed in the last twocompartments. Thus, microbial-phase separation laid a foundation for performingsteady and pollutant removal effectively in the ABR.
     Response of HPAs on OLR change was investigated after start-up of UASB and ABR systems. The results showed that HPAs succesion was obvious with OLRincrease in these two bioreactors. Under low OLR condition (<10kg COD/m~3·d),Syntrophobacter wolinii (HPAs) with low specific maximum degradation rate (Umax)and specific maximum growth rate (μ) was the dominant HPAs. With OLR increase,Pelotomaculum propionicicum and P. schinkii with high Umaxand μ was thedominant HPAs in turn. Succession of HPAs inhanced the hydrogen-producingacetogenesis in systems, resulting in treatment efficiency of UASB and ABR wassignificiantly improved with COD removal of above92%during the OLRincreasing. During the wastewater anaerobic biological treatment process, therefore,periodical OLR shocks could promote HPAs succession and improvehydrogen-producing acetogenesis for long-term stable operation of an anaerobicsystem.
     In UASB, the distribution and dominance of HPAs were significantly affectedby pH reduction. The dominance of Pelotomaculum schinkii in the reactor wasobviously decreased with pH reduction, resulting in COD removal was deceased to68%from90%with propionate1250mg/L. These results indicated that thehydrogen-producing acetogenesis was the rate-limiting step in UASB when pH wasthe restrictive ecological factor. Therefore, not only methanogens should beenhanced but also HPAs should be enhanced during the operation and regulation ofUASB.
     ABR had a favourable buffer performance to pH reduction. COD removal ofABR was above93%at pH8.0~6.0in influent. A good buffer performance of ABRdepends on the positive response of major functional community on pH reduction.Reduction of influent pH made fermentation type in acidogenic phase was changedand then promoted HPAs succession. In wastewater anaerobic biological treatmentprocess, fermentation type in acidogenic phase could be regulated as ethanol-typefermentation by adjusting influent pH. Ethanol-type permentation would supplyoptimum substrate for HPAs, leading to a high efficiency hydrogen-producingacetogenesis and then improving the performance of anaerobic biological treatmentsystems. In addition, synchronous hygrogen methane-production in ABR would become true if the acidogenic phase was controled as ethanol-type permentation.
引文
[1]Angenent L T, Karim K, Al-Dahhan M H, et al. Production of bioenergy andbiochemicals from industrial and ag ricu ltura l wastewater [J]. Trends inBiotechnology,2004,22(9):477-485.
    [2] Nishio N, Nakashimada Y. Recent development of anaerobic digestionprocesses for energy recovery from wa stes [J]. Journal of Bioscience andbioengineering,2007,103(2):105-112.
    [3] Braun R, Drosg B, Bochmann G, et al. Recent developments in bio-energyrecovery through fermentation [M]. New York: Springer-Verlag,2010:35-58.
    [4]胡纪萃,孟津,左剑恶,等.废水厌氧生物处理理论与技术[M].北京:中国建筑出版社,2003:12-17.
    [5]刘敏,任南琪,王爱杰,等. UASB反应器酸化后的状态及恢复研究[J].中国沼气,2003,21(2):7-10.
    [6]王立军,郑文华,史绪盛,等. IC反应器酸化原因分析及重新启动[J].中国给水排水,2007,23(24):95-97.
    [7]王慧芳,买文宁,赵雅光. IC反应器启动过程中酸化问题的研究[J].河南科学,2008,26(2):219-222.
    [8]刘然,彭剑锋,宋永会,等.厌氧折流板反应器酸化及其对微生物种群分布的影响[J].环境科学,2010,31(7):1554-1560.
    [9]王娟,买文宁,沈小华.内循环厌氧反应器处理制药废水的酸化及其恢复[J].水处理技术,2011,37(1):80-83.
    [10] Ke S, Shi Z, FangH. Applications of two phase anaerobic degradation inindustrial wastewater treatment[J]. International Journal of Environment andPollution [J].2005,23(1):65-80.
    [11] Yoshiyuki U, Hisatomo F, Masafumi G. Operation of a two-stage fermentationproc es s producin g hydrogen and me t hane from organic waste [J].Environmental Science and Technology,2007,41(4):1413-1419.
    [12] Liu Y, Whitman W B. Metabolic, phylogenetic, and ecological diversity of themethanogenic archaea [J]. Annals of the New York Academy of Sciences,2008,1125:171-189.
    [13] McInerney M J, Struchtemeyer C G, Sieber J. Physiology, ecology, phylogeny,and genomics of microorganisms capable of syntrophic metabolism [J].Annalsof the New York Academy of Sciences,2008,1125:58-72.
    [14] Stams A J M,Plugge C M.Electron transfer in syntrophic communities ofanaerobic bacteria and archaea [J]. Nature Reviews Microbiology,2009,7(8):568-577.
    [15] Plugge C M, van Lier J B, Stams A J M.Syntrophic communities in methaneformation from high strength wastewaters [M].New York: Springer-Verlag,2010:59-77.
    [16] Worm P, Müller N, Plugge C M, et al. Syntrohpy in methanogenic degradation
    [M]. New York: Springer-Verlag,2010:143-173.
    [17] Kato S, Wata nabe K. Ecological and evolutionary interactions in syntrophicmethanogenic consortia [J]. Microbes and Environments,2010,25(3):145-151.
    [18] Insam H, Franke W I, Goberna M. Microbes in Aerobic and Anaerobic wastetreatment [M]. New York:Springer-Verlag,2010:1-34.
    [19] Kaspar H F, Wuhrmann K. Kinetic parameters and relative turnovers of someimportant catabolic reactions in digesting sludge [J]. Applied andEnvironmental Microbiology,1978,36(1):1-7.
    [20] Jackson B E, McInerney M J. Anaerobic microbial metabolism can proceedclose to thermodynamic limits [J]. Nature,2002,415(24):454-456.
    [21] Kosaka T, Kato S, Shimoyama T, et al. The genome of Pelotomaculumthermopropionicum reveals niche-associated evolution in anaerobic microbiota[J]. Genome Research,2008,18(3):442-448.
    [22] Taylor B L, Zhulin I B. PAS domains: Internal sensors of oxygen, redoxpotential, and light [J]. Microbiology and Molecular Biology Reviews,1999,63(2):479-506.
    [23] Marchaim U, Krause C. Propionic to acetic acid ratios in overloaded anaerobicdigestion [J]. Bioresource Technology,1993,43(3):195-203.
    [24] Ahring B K, Sandberg M, Angelidaki I. Volatile fatty acids as indicators ofprocess imbalance in anaerobic digestors [J]. Applied and EnvironmentalMicrobiology,1995,43(3):559-565.
    [25] Shigematsu T, Era S, Mizuno Y, Ninomiya K, et al. Microbial community of amesophilic propionate-degrading methanogenic consortium in chemostatcultivation analyzed based on16S rRNA and acetate kinase genes [J]. Appliedand Environmental Microbiology,2006,72(2):401-415.
    [26]竺建荣,胡纪萃,顾夏声.颗粒厌氧污泥中的产氢产乙酸细菌研究[J].微生物学通报,1994,21(4):207-209.
    [27]张春杨,刘晓黎,东秀珠.豆腐废水UASB反应器中的原核生物多样性及主要功能菌群[J].微生物学通报,2004,44(2):141-147.
    [28] McMahon K D, Zheng D, Stams A J M, et al. Microbial population dynamicsduring start-up and overloa d conditions of anaerobic digesters treatingmunicipal solid waste and sewage sludge [J]. Biotechnology andBioengineering,2004,87(7):823-834.
    [29] Ariesyady H D, Ito T, Okabe S. Functional bacterial and archaeal communitystructures of major trophic groups in a full-scale anaerobic sludge digester [J].Water Research,2007,41(7):1554-1568.
    [30]李艳娜,许科伟,堵国成,等.厌氧生境体系中产氢产乙酸细菌的FISH定量解析[J].微生物学通报,2007,47(6):1038-1043.
    [31]Angenent L T, Sung S. Development of anaerobic migrating blanket reactor(AMBR), a novel anaerobic treatment system [J]. Water Research,2001,35(7):1739-1747.
    [32]李建政,任南琪,王爱杰,等.二相厌氧生物工艺相分离优越性探讨[J].哈尔滨建筑大学学报,1998,31(2):50
    [33]李建政.连续流两相厌氧生物处理的生理生态学研究.哈尔滨建筑大学硕士学位论文[D],1997:50-86.
    [34]王硕.产氢产乙酸菌优势菌群构建及其对厌氧消化系统的强化效应.哈尔滨工业大学硕士论文[D],2009:44-62.
    [35]任南琪,马放,杨基先,等.污染物控制微生物学[M].哈尔滨:哈尔滨工业大学出版社,2011:314-315.
    [36]任南琪,马放,杨基先,等.污染物控制微生物学[M].哈尔滨:哈尔滨工业大学出版社,2011:315-316.
    [37]胡纪萃,孟津,左剑恶,等.废水厌氧生物处理理论与技术[M].北京:中国建筑出版社,2003:154-191.
    [38] Barber W P, Stuckey D C. The use of the anaerobic baffled reactor (ABR) forwastewater treatment: A review [J]. Water Research,1999,33(7),1559-1578.
    [39]Lettinga G, Field J, Lier J V, et al. Advanced anaerobic wastewater treatment inthe near future. Water Science and Technology,1997,35(10):5-12.
    [40]王建龙,韩英健,钱易.折流式厌氧反应器(ABR)的研究进展[J].应用与环境生物学报,2000,6(5):490-498.
    [41] Wang J L, Huang Y H, Zhao X. Performance and characteristics of an anaerobicbaffled reactor [J]. Bioresource Technology,2004,93(2):205-208.
    [42]Ji G D, Sun T H, Ni J R, et al. Anaerobic baffled reactor (ABR) for treatingheavy oil produced water with high concentrations of salt and poor nutrient [J].Bioresource Technology,2009,100(3):1108-1114.
    [43]Zhang J, Wei Y J, Xiao W, et al. Performance and spatial communitysuccessionof an anaerobic baffled reactor treating acetone-butanol-ethanolfermentation wastewater [J]. Bioresour Technology.2011,102(16):7407-7414.
    [44]刘然,彭剑锋,宋永会,等.厌氧折流板反应器(ABR)中微生物种群演替特征[J].环境科学研究,2010,23(6):741-747.
    [45]陈坚,卫功元.新型高效废水厌氧处理反应器研究进展[J].无锡轻工业大学学报,2001,20(3):323-329.
    [46]胡纪萃,孟津,左剑恶,等.废水厌氧生物处理理论与技术[M].北京:中国建筑出版社,2003:1-4.
    [47] Oh S E, van Ginkel S, Logan B E. The Relative Effectiveness of pH control andheat treatment for enhancing biohydrogen gas production [J]. EnvironmentalScience and Technology,2003,37(22):5186-5190.
    [48] Siriwongrungson V, Zeng R J, Angelidaki I. Homoacetogenesis as thealternative pathway for H2sink during thermophilic anaerobic degradation ofbutyrate under suppressed methanogenesis [J]. Water Research,2007,41(18):4204-4210.
    [49] Cohen A, Gemert J M V, Zoetemeyer R J, et al. Main characteristics andstoichiometric aspects of acidogenesis of soluble carbohydrate containingwastewaters [J]. Process Biochemistry,1984,19(6):228.
    [50]任南琪.有机废水处理生物产氢原理与工程控制对策研究[D].哈尔滨:哈尔滨建筑大学,1993:42-90.
    [51]任南琪,王宝贞,马放.有机废水产酸发酵的生理生态学分析[J].中国沼气,1995,13(1):1-6.
    [52] Ren N Q, Chen X L, Zhao D. Control of fermentation types incontinuous-flowacidogenic reactors:effects of pH and redox potential [J]. Journal of HarbinInstitute of Technology,2001,8(2):116-119.
    [53]邢德峰.产氢-产乙醇细菌群落结构与功能研究[D].哈尔滨:哈尔滨工业大学,2006:40-45.
    [54]李建政,任南琪.产酸相最佳发酵类型工程控制对策[J].中国环境科学,1998,18(5):398-402.
    [55] Sieber J R, McInerney M J, Plugge C M, et al. Methanogenesis:syntrophicmetabolism[M] New York: Springer-Verlag,2010:337-355.
    [56] Brant M P, Wolin E A, Wolin MJ, et al. Methanobacillus omelianskii, asymbiotic association of two species of bacteria [J]. Archives Microbiology,1967,59(1):20-31.
    [57] Hungate R E. Hydrogen as an intermediate in the rumen fermentation [J].Archives of Microbiology,1967,59(3):158-164.
    [58]Wolin M J. Microbiol interaction and communities [M]. London: AcademicPress,1982,323-356.
    [59] Thiele J H, Zeikus J G. Control of interspecies electron flow during anaerobicdigestion: significance of formate transfer versus hydrogen transfer duringsyntrophic methanogenesis in flocs [J]. Applied and EnvironmentalMicrobiology.1988,54(1):20-29.
    [60] Boone D R, Johnson R L, Liu Y T. Diffusion of the interspecies electroncarriers H2and formate in methanogenic ecosystems, and implications in themeasurement of KM for H2or formate uptake [J]. Applied and EnvironmentalMicrobiology,1989,55(7):1735-1741.
    [61] Dong X Z,Stams A J M. Evidence for H2and formate formation duringsyntrophic butyrate and propionate degradation [J]. Anaerobe,1995,1(1):35-39.
    [62] de Bok F A M, Hagedorn P L, Silva P J, et al. Two W-containing formatedehydrogenases (CO2-reductases) involved in syntrophic propionate oxidationby Syntrophobacter fumaroxidans [J]. European Journal of Biochemistry,2003,270(11):2476-2485.
    [63] Worm P, Stams A J M, Cheng X. Growth-and substrate-dependent transcriptionof formate dehydrogenase and hydrogenase coding genes in Syntrophobacterfumaroxidans and Methanospirillum hungatei [J]. Microbiology,2011,157(1):280-289.
    [64] Reguera G, McCarthy K D, Mehta T, et al. Extracellular electron transfer viamicrobial nanowires [J]. Nature,2005,435:1098-1101.
    [65] M orita M, Malvankar N S, Fr anks A E, et al. Potential for direc t in terspe cieselectron transfer in methanogenic wastewater digester aggregates [J]. mBio,2011,2(4):1-8.
    [66]Reddy C A, Bryant M P, Wolin M J. Characteristics of S organism isolatedfrom Methanobacillus omelianskii [J]. Journal of Bacteriology,1972,109(2):539-545.
    [67] Summers Z M, Fogarty H E, Leang C, et al. Direct exchange of electronswithin aggregates of an evolved syntrophic coculture of anaerobic bacteria [J].Science,2010,330:1413-1415.
    [68] Dubourguier H C, Samain E, Prensier G, et al. Characterization oftwo strainsof Pelobacter carbinolicus isolatated from anaerobic digesters [J]. Archives ofMicrobiology,1986,145(3):248-253.
    [69] Sekiguchi Y, Imachi H, Susilorukmi A, et al. Tepidanaerobacter syntrophicusgen. nov., sp. nov., an anaerobic, moderately thermophilic, syntrophic alcohol-and lactate-degrading bacterium isolated from thermophilic digested sludge [J].International Journal of Systematic and Evolutionary Microbiology,2006,56(7):1621-1629.
    [70] Wallrabenstein C, Hauschild E, Schink B. Pure culture and cytologicalproperties of Syntrophobacter wolinii [J]. FEMS Microbiology Letters,1994,123(3):249-254.
    [71] Wa llrabe ns tein C,Hauschild E, Schink B.Syntrophobacter pfennigii sp. nov.,new syntrophically propionate-oxidizing anaerobe growing in pure culture withpropionate and sulfate [J]. Archives Microbiology,1995,4(5):346-352.
    [72] Harmsen H J M, B.L.M. van Kuijk C M, Plugge C M, et al. Syntrophobacterfumaroxidans sp. nov., a syntrophic propionate-degrading sulfate-reducingbacterium [J]. International Journal of Systematic and EvolutionaryMicrobiology,1998,48(4):1383-1387.
    [73]Chen S Y, Liu X L, Dong X Z. Syntrophobacter sulfatireducens sp. nov., anovel syntrophic, propionate-oxidizing bacterium isolated from UASB reactors[J]. International Journal of Systematic and Evolutionary Microbiology,2005,55(3):1319-1324.
    [74]Liu Y T, Balkwill D L, Aldrich H C, et al. Characterization of the anaerobicpropionate-degrading syntrophs Smithella propionica gen. nov., sp. nov. andSyntrophobacter wolinii [J]. International Journal of Systematic andEvolutionary Microbiology,1999,49(2):545-556.
    [75] de Bok F A M, Harmsen H J M, Plugge C M, et al, The first true obligatelysyntrophic propionate-oxidizing bacterium, Pelotomaculum schinkii sp. nov.,co-cultured with Methanospirillum hungatei, and emended description of thegenus Pelotomaculum [J]. International Journal of Systematic and EvolutionaryMicrobiology,2005,55(4):1697-1703.
    [76] Imachi H, Sekiguchi Y, Kamagata Y, et al. Pelotomaculum thermopropionicumgen. nov., sp. nov., ananaerobic, thermophilic, syntrophicpropi onate-oxidizing bacterium [J]. International Journal of Systematic andEvolutionary Microbiology,2002.52(5):1729-1735.
    [77] Imachi H, Sakai S, Ohashi A, et al. Pelotomaculum propionicicum sp. nov., ananaerobic, mesophilic, obligately syntrophic, propionate-oxidizing bacterium[J]. International Journal of Systematic and Evolutionary Microbiology,2007,57(7):1487-1492.
    [78]Nilsen R K, Torsvik T, Lien T. Desulfotomaculum thermocisternum sp. nov., asulfate reducer isolated from a hot North Sea oil reservoir [J]. InternationalJournal of Systematic and Evolutionary Microbiology,1996,46(2):397-402.
    [79] Plugge C M, Balk M, Stams A J M. Desulfotomaculum thermobenzoicum subsp.thermosyntrophicumsubsp. nov., a thermophilic, syntrophic,propionate-oxidizing, sporeforming bacterium [J]. International Journal ofSystematic and Evolutionary Microbiology,2002,52(2):391-399.
    [80]McInerney M J, Bryant M P, Hespell R B, et al. Syntrophomonas wolfei gen.nov. sp. nov., an anaerobic, syntrophic, fatty acid-oxidizing bacterium [J].Applied and Environmental Microbiology,1981,41(4):1029-1039.
    [81]Roy F, Samain E, Dubourguier H C, et al. Synthrophomonas sapovorans sp.nov., a new obligately proton reducing anaerobe oxidizing saturated andunsaturated long chain fatty acids [J]. Archives of Microbiology,1986,145(2):142-147.
    [82]Stieb M, Schink B. Anaerobic oxidation of fatty acids by Clostridium bryantiisp. nov., a sporeforming, obligately syntrophic bacterium [J]. Archives ofMicrobiology,1985,140(4):387-390.
    [83]Zhang C Y, Liu X L, Dong X Z. Syntrophomonas curvata sp. nov., an anaerobethat degrades fatty acids in coculture with methanogens [J]. InternationalJournal of Systematicand Evolutionary Microbiology,2004,54(3):969-973.
    [84] Zhang C Y, Liu X L, Dong X Z. Syntrophomonas erecta sp. nov., a novelanaerobe that syntrophically degrades short-chain fatty acids [J]. InternationalJournal of Systematic and Evolutionary Microbiology,2005,55(2):799-803.
    [85] Sousa D Z, Smidt H, Alves M M, et al. Syntrophomonas zehnderi sp. nov., ananaerobe that degrades long-chain fatty acids in coculture withMethanobacterium formicicum [J]. International Journal of Systematic andEvolutionary Microbiology,2007,57(3):609-615.
    [86]Wu C G, Liu X L, Dong X Z. Syntrophomonas cellicola sp. nov., aspore-forming syntrophic bacterium isolated from a distilled-spirit-fermentingcellar, and assignment of Syntrophospora bryantii to Syntrophomonas bryantiicomb. nov.[J]. International Journal of Systematic and EvolutionaryMicrobiology,2006,56(10):2331-2335.
    [87] Hatamoto M, Imachi H, Fukayo S, et al. Syntrophomonas palmitatica sp.nov.,an anaerobic, syntrophic, long-chain fatty-acid-oxidizing bacterium isolatedfrom methanogenic sludge [J]. International Journal of Systematic andEvolutionary Microbiology,2007,57(9):2137-2142.
    [88]Svetlitshnyi V, Rainey F, Wiegel J. Thermosyntropha lipolytica gen. nov., sp.nov., a lipolytic, anaerobic, alkalitolerant, thermophilic bacterium utilizingshort and long-chain fatty acids in syntrophic coculture with a methanogenicarchaeum [J]. International Journal of Systematic and EvolutionaryMicrobiology,1996,46(4):1131-1137.
    [89]Sekiguchi Y, Kamagata Y, Nakamura K, et al. Syntrophothermus lipocalidusgen. nov., sp. nov., a novel thermophilic, syntrophic, fattyacid-oxidizinganaerobe which utilizes isobutyrate [J]. International Journal of Systematic andEvolutionary Microbiology,2000,50(2):771-779.
    [90] Jackson B E, Bhupathiraju V K, Tanner R S, et al. Syntrophus aciditrophicus sp.nov., a new anaerobic bacterium that degrades fatty acids and benzoate insyntrophic association with hydrogen-using microorganisms [J]. Archives ofMicrobiology,1999,171(2):107-114.
    [91] Mountfort D O, Bryant M P. Isolation and characterization of an anaerobicsyntrophic benzoate-degrading bacterium from sewage sludge [J]. Archives ofMicrobiology,1982,133(4):249-256.
    [92] M T马迪根, J M马丁克,等. Brock微生物生物学[M].北京:科学出版社,2009:844-846.
    [93]Stams A J M, Dijk J B V, Dijkema C, et al. Growth of syntrophicpropionate-oxidizing bacteria with fumarate in the absence of methanogenicbacteria [J]. Applied and Environmental Microbiology,1993,59(4):1114-1119.
    [94]Wallrabenstein C, Schink B. Evidence of reversed electron transport insyntrophic butyrate or benzoate oxidation by syntrophomonas wolfei andsyntrophus buswellii [J]. Archives of Microbiology.1994,162(2):136-142.
    [95] Müller N. Reversed electron transfer in syntrophic degradation of glucose,butyrate and ethanol [D]. Wageningen: Wageningen University,2010:26-81.
    [96]McInerney M J, Rohlin L, Mouttaki H, et al. The genome of Syntrophusaciditrophicus: Life at the thermodynamic limit of microbial growth [J].Proceedings of the National Academyof Science of the United States ofAmerica,2007,104(18):7600-7605.
    [97]Müller N, Worm P, Schink B, et al. Syntrophic butyrate and propionateoxidation processes: from genomes to reaction mechanisms [J]. EnvironmentalMicrobiology Reports,2010,2(4):489-499.
    [98] Wang Y, Huang Y J, Wang J W, et al. Structure of the formate transporter FocAreveals a pentameric aquaporin-like channel [J]. Nature,2009,462:467-472.
    [99]McInerney M J, Sieber J R, Gunsalus R P. Syntrophy in anaerobic globalcarbon cycles [J]. Current Opinion in Biotechnology,2009,20(6):623-632.
    [100]Hulshoff Pol L W, de Castro L S I, Lettinga G, et al. Anaerobic sludge granu-lation [J]. Water research,2004,38(6):1376-1389.
    [101]Sekiguchi Y, Kamagata Y, Nakamura K, et al. Fluorescence in situ hybridiza-tion using16S rRNA-targeted oligonucleotides reveals localization ofmethanogens and selected uncultured bacteria in mesophilic and thermophilicsludge granules [J]. Applied and Environmental Microbiology,1999,65(3):1280-1288.
    [102]Kosaka T, Uchiyama T, Ishii S, et al. Reconstruction and regulation of thecentral catabolic pathway in the thermophilic propionate-oxidizing syntrophPelotomaculum thermopropionicum [J]. Journal of Bacteriology,2006,188(1):202-210.
    [103]Deppenmeier U, Johann A, Hartsch T, et al. The genome of Methanosarcinamazei: evidence for lateral gene transfer between Bacteria and Archaea [J].Journal ofMolecular Microbiology and Biotechnology,2002,4:453-461.
    [104] Sanz J L, K chling T. Molecular biology techniques used in wastewatertreatment: An overview [J]. Process Biochemistry,2007,42(2),119-133.
    [105]Hultman J, Kurola J, Rainisalo A,et al. Utility of molecular tools inmonitoring large scale composting [M]. New York: Springer-Verlag,2010:135-151.
    [106]Ariesyady H D, Ito T, Yoshiguchi K, et al. Phylogenetic and functionaldiversity of propionate-oxidizing bacteria in an anaerobic digester sludge [J].Applied and Environmental Microbiology,2007,75(3):673-683.
    [107]马俊科,刘春,吾根,等.工业化UASB厌氧颗粒污泥产氢产乙酸菌群分析[J].浙江大学学报.2011,45(3):576-581.
    [108]Harmsen H, Harry M P, Antoon D L, et al. Detection and localization ofsyntrophic propionate-oxidizing bacteria in granular sludge by In situhybridization using16S rRNA-based oligonucleotide probes [J]. Applied andEnvironmental Microbiology,1996,62(5):1656-1663.
    [109]Harmsen H, Akkermans A, Stams A, et al. Population dynamics ofpropionate-oxidizing bacteria under methanogenic and sulfidogenic conditionsin anaerobic granular sludge [J]. Applied and Environmental Microbiology,1996,62(6):2163-2168.
    [110]Hansen K, Ahring B K, Raskin L. Quantification of syntrophic fattyacid-β-oxidizing bacteria in a mesophilic biogas reactor by oligonucleotideprobe hybridization [J]. Applied and Environmental Microbiology,1999,62(6):2163-2168.
    [111]李艳娜.产氢产乙酸细菌在厌氧产酸体系中的微生态机理分析[D].无锡:江南大学,2008:15-22.
    [112]Speece R E著,李亚新译.工业废水的厌氧生物技术[M].北京:中国建筑工业出版社,2001:228-256.
    [113]国家环保局.水和废水监测分析方法[M].北京:中国环境科学出版社,2002:27-30.
    [114] Li J Z, Zheng G C, He J G, et al. Hydrogen-producing capability of anaerobicactivated sludge in three types of fermentations in a continuous stirred-tankreactor [J]. Biotechnology Advance,2009,27(5):573-577.
    [115]周律,钱易.厌氧生物反应器的设计、启动和运行控制方法.污染防治技术.1997,10(1):
    [116] Jha A K, Li J, Nies L, Zhang L. Research advances in dry anaerobic digestionprocessof solid organic wastes [J]. Afrcan Journal of Biotechnology,2011,10(65):14242-14253
    [117]Ren N, Zhao D, Chen X, Li J. Mechanism and controlling strategy of theproduction and accumulation pf propionic acid for anaerobic wastewatertreatment [J]. Science in China, Series B: Chemistry,2002,45(3):319-327.
    [118]Demirel B, Scherer P. The roles of acetotrophic and hydrogenotrophicmethanogens during anaerobic conversion of biomass to methane: a review [J].Reviews in Environmental Science and Biotechnology,2008,7:173-190
    [119]杜接弟,王毅力,李炯,徐昕照,魏科技. HRT对ABR处理低浓度废水的效果和颗粒污泥特征的影响.环境科学,2009,30(7):152-159.
    [120]涂保华,王建芳,张雁秋. UASB反应器中颗粒污泥的培养[J].污染防治技术,2003,16(3):65-67.
    [121]李建政,张妮,李楠,王兴祖. HRT对发酵产氢厌氧活性污泥系统的影响[J].哈尔滨工业大学学报,2006,38(11):1840-1846.
    [122]Schmidt J E, Ahring B K. Granular formation in upflow anaerobic sludgeblanket (UASB) reactors [J]. Journal of Biotechnology and Bioengineering,1996,49:229-246.
    [123]高瑞芳,袁旭峰,王小芬,等.高浓度酒精废水厌氧处理工程系统中古菌多样性及其代谢特征.微生物学通报,2011,38(4):468-473.
    [124]Boopathy R, Tilche A. Anaerobic digestion of high strength molasseswastewater using a hybrid anaerobic baffled reactor. Water research,1991,25(7):785-790
    [125]Wiiland P, Rozzi A. The start-up, operation and monitoring of high-rateanaerobic treatment systems: discusser’s report. Water Science and Technology,1991,24(8):257-277.
    [126]Henze M, Harremoes P. Anaerobic treatment of wastewater in fixed filmr eactors: a literature review. Water science and technology,1983,15(8-9):1-101.
    [127]Yamada T, Sekiguchi Y, Hanada S, et al. Anaerolinea thermolimosa sp. nov.,Levilinea saccharolytica gen. nov., sp. nov. and Leptolinea tardivitalis gen.nov., sp. nov., novel filamentous anaerobes, and description of the new classesAnaerolineaeclassis nov. and Caldilineae classis nov. in the bacterial phylumChloroflexi. Internatinal journal of system and evolutionary microbiology,2006,56:1331-1340.
    [128]Bae H S, Moe W M, Yan J, et al. Brooklawnia cerclae gen. nov., sp. nov., apropionate-forming bacterium isolated from chlorasolvent-contaminatedgroundwater. Internatinal journal of system and evolutionary microbiology,2006,56(8):1977-1983.
    [129]Schwiertz A, Lehmann U, Jacobasch G, et al. Influence of resistant starch onthe SCFA production and cell counts of butyrate-producing Eubacterium spp.in the human intestine. Journal of Applied Microbiology,2002,93:157-162.
    [130]Xing D, Ren N, Li Q, et al. Ethanoligenens harbinense gen. nov., sp.nov.,isolated from molasses wastewater. Internatinal journal of system andevolutionary microbiology,2006,56:755-760.
    [131]Br uer S L, Cadillo-Quiroz H, Yashiro E, et al. Isolation of a novel acidiphilicmethanogen from an acidic peat bog. Nature,2006,442:192-194.
    [132]Cadillo-Quiroz H, Yavitt J B, Zinder S H. Methanosphaerula palustris gen.nov., sp. nov., a hydrogenotrophic methanogen isolated from a minerotrophicfen peatland. Internatinal Journal of System and Evolutionary Microbiology,2009,59:928-935.
    [133]Yashiro Y, Sakai S, Ehara M, et al. Methanoregula formicica sp. nov., amethane-producing archaeon isolated from methanogenic sludge. InternatinalJournal of System and Evolutionary Microbiology,2011,61(1):755-760.
    [134]Lay J J, Li Y Y, Noike T, et al. Analysis of environmental factors affectingmethane production from high-solids organic waste. Water Science andTechnology,1997,36:493-500.
    [135]Torkian A, Eabali A, Hashemian S J. The effect of organic loading rate on theperformance of UASB reactor treating slaughterhouse effluent. Resources,Conservation and Recycling,2003,40:1-11.
    [136]Leit o R C, van Handel A C, Zeeman G, et al. The effects of operational andenvironmental variations on anaerobic wastewater treatment system: A review[J]. Bioresource Technology,2006,97(9):1105-1118.
    [137] Cohen A, Breure A M, van Andel J G, et al. Influence of phase separation onthe anaerobic digestion of glucose—II: stability, and kinetic response to shockloadings, Water Research,1982,16:449-445.
    [138]van Lier J B, Tilche A, Ahring B K, et al. New perspectives in anaerobicdigestion [J]. Water Science and Technology,2001,43(1):1-18.
    [139]Chua H, Hu W F, Yu P H F, et al. Response of an anaerobic fixted-film reactorto hydraulic shock loadings, Bioresource Technology,1997,61:79-83.
    [140]Boone D R, Bryant M P. Pr opionate-degrading bacterium, Syntrophobacterwolinii sp. nov. gen. nov., from methanogenic ecosyste ms, AppliedEnvironment and Microbiology,1980,40:626-632.
    [141]Narihiro T, Terada T, Ohashi A, et al. Quantitative detection of previouslycharacterized syntrophic bacteria in anaerobic wastewater treatment systems bysequence-specific rRNA cleavage method. Water Research,2012,46:2167-2175.
    [141] Savant D V, Rande D R. Application of Methanobrevibacter acididurans inanaerobic digestion [J]. Water Science and Technology,2004,50:109-114.
    [142] Seghezzo L, Zeeman G, van Lier J B, et al. A review: the anaerobic treatmentof sewage in UASB and EGSB reactors [J]. Bioresource Technology,1998,65(3):175-190.
    [143] Pavlostathis S G, Giraldo-Gomez E. Kinetics of anaerobic treatment: a criticalreview [J]. Critical Reviews in Environmental Control,1991,21(5):411-490.
    [144]Speece R E. Anaerobic biotechnology for industrial wastewaters[J].Environmental Science and Technology,1983,17(9):416-427.
    [145]Li J, Ban Q, Zhang L, et al. Syntrophic propionate degradation in anaerobicdigestion: a review [J]. International Journal of Agriculture and Biology,2012,5:843-850.
    [146]李刚,杨立忠,欧阳峰.厌氧消化过程控制因素及PH和eh的影响分析[J].西南交通大学学报,2001,36(5):518-521.
    [147]任南琪.产酸发酵细菌演替规律研究[J].哈尔滨建筑大学学报,1999,32(2):29-34.
    [148]陈晓雷.有机废水产酸发酵顶级群落研究—生态因子pH、Eh的影响[D].哈尔滨建筑大学硕士论文,1998
    [149]任南琪,王爱杰,马放.产酸发酵微生物生理生态学[M].科学出版社:2005,23-25.
    [150]赵丹.产酸相发酵类型控制对策研究[D].哈尔滨建筑大学硕士论文,1998
    [151]任南琪,王爱杰,马放.产酸发酵微生物生理生态学[M].科学出版社:2005,10-45.
    [152] Tepidanaerobacter syntrophicus gen. nov., sp. nov., an anaerobic, moderatelythermophilic, syntrophic alcohol-and lactate-degrading bacterium isolatedfrom thermophilic digested sludges. Internatinal journal of system andevolutionary microbiology,2006,56(7):1621-1629.