小麦籽粒淀粉组成、糊化特性及其对氮素水平的响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究选用12个不同类型小麦品种(系),研究了小麦籽粒淀粉的粒度分布特征、完熟期籽粒提取淀粉的糊化特性及其发育过程中直支链淀粉积累特点、淀粉合成关键酶活性变化,并针对不同品质类型小麦品种设计3个氮肥水平,研究了氮素水平对小麦籽粒淀粉的粒度分布、直支链淀粉积累、糊化特性的影响,初步探讨了小麦籽粒淀粉组成与其糊化特性之间的关系。研究结果表明:
     1小麦籽粒淀粉粒度分布特征及其对氮素水平的响应
     小麦籽粒中淀粉粒的数目分布呈单峰或双峰曲线变化,仅个别品种呈3峰曲线变化;体积和表面积分布呈双峰曲线变化,仅个别品种呈3峰曲线变化。B型淀粉粒的数目和表面积比例显著高于A型淀粉粒的,A型淀粉粒的体积比例一般高于B型淀粉粒的。不同类型小麦籽粒中淀粉粒度分布存在差异。糯小麦籽粒中B型淀粉粒的比例显著高于普通小麦,强筋小麦籽粒中B型淀粉粒的比例明显高于弱筋小麦。
     氮素水平对不同品质类型小麦籽粒中的淀粉粒度分布均存在显著影响,且影响的趋势因品种类型而异。强筋小麦随氮肥用量的增加,B型淀粉粒的比例呈下降趋势,平均径和中位径显著增大,体积和表面积分布的B型淀粉粒峰值粒径显著增大。中筋小麦随氮肥用量的增加,籽粒中B型淀粉粒的比例呈一定程度的增大趋势,平均径和中位径呈降低趋势。弱筋小麦增施氮肥后,籽粒中B型淀粉粒的比例显著提高,且以低氮处理的为最大,低氮处理的平均径和中位径均低于对照。
     2不同类型小麦品种淀粉积累的差异及其酶学机制
     籽粒灌浆过程中糯小麦、部分糯小麦和非糯小麦淀粉含量、积累量变化存在显著差异。非糯小麦和部分糯小麦籽粒中总淀粉和支链淀粉含量快速提高的时间较糯小麦早,前两者为花后6天,后者为花后10天;支链淀粉快速增长终止时间方面,糯小麦相对较早。花后10天至成熟期的大部分籽粒灌浆过程中,糯小麦和部分糯小麦的淀粉含量一般高于非糯小麦;糯小麦支链淀粉含量显著高于非糯小麦和部分糯小麦;糯小麦直链淀粉快速积累的时间显著短于部分糯小麦和非糯小麦,其直链淀粉含量极低,显著低于部分糯小麦和非糯小麦。不同类型小麦籽粒灌浆过程中直支淀粉比的变化趋势显著不同,糯小麦直支淀粉比显著低于部分糯小麦和非糯小麦。
     籽粒灌浆初期(花后6天前),糯小麦的蔗糖合酶活性较高,降解蔗糖的能力较强,表现为蔗糖含量较低,同时此期UGPP和AGPP活性较高,说明淀粉合成所需底物的供应能力较强。尽管此期糯小麦的SSS、GBSS和SBE活性低于非糯小麦和部分糯小麦,但其支链淀粉和总淀粉含量高于后两者。糯小麦、部分糯小麦和非糯小麦籽粒灌浆过程中AGPP活性的变化趋势存在显著不同。非糯小麦和部分糯小麦开花后籽粒中的AGPP活性持续提高,花后20天左右达峰值,之后降低;糯小麦的AGPP活性花后6天前略有降低,花后6-25天快速提高,于花后25天左右达峰值,之后降低。整个籽粒灌浆过程中,非糯小麦和部分糯小麦籽粒中GBSS活性显著高于糯小麦。与非糯小麦和部分糯小麦相比,糯小麦籽粒灌浆后期UGPP、AGPP、SBE和DBE活性较高是其支链淀粉含量较高、持续时间较长的重要生理原因。
     3氮素水平对小麦籽粒灌浆过程中淀粉含量和积累量的变化存在显著影响
     增施氮肥降低灌浆过程中小麦籽粒中直链淀粉的含量。低氮处理提高小麦籽粒中总淀粉含量,但高氮处理对其影响不大,甚至降低。支链淀粉含量变化趋势与总淀粉含量大致相同。
     增施氮肥降低灌浆过程中小麦籽粒中直链淀粉的积累量。低氮处理提高强筋小麦豫麦47籽粒中支链淀粉积累量,但高氮处理使其降低;低氮处理提高中筋小麦山农8355籽粒灌浆过程中的支链淀粉积累量,但高氮处理使其支链淀粉积累量的增幅降低;增施氮肥降低弱筋小麦豫麦50籽粒中灌浆前期的支链淀粉积累量,灌浆后期低氮处理的支链淀粉积累量迅速增长,高出对照2%,而高氮处理虽有所提高但始终低于对照。强筋小麦豫麦47高氮处理显著降低总淀粉积累量;中筋小麦山农8355籽粒淀粉积累量在灌浆过程中,随氮肥增施,低氮处理大部分时间显著高于对照;高氮处理仅在灌浆前期下降显著;弱筋小麦豫麦50籽粒淀粉积累量在灌浆前期,低氮处理和高氮处理均下降显著,降幅超过5%,有时甚至超过10%。
     4小麦籽粒提取淀粉糊化特性及其对氮素水平的响应
     非糯小麦和部分糯小麦的高峰粘度、最终粘度明显高于糯小麦,而低谷粘度明显低于糯小麦,从而造成非糯小麦和部分糯小麦的稀懈值、反弹值显著高于糯小麦;糯小麦的糊化温度和峰值时间显著高于非糯小麦和部分糯小麦。强筋小麦的高峰粘度、稀懈值显著高于中筋小麦和弱筋小麦,其低谷粘度、最终粘度、反弹值、峰值时间、糊化温度显著低于后两者。
     强筋品种增施氮肥后,低谷粘度、最终粘度和反弹值提高;低氮处理的糊化温度提高,到达峰值的时间延长,高峰粘度、稀懈值降低;高氮处理的糊化温度降低,峰值时间缩短,高峰粘度、稀懈值提高。中筋品种增施氮肥后高峰粘度、低谷粘度、最终粘度和稀懈值呈增大趋势;低氮处理的糊化温度降低,峰值时间提前,而高氮处理的糊化温度增大,峰值时间拖后。弱筋品种增施氮肥后淀粉糊化参数均降低,且低氮处理降低的幅度较高氮处理大。
     5小麦籽粒淀粉组成与糊化特性的相关性分析
     相关性分析结果表明,淀粉的直、支链淀粉组成和粒度分布与其糊化特性间存在一定相关性。B型淀粉粒的数目、体积和表面积比例与高峰粘度和稀懈值存在显著正相关;与低谷粘度、最终粘度和反弹值存在显著负相关;与峰值时间呈一定程度负相关,但未达显著水平。籽粒中直链淀粉含量、支链淀粉含量和总淀粉含量与高峰粘度、稀懈值呈显著负相关,与低谷粘度、最终粘度、反弹值和峰值时间呈一定程度正相关。
In this study,we selected twelve different type wheat cultivars to study starch granule size distribution,isolated starch pasting properties,accumulation characteristics of amylose and amylopectin,dynamic changes of the activities of key enzymes related to starch biosynthesis.At the same time,we selected different quality-type wheat cultivars and set three nitrogen fertilizer rates to study effects of nitrogen application rates on starch granule size distribution,composition of amylose and amylopectin,and starch pasting properties.The realtionship between wheat starch composition and pasting properties was also analyzed.The main results were as follows:
     1 The granule size distribution characteristics of wheat grain starch and its response to nitrogen application rates
     Most of wheat endosperms had a unimodal or bimodal curve in starch granule number distribution,and a bimodal curve in starch guanule volume or surface area distribution.Few cultivars in our study showed a trimodal curve in starch granule number distribution and a trimodal curve in starch guanule volume or surface area distribution.The number and surface area ratioes of B-type starch granules were much higher than those of A-Type starch granule in wheat grains.But the volume ratioes of A-Type starch granules were commonly higher than those of B-type starch granules.There exised obvious difference in the starch granule distribution among different type wheat cultivars.The ratioes of B-type starch granules in waxy wheat grains were much higher than those in nonwaxy wheat grains.The ratioes of B-type starch granules in strong-gluten wheat grains were much higher than those in weak-gluten wheat grains.
     The nitrogen rates influenced the distribution of starch granules in different quality-type wheat grains significantly,and the influencing trend varied with genotypes.Increasing nitrogen fertility amount decreased the ratioes of B-type starch granules and augmented the average diameter and the middle diameter markedly in the endosperm of strong-gluten wheat.The peak diameters of B-type starch granules in the volume and surface area distribution enhanced markedly in the endosperm of strong-gluten wheat with the increasing of nitrogen rates.The B-type starch granule ratioes in the medium-gluten wheat enhanced with a reasonable nitrogen rate,at the same time,the average diameter and the middle diameter decreased.The B-type starch granule ratioes in the weak-gluten wheat enhanced significantly by increasing nitrogen rates,and the B-type starch granule ratioes of low nitrogen rate(LN) were the highest among those of three treatments.The average diameter and the middle diameter of LN in the weak-gluten wheat were lower than those of CK.
     2 The difference of starch accumulation and the enzymatic mechanism of starch biosynthesis in different type wheat cultivars
     During wheat grain filling,the dynamic changes of starch content and accumulation were significantly different among waxy,nonwaxy and partial waxy wheat cultivars.The starch and amylopectin(AP) content began to increase quickly in nonwaxy and partial waxy wheat grains at 6 days after anthesis(DAA),and that was at 10 DAA in waxy wheat grains.The time of AP content stopped increasing quickly in waxy wheat grains was earlier than that in nonwaxy and partial waxy wheat grains.The starch contents in waxy and partial waxy wheat were commonly higher than those in nonwaxy wheat during grain filling after 10 DAA.The AP content in waxy wheat was much higher than those in nonwaxy and partial waxy wheat.The time of amylase(AM) accumulation increasing quickly in waxy wheat was much shorter than those in nonwaxy and partial waxy wheat.It resulted in the low AM content in waxy wheat.The AM content in waxy wheat was much lower than those in nonwaxy and partial waxy wheat.The dynamic changes of the ratio of AM to AP were significantly different during different type wheat grain filling stage.The ratio of AM to AP in waxy wheat was much lower than those of nonwaxy and partial waxy wheat.
     At initial grain filling stage (before 6 DAA),the activity of SS in waxy wheat was higher,the ability of degradation of sucrose was stronger,which appeared as the sucrose content was lower in waxy wheat.At the same time,the activities of UGPP and AGPP were higher,which suggested that the supplying ability of substrates to synthesize starch in waxy wheat was stronger.The activities of SSS,GBSS and SBE in waxy wheat were lower than those in nonwaxy and partial waxy wheat at initial grain filling stage,but the starch and AP contents in waxy wheat were higher than the two latters’.
     The dynamic changes of activity of AGPP were obvious difference in waxy,nonwaxy and partial waxy wheat during grain filling.The activity of AGPP continually increased in nonwaxy and partial waxy wheat grains after anthesis,which reached peak at about 20 DAA and then decreased.The activity of AGPP slightly decreased in waxy wheat grains before 6 DAA,increased quickly from 6-25 DAA,reached peak at about 25 DAA and then decreased.
     The activity of GBSS in nonwaxy and partial waxy wheat was much higher than that in waxy wheat during grain filling.The activities of UGPP,AGPP,SBE and DBE in waxy wheat were higher than those in nonwaxy and partial waxy wheat during the later grain filling stage,which was the important physiological reason for the higher and continual longer of AP content.
     3 Nitrogen rate affected the dynamic changes of starch content and accumulation during wheat grain filling markedly
     Increasing nitrogen fertility could decrease the AM content in wheat grain during grain filling.Increasing nitrogen fertility appropriately could heighten the starch content in wheat grain,but as the amount of nitrogen continued to increase,grain starch content might decrease.The changing trend of AP content was similar to that of starch content.
     Increasing nitrogen fertility could decrease the AM accumulation in wheat grain during grain filling.Increasing nitrogen fertility appropriately could heighten the AP accumulation in strong-gluten wheat cultivar YM47,but as the amount of nitrogen continued to increase,the AP accumulation decreased.Increasing nitrogen fertility appropriately could heighten the AP accumulation in medium-gluten wheat cultivar SN8355,but as the amount of nitrogen continued to increase,the increasing percent of AP accumulation decreased.Increasing nitrogen fertility could decrease the AP accumulation in weak-gluten wheat cultivar YM50 in the early stage of grain filling.During the later grain filling stage,the AP accumulation of LN increased quickly in weak-gluten wheat YM50,which was higher 2% than CK,but the AP accumulation of HN increased slightly and was lower than CK all the time.
     Increasing nitrogen fertility excessively could decrease markedly the starch accumulation in strong-gluten wheat cultivar YM47.Increasing nitrogen fertility appropriately, the starch accumulation of LN was mostly much higher than that of CK in medium-gluten wheatcultivar SN8355 during grain filling.As the amount of nitrogen continued to increase,he starch accumulation decreased markedly in the early stage of grain filling.The starch accumulations of LN and HN decreased markedly in weak-gluten wheat cultivar YM50 in the early stage of grain filling,the decreasing range was higher than 5% and it was higher than 10% sometimes.
     4 The pasting properties of isolated wheat starch and its response to nitrogen application rate
     The peak viscosity (PV) and final viscosity (FV) of isolated starch from nonwaxy and partial waxy wheat were much higher than those of isolated starch from waxy wheat.The through viscosity (TV) of nonwaxy and partial waxy wheat was much lower than that of waxy wheat.It resulted in that the breakdown (BD) and setback (SB) of nonwaxy and partial waxy wheat were much higher than those of waxy wheat.The pasting temperature (PM) and peak time (PT) of waxy wheat were much higher than those of nonwaxy and partial waxy wheat. The PV and BD of strong-gluten wheat were much higher than those of medium-gluten and weak-gluten wheat,but its TV,FV,SB,PT and PM were much lower than those of the two latters.
     In strong-gluten wheat, increasing nitrogen fertility properly could increase the TV,FV,SB,PM and PT,but decrease PV and BD.As the amount of nitrogen increasing to 300kg/hm2,the PM and PT decreased,and thePV,TV,BD,FV and SB increased.In medium-gluten wheat,increasing nitrogen fertility properly could increased the PV,TV,FV and BD,but decreasing PM and PT.As the amount of nitrogen increasing to 300kg/hm2,the PV,TV,FV,BD, PM and PT increased.The RVA parameters of isolated starches from weak-gluten wheat declined after using more nitrogen fertility,and the decreasing range of LN was higher than that of HN.
     5 Relationships of wheat grain starch composition and starch pasting properties
     The correlative analysis results indicated that there were close correlations between wheat starch composition,which included AM or AP content and granule size distribution,and starch pasting properties.The number, volume and surface area ratioes of B-type starch granules were significantly positively correlated with PV and BD,and were negatively correlated with TV,FV and SB significantly,and were negatively correlated with PT,but the former did not reach significant level.The AM, AP and starch contents of wheat grains were significantly negatively correlated with PV and BD,and were positively correlated with TV,FV,SB and PT.
引文
1.包劲松.植物淀粉生物合成研究进展.生命科学,1999,11:104-107
    2.蔡瑞国,尹燕枰,张敏,等.氮素水平对藁城8901和山农1391籽粒品质的调控效应.作物学报,2007,33(2):304-310
    3.蔡瑞国,尹燕枰,赵发茂,等.强筋品种胚乳淀粉粒度分布特征及其对弱光的响应.中国农业科学,2008,41(5) :1308-1316
    4.曹广才,吴东兵,陈贺芹等.温度和日照与春播小麦品质的关系.中国农业科学,2004,37:663-669.
    5.陈东升,Kiribuchi-Otobe C.,徐兆华,陈新民,周阳,何中虎,Yoshida H.,张艳,王德森. Waxy蛋白缺失对小麦淀粉特性和中国鲜面条品质的影响.中国农业科学,2005,38(5):865-873
    6.程方民,蒋德安,吴平,石春海.早籼稻籽粒灌浆过程中淀粉合成酶的变化及温度效应特征.作物学报,2001,27(2):201-206.
    7.戴忠民,王振林,张敏,等.不同品质类型小麦籽粒淀粉粒度的分布特征[J].作物学报,2008,34(3):465?470
    8.方克旋,王澄.小麦直链淀粉含量测定及其含量对食品品质的影响.中国粮油食品, 1985,2:27-28.
    9.封超年,郭文善,施劲松,彭永欣,朱新开.小麦花后高温对籽粒胚乳细胞发育及粒重的影响.作物学报,2000,26(4):398-405.
    10.高松洁,郭天财,王文静等.不同穗型冬小麦品种灌浆期籽粒中与淀粉合成有关的酶活性变化.中国农业科学,2003,36:1373-1377.
    11.贺明荣,王振林.小麦光合物质在小穗间的分配及与穗粒重的关系.作物学报,2000,26:190-194.
    12.何中虎.糯小麦的研究概况.作物杂志,1999, (2) : 7-9
    13.胡宏,盛蜻,郭文善,朱新开,封超年,彭永欣.氮肥对弱筋小麦宁麦9号淀粉形成的调节效应.麦类作物学报,2004, 24 (2): 92-96
    14.黄峻榕. X射线衍射在测定淀粉粒结构中的应用.陕西科技大学学报, 2003, 21(4): 90-93
    15.黄强,罗发兴,杨连生.淀粉颗粒结构的研究进展,高分子材料科学与工程,2004,20(5):19-22
    16.姜东,于振文,李永庚.高产小麦强势和弱势籽粒淀粉合成相关酶活性的变化.中国农业科学. 2002,35(4): 378-383.
    17.姜东,于振文,李永庚,余松烈.施氮水平对鲁麦22籽粒淀粉合成的影响.作物学报,2003,29(3):462-467
    18.姜东,谢祝捷,曹卫星.花后干旱和渍水对冬小麦光合特性和物质运转的影响.作物学报,2004,30(2):175-182.
    19.金善宝.中国小麦学[M]. 1996,北京:中国农业出版社.
    20.李春燕,封超年,张影,郭文善,朱新开,彭永欣.氮肥基追比对弱筋小麦宁麦9号籽粒淀粉合成及相关酶活性的影响.中国农业科学,2005,38(6):1120-1125
    21.李继刚,梁荣奇,张义荣,李保云,刘广田.糯性普通小麦的产生及其淀粉特性研究.麦类作物学报.2001,21(2):10-13
    22.李金才,魏凤珍,丁显萍.小麦穗轴和小穗轴维管束系统及与穗部生产力关系的研究.作物学报,1999,25(3):315-319.
    23.李青常,王振林,张艳,刘霞,石书兵.施氮水平对小麦面条加工品质的影响.中国农业科学,2005,38(2):420-424
    24.李欣,顾铭洪,潘学彪.稻米品质研究.江苏农学院学报, 1989,10 (1): 7-11
    25.李永庚.山东省不同生态类型区小麦品质的差异及其生理基础.博士研究生论文. 2001.
    26.梁荣奇,张义荣,唐朝晖,刘守斌,李保云,刘广田.糯性普通小麦的籽粒成分和淀粉品质研究.中国粮油学报,2002,17(4):12-16
    27.林琪,侯立白,韩伟.不同肥力土壤下施氮量对小麦籽粒产量和品质的影响.植物营养与肥料学报,2004, 10(6) :561-567
    28.刘广田,李继刚,尤明山,梁荣奇.糯性胚乳小麦的选育.农业生物技术学报,2000,8(1):6
    29.刘建军,何中虎,杨金.小麦品种淀粉特性变异及其与面条品质关系的研究.中国农业科学,2003,36(1):7-12.
    30.刘晓冰,王光华,杨恕平,李艳华,金剑.不同施肥水平对春小麦籽粒淀粉、蛋白质积累的影响.农业现代化研究,1998, 19 (3 ): 187-189
    31.刘仲齐,吴兆苏,俞世蓉.吲哚乙酸和脱落酸对小麦籽粒淀粉积累的影响.南京农业大学学报,1992,15(1):7-12.
    32.孟亚利,高如嵩,张嵩午.影响稻米品质的主要气候生态因子研究.西北农业大学学报, 1994,22 (1): 40-43
    33.穆培源,何中虎,徐兆华,王德森,张艳,夏先春. CIMMYT普通小麦品系Wary蛋白类型及淀粉糊化特性研究.作物学报,2006,32(7):1071-1075
    34.潘庆民,于振文,王月福,余松烈.追氮时期对小麦旗叶中蔗糖合成与籽粒中蔗糖降解的影响.中国农业科学,2002,35(7): 771-776
    35.申丽霞,王璞.氮素供应对优质专用小麦产量和品质的影响.作物杂志,2003( 3 ) : 24-26
    36.盛蜻,胡宏,郭文善,朱新开,封超年,彭永欣.施氮模式对皖麦38淀粉形成与产量的效应.作物学报,2004,30(5):507-511
    37.石书兵,马林,石庆华,刘霞,陈乐梅,刘建喜,王振林.不同施氮时期对冬小麦子粒蛋白质组分及其动态变化的影响.植物营养与肥料学报,2005,11(4):456-46
    38.宋建民,刘爱峰,尤明山,李保云,吴祥云,赵振东,刘广田.糯小麦配粉对淀粉糊化特性和面条品质的影响.中国农业科学, 2004,37(12):1838-1842
    39.孙霞,吴秀菊,胡尚连,李文雄.氮肥形态对不同HMW-GS类型春小麦高分子量谷蛋白聚合体积累的效应.作物学报,2005,31(4):463-468
    40.王晨阳,马冬云,郭天财,朱云集,王化岑,冯伟.不同水氮处理对小麦淀粉组成及特性的影响.作物学报,2004,30(8):843-846
    41.王桂林.小麦粒重形成过程中内源ABA和GAs的变化及其调节.北京农业大学学报,1991,17(增刊):109-114.
    42.王瑞.面包、面条、馒头质量与小米面粉主要参数指标的相关分析.国外农学-麦类作物, 1995,3:35-37.
    43.王瑞英,于振文,潘庆民,许玉敏.小麦籽粒发育过程中激素含量的变化.作物学报,1999,25(2):227-231.
    44.王维,张建华,杨建昌,朱庆森.水分胁迫对贪青迟熟水稻茎贮藏碳水化合物代谢及产量的影响.作物学报,2004,30(3):196-204.
    45.王小纯,熊淑萍,马新明,张娟娟,王志强.不同形态氮素对专用型小麦花后氮代谢关键酶活性及籽粒蛋白质含量的影响.生态学报,2005,25(4):802-807
    46.王月福,于振文,李尚霞,余松烈.氮素营养水平对小麦开花后碳素同化、运转和产量的影响.麦类作物学报,2002, 22 (2): 55-59
    47.王月福,于振文,李尚霞,余松烈.小麦籽粒灌浆过程中有关淀粉合成酶的活性及其效应.作物学报,2003, 29 (1): 75-81
    48.王兆龙,曹卫星,戴廷波.小麦小花两极分化中内源植物激素与糖氮含量的变化规律.作物学报,2001,27(4):447-452.
    49.王志敏.小麦籽粒蛋白质贮积的生理学研究进展.国外农学-麦类作物,1996,(4):23-26.
    50.王振林,贺明荣,傅金民等.源库调节对灌溉与旱地小麦开花后光合产物和分配的影响.作物学报,1999,25(2):162-168.
    51.许轲,戴其根,葛鑫,陆纪元,霍中洋,张强,龚振恺,刘强,赵新华.氮肥运筹对面条小麦品种陕农229淀粉品质的影响.上海农业学报,2004, 20 (1): 49-53
    52.徐军望,李旭刚,朱桢.基因工程改良淀粉品质.生物技术通报, 2000, 1:11-19.
    53.徐兆飞,张惠叶,张定一.小麦品质及其改良.北京,气象出版社,2000.
    54.闫素辉,尹燕枰,李文阳,等.灌浆期高温对小麦籽粒淀粉的积累、粒度分布及相关酶活性的影响.作物学报,2008,34(6):1092-1096
    55.杨学举,平屈,张彩英等.小麦A型淀粉粒大小对淀粉特性及面包品质的影响.河北农业大学学报, 2004, 27 (5): 1-5
    56.姚大年,孙辉,刘广田.小麦糯性蛋白的研究与利用.中国粮油学报,1999, 14(6):1-4
    57.姚大年,李保云,朱金宝.小麦品种主要淀粉性状及面条品质预测指标的研究.中国农业科学,1999,32(6):82-48.
    58.姚大年,刘广田,朱金宝.基因型和环境对小麦品种籽粒性状及馒头品质的影响.中国粮油学报,2000a,15(2):1-5.
    59.姚大年,李保年,梁荣奇,刘广田.小麦品种面粉粘度性状及其在面条品质评价中的作用.中国农业大学学报,2000b,5(3):25-29.
    60.姚大年,司洪芳,张文明,姜文,赵莉.糯小麦及部分普通小麦品种主要淀粉性状的研究.安徽农业大学学报,2004,31(4):389-391
    61.尹静,胡尚连,肖佳雷,李文雄.不同形态氮肥对春小麦品种籽粒淀粉及其组分的调节效应.作物学报,2006,32(9):1294-1300
    62.于振文.2001,优质专用小麦品种及栽培,中国农业出版社.
    63.翟风林.作物品质育种,1991,110-113.
    64.张春庆,李晴祺.影响普通小麦加工馒头质量的主要品质性状的研究.中国农业科学,1993,26:39-46.
    65.张军,张洪程,戴其根,许轲,霍中洋,韩世来,赵广才.追施氮肥时期对淮南中筋小麦品质的影响.扬州大学学报(农业与生命科学版), 2003, 24(2):44-48.
    66.张强,戴其根,张洪程,许轲,霍中洋,黄严帅,葛鑫.氮肥用量对中筋专用小麦品质的影响.安徽农业科学,2004,32 (2): 299-301
    67.张学林,郭天财,朱云集,王晨阳,马冬云,王永华.追氮时期对两种筋型小麦淀粉糊化特性的影响.华北农学报,2005,20(3 ): 79-82
    68.赵会杰,邹琦,张秀英.两个不同穗型小麦品种生育后期碳水化合物代谢的比较研究.作物学报,2003,29(5):676-681.
    69. Ahmadi A, Baker DA. The effect of water stress on the activities of key regulatory enzymes of the sucrose to starch pathway in wheat. Plant Growth Regul, 2001,35:81-91.
    70. Ainsworth C, Clark J, Balsdon J. Expression, organization and structure of the genes encoding the Waxy protein (granule-bound starch synthase) in wheat. Plant Molecular Biology, 1993,22: 67-82.
    71. Badenhuizen N.P. (1969) The biogenesis of special starches. In: Badenhuizen, N.P. (Ed), The Biogenesis of starch granules in higher palnts. Appleton Century-Croft, New York, pp. 77-100
    72. Bai X F, Cai Y P, Nie F. Relationship between abscisic acid and grain filling of rice and wheat. Plant Physiol Commun, 1989,3, 40-41.
    73. Ball, S., H.P. Guan, and M. James. From glycogen to amylopectin:a modle explaining the biogenensis of the plant starch granule. Cell, 1996, 86:349-352.
    74. Ball SG, van de Wal MHBJ, Visser RGF. Progress in understanding the biosynthesis of amylose. Trends Plant Sci, 1998, 3: 462-467.
    75. Bechtel D, Zayas, I, Kaleikau, A and Pomeranz. Size-distribution of wheat starch granules during endosperm development. Cereal Chem. 1990,67:59-63.
    76. Bechtel D., Zayas, I., Dempster, R. and Wilson, J.D. Size-distribution of starch granules isolated from hard red winter and soft red winter wheat. Cereal Chem. 1993,70:238-240.
    77. Bhattacharya M, Corke H. Selection of desirable starch pasting properties in wheat for use in white salted or yellow alkaline noodles. Cereal Chem, 1996, 73(6): 721-728.
    78. Bhattacharya M, Jafari-Shabestari J., Qualset C.O. and Corke H. Diversity of starch pasting properties in Iranian hexaploid wheat land-races. Cereal Chem., 1997, 74: 417-423.
    79. Briarty LG, Hughes CE, Evers AD. The developing endosperm of wheat—a stereological analysis. Annals o f Botany, 1979, 44: 641-658.
    80. Briney A, Wilson R, Potter R H, Barclay I, Crosbie G, Appels R, Jones M G K. A PCR marker for selection of starch and potential noodle quality in wheat. Molecular Breeding, 1998,4: 427-433.
    81. Buttrose B L. Ultrastructure of the developing wheat endosperm. Aust.J.Biol.Sci. 1963,16:305-310.
    82. Cameron R E, Durrani C M, Donald A M. Gelation of amylopectin without long range order. Starch, 1994, 46: 285-287.
    83. Cao H, Imparl-Radosevich J, Guan H. Identification of the soluble starch synthase activities of maize endosperm. Plant Physiol, 1999, 120: 205-216.
    84. Chiotelli E, Meste M L. Effect of small and large wheat starch granules on thermo mechanical behavior of starch. Cereal Chem, 2002, 79(2): 286-293.
    85. Clarka J R, Robertson M, Anisworth C C. Nucleotide sequences of a wheat cDNA clone encoding the waxy protein. Plant Mol Bio1, 1991, 16:1099-1101
    86. Crosbie, G.B. Wheat quality trends in Western Australia, Proc.39th Cereal Chemistry Conference, Perth ,1989,59-65 (RACI Parkville , Vic.)
    87. Crosbie G B. The relationship between starch swelling properties, paste viscosity and boiled noodle quality in wheat flour. J.Cereal Sci, 1991,13:145-150.
    88. Demeke T, Hucl P, Abdel E-SM.et al. Biochemical characterization of the wheat waxy a protein and its effect on starch properties. Cereal Chem.,1999, 76(5): 694-698
    89. Dengate H. and Meredith P. Variation in size distribution of starch granules from wheat grain. J.Cereal Sci. 1984,2:83-90.
    90. Denyer K, Waite D, Motawia S, Moller B L, Smith AM. Granule-bound starch synthase I in isolated starch granules elongates malto-oligosaccharides processively. Biochem J, 1999, 340:183-191.
    91. Douglas, C.D., T.M. Kuo, and F.C. Felker. Enzymes of sucrose and hexose metabolism in developing kernels of two inbreds of maize. Plant Physiology. 1988,86:1013-1019.
    92. Duffus C M. Murdoch S M. Variation in starch granule size distribution and amylose contentduring wheat endosperm development. Cereal Chem, 1979,56: 427-429.
    93. Eliasson A C, and Karlsson R. Gelatinization properties of different size classes of wheat starch granules measured with differential scanning calorimetry. Starch,1983,35:130-133.
    94. Ellis R P., Cochrane M P., Dale M F B., Duffus C M., Lynn A., Morrison I M., Prentice R D M., Swanston J S and Tiller S A. Starch production and industrial use. J.Sci. Food.Agric. 1998,77:289-311.
    95. Evers A D. Scanning electron microscopy of wheat starch.Ⅲ.Granule development in the endosperm. Starch. 1971,23:157-160.
    96. Evers A D. The size distribution among starch granules in wheat endosperm. Starch. 1973,25:303-304.
    97. Evers A D. and Lindley J. The particle-size distribution in wheat endosperm starch. J.Sci.food Agric. 1977,28:98-101.
    98. Fisher D B, Gifford R M. Accumulation and conversion of sugars by developing wheat grains. VI, Gradients along the transport pathway from the peduncle to the endosperm cavity during grain filling. Plant Physiol,1986,82:1024-1030.
    99. Fritz B.,Walter A,Ottheinrich B. IAA level and dry matter accumulation a different positions within a wheat ear. Plant Physiol.,1985,63:121-125.
    100.Fu BX, Kovacs M I P, Wang C. A simple wheat flour swelling test. Cereal Chem, 1998, 75(4):566-567.
    101.Gaines CS, Raeker MO, Tilley M. Associations of starch gel hardness, granule size, waxy allelic expression, thermal pasting, milling quality, and kernel texture of 12 soft wheat cultivars. Cereal Chem, 2000, 77(2): 163-168.
    102.Gebbing,T., and H.Schnyder. Pre-anthesis reserve utilization for protein and carbohydrate synthesis in grains of wheat. Plant Physiol, 1999,121:871-878.
    103.Gidley MJ. Molecular mechanisms underlying amylose aggregation and gelation. Macromolecules, 1989, 22: 351-358.
    104.Golay A. Effect of erestation, an amylose inhibitor and incorporated into bread on glycemia responses in normal and diabetic pations. American Journal of Clinical Nutrution, 1991,53:61-65
    105.Graybosch R A. Waxy wheate: origin,properties and prospects. Food science & technology, 1998,9:135-142
    106.Graybosch R A, Gao G, Shelton D R. Aberant falling numbers of waxy wheatsindependent ofα-amylase activity. Cereal chem., 2000, 77(1):1-3
    107.Guan H-P, Preiss J. Differentiation of the properties of the branching isozymes from maize (Zea mays). Plant Physiol, 1993, 102: 1269-1273
    108.Hayakawa K, Tanaka K, Nakamura T. et al. Quality characteristics of Waxy hexaploid wheat (Triticum aestivumL.): properties of starch gelatinization and retrogradation. Cereal Chemistry, 1997, 74(5):576-580
    109.Hizukuri S. Kakelo T. and Takeda Y. Measurement of the chain length of amylopectin and its relevance ti the origin of crystalline polymorphism of starch granules. Biochem. Biophys. Acta.,1983,760:188-191
    110.Holm J. Bioavailaity of starch in various wheat-based bread products. American Joural of Clinical Nutrition, 1992,55:402-409
    111.Hoshino T, Seiji Ito, Koichi Hatta, Toshiki Nakamura and Makoto Yamamori. Development of Waxy common wheat by haploid breeding. Breeding Science,1996,46: 185-188
    112.Huang, S.馒头用粉品质指标的评价.麦类作物学报,1997,17:54-57.
    113.Huber, K C and J N BeMiller, Channels of maize and sorghum starch granules. Carbohydr. Polymers, 2000. 41: 269-276.
    114.Hurkman W J, McCue K F, Altenbach S B. Effect of temperature on expression of genes encoding enzymes for starch biosynthesis in developing wheat endosperm. Plant Science. 2003,164: 873-881.
    115.Iriki, N.and Yamauchi F. Evaluation of flour quality and screening method for Japanese noodle in wheat breeding, Res, Bull, Hokkaido Natl . Agr . Exp . Stn . 1987,148: 85-94
    116.Jane J., Shen L., Wang L. and Maningat C. Preparation and properties of small-particle corn starch. Cereal Chem,1992, 69: 280-283
    117.James M G, Robertson M G, Myers A M. Characterisation of the maize gene sugary 1, a determinant of starch composition in kernels. Plant Cell, 1995, 7: 417-429.
    118.Jenkins P J, Cameron R E, Donald A M. A universal feature in the structure of starch granules from different botanical sources. Starch, 1993, 45: 417-420.
    119.Kasemsuwan T. and Jane J. Location of amylase in normal starch granules.ⅡLocation of phosphodiester cross-linking revealed by phosphorus-31 nuclear magnetic resonance.Cereal Chem , 1994, 71:282-287
    120.Kiribuchi-otobe C, Nagamine T, Yanagisawa T, Ohnishi M and Yamaguchi I. Production of hexaploid wheats with waxy endosperm character. Cereal Chemistry, 1997, 74(1): 72-74
    121.Konik C. M., Miskelly D.M. and Gras P.W. Starch swelling power, grain hardness and protein: Relationship to sensory properties of Japanese noodles. Starch/Staerke, 1993,45: 139-144
    122.Konik C M, Mikkelsen L M, Moss R, Gore P J. Relationships between physical starch properties and yellow alkaline noodle quality. Starch/Sta?rke, 1994, 46: 292-299.
    123.Kulp K. Characterization of small-granule starches from flour and wheat. Cereal Chem. 1973,50:666-679.
    124.Leloup VM, Colonna P, Ring SG, Roberts K, Well B. Microstructure of amylose gels. Carbohydr Polym, 1992, 18: 189-197.
    125.Li Z, Chu X, Mouille G, Yan L, The location and expression of the class II starch synthases of wheat. Plant Physiol, 1999a, 120: 1147-1155.
    126.Li Z, Rahman S, Kosar-Hashemi B. Cloning and characterization of gene encoding wheat starch synthase 1. Theor Appl Genet, 1999b, 98:1208-1216.
    127.Lim S. Jane J. Rajagopalan S. and Seib P.A. Effects of starch granule size on physical properties of starch-filled polyethylene film. Biotechnol. Prog.,1992, 8: 51-55
    128.Lorenz K. and Meredith P. Insect damaged wheat. Effects on starch characteristics. Starch, 1988,40:136-140.
    129.McCormick K M, Panozzo J F, Hong S H. A swelling power test for selecting potential noodle quality wheats. Aust J Agric Res, 1991, 42: 317-323.
    130.Meredith P. Large and small starch granules in wheat-are they really different? Starch,1981,40-44.
    131.Millard M M, Wolf W J, Dintzis F R, Willett J L. The hydrodynamic characterization of waxy maize amylopectin in 90% dimethyl sulphoxide-water by analytical ultracentrifugation, dynamic and static light scattering. Carbohydr Polym, 1999, 39: 315-320.
    132.Miura, H. and Tanii, S. Endosperm starch properties in several wheat cultivarspreferred for Japanese noodles, Euphytica, 1994a,72:171-175
    133.Miura H, Tanii S, Nakamura T, Watanabe N. Genetic control of amylose content in wheat endosperm starch and differential effects of three Wx genes. Theor Appl Genet, 1994b, 89:276-280.
    134.Miura H, et al. Dosage effects of the three Wx gene on amylose synthesis in wheat endosperm.Theor. Appl. Genet, 1996, 93 (7):1066- 1070
    135.Miura H, Tarui S, Araki E, et al.1998. Production of Wx-protein deficient lines in wheat cv .Chinese Spring. Slinkard A E. Proceeding of the 9th International Wheat Genetics Symposium.1998, 4: 208-210
    136.Miura H., Araki E and Tarui S. Amylose synthesis capacity of the three Wx genes of wheat cv Chinese Spring. Euphytica,1999,108:91-95
    137.Miura H, Wickramasinghe M H A, Subasinghe R M, Araki E, Komae K. Development of near-isogenic lines of wheat carrying different null Wx alleles and their starch properties. Euphytica, 2002,123: 353-359.
    138.Morell M. and Bloom M. Biochemistry and molecular biology of starch synthesis, Plant Gene Systems and Their Biology,Colorado, USA,1987,227-232.
    139.Morris CF, Shackley BJ, King GE, Kidwell KK. Genotypic and environmental variation for flour swelling volume in wheat. Cereal Chem, 1997, 74(1): 16-21
    140.Morrison, W. R., and Gadan, H. The amylose and lipid content of starch granules in developing wheat endosperm. J. Cereal Sci., 1987, 5: 263-275.
    141.Morrison W.R Uniqueness of wheat starch. In: Wheat is unique. Pomeranz Y. (Ed.) American Association of Cereal Chemists. St. PAUL, MN. pp. .1989,132-214
    142.Mouille G, Maddelein ML, Ball S. Preamylopectin processing: A mandatory step for starch biosynthesis in plants. Plant Cell, 1996, 8: 1353-1366.
    143.Myers A M, Morell M K, James M G, Ball SG. Recent progress toward understanding biosynthesis of the amylopectin crystal. Plant Physiol, 2000, 122: 989-997.
    144.Nachtergaele W. and Nuffel J. Starch as stilt material in carbonless copy paper-New development. Starch/Starke, 1989,41:386-392
    145.Nakamura, T.,Yamamori M .,Hidaka , S . and Hoshino , T.,Expression of HMW Wx protein in Japanese common wheat cultivars , Japanese Journal of Breeding,1992 , 32 :681-685
    146.Nakamura T, Yamamon M. Identification of three Wx proteins in wheat.(Triticum aestivum L.). Biochem Genet, 1993a, 31:75-86
    147.Nakamura T, Yamamori M, Hirano H, et al. Decrease of waxy protein in two common wheat cultivars with low amylose content. Plant Breeding, 1993b, 111: 99-105
    148.Nakamura, T.,Yamamori , M and Hirano , H.,The waxy(Wx ) protein of maize, rice and barley, I hytochemistry, 1993c, 33:749 -753.
    149.Nakamura T, Yamamori M, Hirano H, Hidaka S, Nagamine T. Production of Waxy(amylose-free) wheat. Molecular Genetics and Genomics, 1995, 248: 253-259.
    150.Nakamura Y, Umemoto T, Ogata N, Kuboki Y, Yano M, Sasaki T. Starch debranching enzyme (R-enzyme or pullulanase) from developing rice endosperm: purification, cDNA and chromosomal localization of the gene. Planta, 1996a, 199: 209-218
    151.Nakamura Y, Umemoto T, Takahata Y, Komae K, Amano E, Satoh H. Changes in structure of starch and enzyme activities affected by sugary mutations in developing rice endosperm: possible role of starch debranching enzyme (R-enzyme) in amylopectin biosynthesis. Physiol Plant, 1996b, 97: 491-498
    152.Nakamura Y. Some properties of the starch debranching enzymes and their possible role in amylopectin biosynthesis. Plant Sci, 1996, 121: 1-18
    153.Nakamura,T.,Vrinten P.,Hayakawa K.,and Ikeda J. Characterization of a granule-bound starch synthase isoform found in the pericarp of wheat. Plant Physiol, 1998, 118::451-459
    154.Nakamura T, Vrinten P, Saito M, Konda M. Rapid classification of partial waxy wheats using PCR-based markers [J]. Genome, 2002, 45(6): l 150-1156
    155.Noda T, Tohnooka T, Taya S, Suda I. Relationship between physicochemical properties of starches and white salted noodle quality in Japanese wheat flours. Cereal Chem, 2001, 78:395-399.
    156.Oda M, Yasuda Y, Okazaki S, Yamauchi Y, Yokoyama Y. A method for flour quality assessment for Japanese noodles. Cereal Chemistry, 1980,57:253-259.
    157.Okita, T. W., Is there an alternative pathway for starch synthesis? Plant Physiology, 1992,100,560
    158.Pan, D., and O.E. Nelson. A debranching enzyme deficiency in endosperm of the sugarymutants of maize. Plant Physiol .1984, 74:324-329.
    159.Panozzo J F. Eagles HA. Cultivar and environmental effects on quality characters in wheat. I Starch. Australian Journal of Agricultural Research, 1998,49(5):757-766
    160.Parker ML. The relationship between A-type and B-type starch granules in the developing endosperm of wheat. J Cereal Sci, 1985, 3: 271-278.
    161.Peng, M, Gao, M. Separation and characterization of A- and B- type starch granules in wheat endosperm. Cereal Chem., 1999. 76: 375-379.
    162.Peng M., Ming Gao, Monica B?ga. Starch-Branching Enzymes Preferentially Associated with A-Type Starch Granules in Wheat Endosperm, Plant Physiology, 2000, 124: 265–272
    163.Peterson D G, Fulcher R G. Variation in Minnesota HRS wheats: starch granule size distribution. Food Research International, 2001,34 (4): 357-363.
    164.Pheloun Pc, Siddique KHM, Contribution of stem dry matter to grain yield in wheat cultivars, Aust J Plant Physiol. 1991,18:53-64.
    165.Preiss J.. Biology and molecular biology of starch synthesis and its regulation. Oxford Surveys Pant Mol,1991,7: 467-473
    166.Preiss J. and Sivak M.N. Biochemistry, molecular biology and regulation of starch synthesis. In: Genetic Engineering: Principles and Methods. Setlow L. (Ed), vol 20. Plenum Press, New York, 1998,pp: 177-223
    167.Raeker M ?, Gaines C S, Finney P L, Donelson T. Granule size distribution and chemical composition of starches from 12 soft wheat cultivars. Cereal Chem, 1998, 75(5): 721-728.
    168.Rahman S., Kosar-Hashemi, B., Samuel M.S., Hill A., Abbot D.C., Skerritt J.H.,Preiss J. Appels R. and Morell M.K. The major proteins of wheat endosperm starch granules. Australian Journal of Plant Physiology, 1995,22: 793-803
    169.Rahman,A. Characterization of SU1 isoamylase, a determent of storage starch structure in maize. Plant Physiol. 1998,117:425-435.
    170.Rahman S, Li Z, Batey I, Cochrane MP. Genetic alteration of starch functionality in wheat. J Cereal Sci, 2000, 31(1): 91-110.
    171.Rahman S., Ahmed Regina, Zhongyi Li, Yasuhiko Mukai, Maki Yamamoto, BehjatKosar-Hashemi, Sharon Abrahams, and Matthew K. Morell. Comparison of starch–branching enzyme gene reveals evolutionary relationships among isoforms. Characterization of a gene for starch branching enzyme IIa from the wheat D genome donor Aggilops tauschii. Plant Physiol, 2001,125:1314-1324
    172.Reeves, C D. Gene expression in developing wheat endosperm, Plant physio.1986, 82, 34-40.
    173.Robin J.P., Meecier C. Charbonniere R. and Guibot A. Lintnerized starches. Gel filtration and enzymatic studies of insoluble residues from prolonged acid treatment of potato starch. Cereal Chem. 1974, 51: 389-406
    174.Ross A S, Quail K J, Crosbie G B. Physicochemical properties of Australian flours influencing the texture of yellow alkaline noodles. Cereal Chem, 1997, 74(6): 814-820.
    175.Sasaki T, Yasui T, Matsuki J, Satake T. Comparison of physical properties of wheat starch gels with different amylose content. Cereal Chem, 2002, 79(6): 861-866.
    176.Sahlstr?m S, Brathen E, Lea P, Autio K. Influence of starch granule size distribution on bread characteristics. J Cereal Sci, 1998, 28(2): 157-164.
    177.Schofield J D. and Greenwell P. Wheat starch granule proteins and their technological significance. Cereals in a European Context (I .D . Morton . ed.), 1988, 407-420.
    178.Sebecic B. Wheat flour starch granule-size distribution and rheological properties of dough. I. Granulometric analysis of starch. Die Nahrung, 1995a, 39(2): 106-116.
    179.Sebecic B. Wheat flour starch granule-size distribution and rheological properties of dough. Part 2. Extensographic measurements. Die Nahrung, 1995b, 39(2): 117-123.
    180.Seib P.A. Wheat starch: isolation, structure and properties. Oyo Toshitsu Kagaku, 1994,41: 49-69
    181.Shannon J.C., and Garwood D.j. (1984) Genetics and physiology of starch development. In: Starch Chemistry and Technology. Whistler R.L., Bemliier J.N. and Paschall E.F.(Eds), Academic press, New York, pp.25-86
    182.Shibanuma Y., Takeda Y., Hizukuri S. Molecular pasting properties of some wheat starches. Carbohydrate Polymers, 1996, 29: 253-261
    183.Smith A M. Making starch. Curr Opin Plant Biol, 1999, 2: 223-229.
    184.Smith S M, Denyer K, Martin C. The synthesis of starch granule. Ann Rev Plant PhysiolPlant Mol Biol, 1997, 48: 67-87.
    185.Soulaka A B and Morrison W R. The amylase and lipid contents, dimensions, and gelatinization characteristics of some wheat starches and their A- and B-type granules fractions. J.Sci.Food Agric. 1985,36:709-718.
    186.Souza E J, Graybosch R A, Guttieri M J. Breeding wheat for improved milling and baking quality. J Crop Prod, 2002, 5(1-2): 39-74.
    187.Stoddard F.L. Starch B-granule content : an determined trait. In: Proceedings of the 9th International wheat genetics symposium. Slinkard A. (Ed), Vol 4. University Extension press, University of Sakatchewan. Saskatoon, Canada, 1998 ,pp:273-275
    188.Stoddard F L. Survey of starch particle-size distribution in wheat and related species. Cereal Chem. 1999,76:145-149.
    189.Sulaiman B D. and Morrison W R. Proteins associated with the surface of wheat starch granules purified by centrifuging through caesium chloride. Journal of Cereal Science, 1990, 12:53-61
    190.Takeda Y., Guan H-P, Preiss J. Branching of amylose by the branching isoenzymes of maize endosperm. Carbohydrate research, 1993, 240: 253-263
    191.Takeda Y, Takeda C, Mizukami H and Hanashiro I. Structures of large, medium and small starch granules of barley grain. Carbohydr Polymers. 1999,38:109-114.
    192.Tang H., Watanable K .and Mitsunaga T. Structure and functionality of large, medium and small granule starches in normal and waxy barley endosperm. Carbohydrate polymers, 2002,49: 217-224
    193.Tester R F. and Morrison W R. Swelling and gelatinization of cereal starches.Ⅰ.Effects of amylopectin, amylase and lipids. Cereal Chem. 1990,67:551-556.
    194.Toguri, T. Changes of a rice debranching enzymes during seed formation and germination. J Plant Physiol .1991,137:541-546.
    195.Toyokawa H, Rubenthaler G L, Powers J R, Schanus E G. Japanese noodle qualities. I. Flour components. Cereal Chem, 1989a, 66(5): 382-386.
    196.Toyokawa H, Rubenthaler G L, Powers J R, Schanus E G. Japanese noodle qualities. II. Starch components. Cereal Chem, 1989b, 66(5): 387-391.
    197.Turnbull K M, Rahman S. Endosperm texture in wheat. J Cereal Sci, 2002, 36: 327-337.
    198.Vansteelandt J., Delcour J.A. Charcaterization of starch from durum wheat. Starch/Staerke, 1999, 51:73-80
    199.Visser R G F and Jacobsen E. Towards modifying plants for altered starch content and composition. Trends Biotech, 1993, 11: 63-68
    200.Vos-Scheperkeuter G H. and Boer W. Identification of granule-bound starch synthase in potato tubers. Plant Physiol,1986,82:411-416
    201.William J.H., Kent F.W., Susan B.A., Anna K, Charlene K. T., Kerry M.K., Erika L.J. ,Donald B.B, Jeff D.W. , Olin D.A. and Frances M.D. Effects of temperature on expression of genes encoding enzymes for starch biosynthesis in developing wheat endosperm. Plant Science, 2003,164: 873-881
    202.Yamamori , M., Nakamura, T. and Kuroda. A. Variations in the content of starch-granule bound protein among several Japanese cultivars of common wheat(T'riticum aestivum L.).Euphytica , 1992,64:215-219
    203.Yamamori M, Nakamura T, Endo T R, Nagamine T. Waxy protein deficiency and chromosomal location of coding genes in common wheat. Theoretical and Applied Genetics, 1994, 89: 179-184.
    204.Yamamori M, Nakamura T and Nagamini T. Ploymorphism of two waxy proteins in the emmer group of tetraploid wheat, Triticum dicoccoides, T. dicoccum, and T durum. Plant Breeding, 1995,114: 215-218
    205.Yamamori Y. Selection of a wheat lacking a putative enzyme for starch synthesis, SGP-1. In: Processings of the 9th International wheat genetics symposium. Slinkard A. (Ed), Vol 4. University Extension press, University of Sakatchewan. Saskatoon, Canada, 1998,pp:300-302
    206.Yamamori M, Quynh N T. Differential effects of Wx-A1, -B1 and–D1 protein deficiencies on apparent amylose content and starch pasting properties in common wheat. Theoretical and Applied Genetics, 2000, 100: 32-38.
    207.Yang J C, Remobilization of carbon reserves is improved by controlled soil-drying during grain filling of wheat. Crop Sci, 2000, 40:1645-1655.
    208.Yang J C, Activities of key enzymes in sucrose-to-starch conversion in wheat grain subjected to water deficit during grain filling. Plant Physiol, 2004, 135:1621-1629.
    209.Yasui T, Matsuki J. Sasaki T. and Yamamori M.J. Amylose and lipid contents, amylopection structure and gelatinization properties of waxy wheat.starch. Cereal Sci., 1996, 24: 131-137
    210.Yasui T, Sasaki T, Matsuki J. et al. Waxy endosperm mutants of bread wheat (Triticum aestivumL.) and their starch properties. Breeding Sci..1997,47:61-63
    211.Yasui T, Sasaki T and Matsuki J. Induced waxy endosperm mutants of breed wheat, K107Wx1 and K107Wx2 and their milling and flour pasting properties. Slinkard A. E. ed. Proceeding of the 9th International Wheat Genetics Symposium. 1998, 4 : 306-308
    212.Yasui T, Sasaki T, Matsuki J. Milling and flour pasting properties of waxy endosperm mutant line of bread wheat (Triticum aestivum). J Sci .Food Agri..1999,79:687-692
    213.Yoo S H, Jane J L. Structural and physical characteristics of waxy and other wheat starches. Carbohydater-polymer, 2002, 49(3): 297-305.
    214.Zeng M, Morris C F, Batey I L, et al. Sources of variation for starch gelatinization, pasting ,and gelation properties in wheat. Cereal Chemistry, 1997, 74(1): 63-71
    215.Zeng Z R, King RW, Regulation of grain number in wheat: changes in endogenous levels of abscisic acid. Aust. J. Plant Physiol, 1986,13:347-352.
    216.Zhao X C, Sharp P J. An improved 1D-SDS-PAGE method for the identification of three bread wheat Waxy proteins. Journal of Cereal Science, 1996, 23: 191-193.
    217.Zhao X C, Batey I L, Sharp P J, Crosbie G, Barclay I, Wilson R, Morell M K, Appels R. A single genetic locus associated with starch ranule proterties and noodle quality in wheat. Journal of Cereal Science, 1998, 27: 7-13