日粮营养因子对湘村黑猪营养生理效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
根据U8*(85)均匀设计表设计3因素8水平的试验,选用起始体重为10.08±0.49kg、30.07±0.73kg和59.96±0.83kg(分别对应10-30kg、30-60kg、60-90kg3个试验阶段)的湘村黑猪阉公猪各48头,随机分为8个处理组,每组6个重复,每个重复1头猪,进行了饲养试验和比较屠宰试验,分别从生长性能、胴体性状、肉品质、血液生化指标、肉品质、消化道酶活性、肠道粘膜形态和基因表达等方面研究日粮蛋白质、赖氨酸和磷对湘村黑猪的营养生理效应以及其适宜需要量。主要结果如下:
     1湘村黑猪不同生长阶段营养需求参数研究
     通过研究日粮蛋白质、赖氨酸及磷相对于湘村黑猪各生长阶段的生长性能的定量关系,以确定湘村黑猪适宜的蛋白质、赖氨酸及磷的需要量。结果表明,湘村黑猪10-30kg阶段得到最佳生长性能预测值时(平均日增重0.48kg/d,饲料转换率2.58F/G),三个日粮营养因子组合为蛋白质17.18%、赖氨酸0.90%、磷0.56%;30-60kg阶段得到最佳生长性能预测值时(平均日增重0.68kg/d,饲料转换率2.97F/G),三因子组合为蛋白质15.84%、赖氨酸0.79%、磷0.52%;60-90kg阶段得到最佳生长性能预测值时(平均日增重0.77kg/d,饲料转换率3.60F/G),三因子组合为蛋白质13.74%、赖氨酸0.68%、磷0.47%;除了30-60kg和60-90kg阶段的磷需求量稍高于中国瘦肉猪饲养标准,湘村黑猪的三因子需要量和生长性能较中国瘦肉猪饲养标准低;三因子中,日粮蛋白质水平对湘村黑猪平均日增重的影响较大,日粮赖氨酸水平对饲料转化率的影响较大。
     2不同日粮营养因子对湘村黑猪胴体性状以及肉品质影响研究
     通过研究蛋白质、赖氨酸及磷与育肥后期(60-90kg)湘村黑猪的胴体性状和肉品质相关指标的相互作用和关系,探讨不同营养因子对湘村黑猪胴体性状和肉品质的影响大小以及获得最优胴体性状指标时的三因子需要量。结果表明,60-90kg阶段湘村黑猪取得最佳胴体性状指标预测值时(屠宰率72.50%,瘦肉率56.40%,背膘厚26.58mm,眼肌面积32.15cm2,后腿比例28.70%),三个营养因子组合为蛋白质15.60%,赖氨酸0.61%,磷0.35%;三因子对湘村黑猪胴体性状、肉品质和肉成分影响呈曲线变化,有些呈明显的抛物线状变化趋势,因子之间的交互作用对肉品质和肉成分指标呈现出较大影响;蛋白质对胴体性状指标和肉成分指标的影响较大,而磷对湘村黑猪肉品质指标有重要影响。
     3不同日粮营养因子对湘村黑猪血液生化指标以及激素水平影响研究
     通过研究日粮蛋白质、赖氨酸及磷与湘村黑猪各生长阶段的血液生化指标和激素水平的相关关系,探讨不同营养因子对湘村黑猪不同阶段的血液生化指标的影响大小。结果表明,10-30kg阶段:日粮蛋白质水平与血清AST含量极显著正相关(P<0.01),与血清UREA含量显著正相关(P<0.05);日粮赖氨酸水平与血清AST含量显著正相关(P<0.05);日粮磷水平与血清AST含量极显著负相关(P<0.01),与TC含量显著显著负相关(P<0.05),与P含量显著正相关(P<0.05);30-60kg段:日粮蛋白质水平与血清TC和UREA含量极显著正相关(P<0.01),与TP显著正相关(P<0.05);日粮赖氨酸水平与血清Ca含量显著负相关(P<0.05);日粮磷水平与TC和P含量显著正相关(P<0.05);60-90kg阶段:日粮蛋白质水平与血清各指标偏相关性均不显著;日粮赖氨酸水平与血清Glu显著负相关(P<0.05);日粮磷水平与血清Ca含量显著负相关(P<0.05)。不同阶段试验结果综合分析表明,随着湘村黑猪日龄的增长,机体发育日趋成熟,日粮营养因子对血液生化指标的影响程度的显著性有所下降。
     除30-60kg阶段日粮TP与血清T3的含量显著负相关(P<0.05)外,日粮营养水平与血清激素偏相关性都不显著。10-30kg阶段除Lys与IGF-1负相关外,营养因子与相关激素都呈正相关;30-60kg阶段,CP和TP与INS、T3、T4呈现负相关,Lys与T3、T4负相关,其余正相关;60-90kg阶段3因子与GH和T4负相关,并且Lys与INS呈现负相关,其余正相关。日粮营养水平对湘村黑猪幼龄阶段的生长相关激素有重要的正相关作用,而随着日龄的增长,日粮营养因子对生长相关激素的正相关作用程度有所下降。
     4不同日粮营养因子对湘村黑猪消化酶以及肠道粘膜形态影响研究
     通过研究日粮蛋白质、赖氨酸及磷与湘村黑猪消化酶活性和肠道粘膜形态的相关关系,探讨不同营养因子对湘村黑猪消化生理的影响大小。结果表明,日粮蛋白质与胰脏蛋白酶显著正相关(P<0.05),与空肠蔗糖酶含量极显著正相关(P<0.01),与肠道其它酶活性相关性不显著;日粮营养因子对消化酶影响效应的大小顺序:对胰脏蛋白酶含量影响为CP>Lys>TP;对胰脏淀粉酶含量影响为TP>CP>Lys;对胰脂肪酶影响为Lys>CP>TP;对空肠麦芽糖酶为TP>CP> Lys;对空肠蔗糖酶为CP>TP>Lys;对回肠麦芽糖酶为CP>Lys>TP;对回肠蔗糖酶为Lys>TP>CP.
     日粮蛋白质和磷与空肠隐窝深度显著正相关(P<0.05),日粮赖氨酸水平与回肠绒毛高度显著正相关(P<0.05)。日粮营养因子对肠道形态影响效应的大小顺序:对十二指肠绒毛高度影响为CP>TP>Lys;对十二指肠隐窝深度影响为Lys>TP>CP;三因子对空肠绒毛高度影响大小十分相近;对空肠隐窝深度影响为CP> Lys>TP;对回肠绒毛高度影响为Lys>TP>CP;对回肠隐窝深度影响为Lys> TP>CP.
     5不同日粮营养因子对湘村黑猪生长以及肉品质相关基因表达影响研究
     通过研究日粮蛋白质、赖氨酸及磷与湘村黑猪相关基因表达量之间的关系,探讨不同营养因子对湘村黑猪生长和肉质相关基因的影响大小。结果表明,IGF-1基因表达量与ADG极显著正相关(P<0.01),与肉中的总氨基酸和鲜味氨基酸含量显著正相关(P<0.05),与FCR显著负相关(P<0.05),相关系数的大小表明,湘村黑猪IGF-1基因对生长性能有较大影响,并且IGF-1基因表达量的上升能使得肌肉中氨基酸含量提高;H-FABP基因表达量与生长性能、胴体性状以及肉品质指标均相关不显著,相关系数表明,H-FABP基因相对来说对机体的脂肪沉积影响较大;MSTN基因表达量与瘦肉率、眼肌面积、总氨基酸以及鲜味氨基酸极显著负相关(P<0.01),与屠宰率显著负相关(P<0.05),与肌内脂肪显著正相关(P<0.05)。
     日粮蛋白质水平与肝脏和背最长肌中IGF-1基因表达量正相关,与H-FABP. MSTN基因表达量负相关,而日粮CP水平与背最长肌中MSTN表达显著负相关(P<0.05),因此适当提高日粮CP有利于湘村黑猪的生长和瘦肉的沉积;日粮Lys水平与肝脏和背最长肌中ICF-1、H-FABP基因表达量正相关,与MSTN基因表达量负相关,即日粮中Lys具有全面和综合的作用,适当提高日粮Lys水平对湘村黑猪的生长和肉品质都是有利的;日粮中TP与肝脏和背最长肌中的所测3个基因都呈正相关,即日粮中TP的适当提高有利于促进黑猪生长发育,能在—定程度上加快体脂肪的沉积,但是TP水平过高可影响到机体瘦肉的沉积。
     综上所述,日粮蛋白质、赖氨酸和磷对湘村黑猪生长性能、血液生化指标、激素水平、消化酶活性、肠道粘膜形态以及相关基因的表达等多方都有不同程度的影响。为达到湘村黑猪最佳生长性能预测值,日粮三营养因子推荐量为:10-30kg阶段为蛋白质17.18%、赖氨酸0.90%、磷0.56%;30-60kg阶段为蛋白质15.84%、赖氨酸0.79%、磷0.52%;60-90kg阶段为蛋白质13.74%、赖氨酸0.68%、磷0.47%。在育肥后期(60-90kg)取得最佳胴体性状指标预测值时,日粮三营养因子组合为蛋白质15.60%、赖氨酸0.61%、磷0.35%。
According to the uniform design Ug*(85), the experiment took crude protein(CP), lysine(Lys) and total phosphorus(TP) as three factors and set eight levels. The experiment was divided into10-30kg,30-60kg,60-90kg three phases based on physiological characteristics of Xiangcun black pig. In each stage, forty eight Xiangcun black barrows with approximate initial weight (10.08±0.49) kg,(30.07±0.73) kg and (59.96±0.83) kg were selected, which were randomly divided into eight treatment groups with six replicates per treatment group and one Xiangcun black pig per replicate. The study was conducted to study the nutrient requirement and nutritive physiological effects of dietary nuterents in Xiangcun black pig by determing related growth performance, carcass traits, meat quality, blood biochemical index, hormone, digestive enzyme activity, intestinal mucosal morphology and gene expression.The main results were as follows.
     Experiment1was conducted to study the quantitative relation model between the nutrient requirement and growth performance of Xiangcun black pig in different growth phases. The results showed that, except the TP requirement of Xiangcun black pig in30-60kg and60-90kg stage, requirement of three nutrient factors was lower than recommended requirement of China Feeding Standard of Swine. The best growth performance of Xiangcun black pig was obtained when the optimum combination of the three factors was CP17.18%, Lys0.90%, TP0.56%in10-30kg stage(ADG0.48kg/d,FCR2.58F/G), CP15.84%, Lys0.79%, TP0.52%in30-60kg stage (ADG0.68kg/d,FCR2.97F/G), CP13.74%,Lys0.68%, TP0.47%in60-90kg stage(ADG0.77kg/d,FCR3.60F/G). The experiment also showed that CP was the most important factor to ADG and Lys was the most important factor to FCR.
     Experiment2was conducted to study the effect of different dietary nuterents on the carcass traits and meat quality in Xiangcun black pig. The aim was to investigate the influence degree of different dietary nuterents on carcass traits and meat quality and optimum nutrient requirement (60-90kg) for the best carcass traits. The results showed that, the best carcass traits (dressing percentage72.50%, lean meat percentage56.40%, back fat thickness26.58mm, eye muscle area32.15cm2, ham percentage,28.70%) of Xiangcun black pig was obtained when the optimum combination of the three factors was CP15.60%, Lys0.61%, TP0.35%. The effect of different dietary nuterents on the carcass traits and meat quality in Xiangcun black pig showed a curvilinear even parabolaa chang. The interaction between three different dietary nuterents had great effect on carcass traits and meat components. The experiment also showed that CP was the most important factor to carcass traits and meat components, and Lys the most important factor to meat quality.
     Experiment3was conducted to study the correlation of different dietary nuterents on blood biochemical index and hormone in Xiangcun black pig. The aim was to investigate the influence degree of different dietary nuterents on blood biochemical index and hormone in different growth phases. The results showed that, in10-30kg stage the dietary CP level was very significantly positively correlated with the serum AST (P<0.01), significantly positively correlated with serum UREA (P<0.05); the dietary Lys level was significantly positively correlated with serum AST (P<0.05); the dietary TP level was very significantly negatively correlated with the serum AST (P<0.01), significantly negatively correlated with serum TC (P<0.05), significantly positively correlated with serum P (P<0.05).In30-60kg stage the dietary CP level was very significantly positively correlated with the serum TC and UREA (P<0.01), significantly positively correlated with the serum TP (P<0.05); the dietary Lys level was significantly negatively correlated with serum Ca (P<0.05); the dietary TP level was very significantly negatively correlated with the serum TC and TP (P<0.01). In60-90kg stage no significant partial correlation was observed between the dietary CP level and serum biochemical indices;the dietary Lys level was significantly negatively correlated with the serum Glu (P<0.05); the dietary TP level was significantly negatively correlated with the serum Ca (P<0.05). Comprehensive analysis of experimental results of different stages showed that the significant of influence between different dietary nuterents and blood biochemical index became weaker along with the growth of Xiangcun black pig.
     No significant partial correlation was observed between the dietary nuterents and serum hormone except that the dietary TP level was significantly negatively correlated with the serum T3(P<0.05). In10-30kg stage the dietary nuterents were positively correlated with the serum hormone except that the dietary Lys level was negatively correlated with the serum IGF-1; In30-60kg stage there were negative correlation between the dietary CP, TP level and serum INS, T3, T4, as well as between the dietary Lys level and serum T3, T4. The others showed a positive correlation basically; In60-90kg stage the dietary nuterents were negatively correlated with the serum GH, T4as well as between the dietary Lys level and serum INS. The others showed a positive correlation basically. Comprehensive analysis of experimental results of different stages showed that the positive correlation of influence between different dietary nuterents and hormone became weaker along with the growth of Xiangcun black pig.
     Experiment4was conducted to study the correlation of different dietary nuterents on digestive enzyme activity, intestinal mucosal morphology in Xiangcun black pig. The aim was to investigate the effect of different dietary nuterents on Digestive physiology. The results showed that, the dietary CP level was significantly positively correlated with trypsin (P<0.05), very significantly positively correlated with the sucrase in jejunum (P<0.05), not significantly correlated with other digestive enzyme. The influence extent of dietary nuterents on digestive enzyme were CP>Lys>TP on trypsin, TP>CP>Lys on amylopsin, Lys>CP>TP on pancrelipase, TP> CP>Lys on maltase in jejunum, CP>TP>Lys on sucrase in jejunum, CP>Lys> TP on maltase in ileum, Lys>TP>CP on sucrase in ileum.
     The dietary CP and TP level were significantly positively correlated with crypt depth in jejunum (P<0.05). The dietary Lys level was ignificantly positively correlated with villus height in ileum (P<0.05). The influence extent of dietary nuterents on intestinal morphology were CP>TP>Lys on villus height in duodenum, Lys>TP>CP on crypt depth in duodenum, CP>Lys>TP on crypt depth in jejunum, Lys>TP>CP villus height in ileum, Lys>TP>CP on crypt depth in ileum and the influence extent of dietary nuterents on villus height in jejunum were almost the same. Comprehensive analysis of experimental results showed that, digestive enzyme secretion and activity were increasing along with addition of nutrition, and CP was the most important factor to digestive enzyme. Increasing addition of nutrition was propitious to villous height as well as crypt depth decreased in duodenum and increased in jejunum.
     Experiment5was conducted to study the the relation between different dietary nuterents and the gene expression in Xiangcun black pig. The aim was to investigate the influence degree of different dietary nuterents on the growth performance and meat quality gene expression. The results showed that, IGF-1gene expression was very significantly positively correlated with ADG (P<0.01), significantly positively correlated with the total amino acid and flavor amino acid in lean (P<0.05), significantly negatively correlated with FCR (P<0.05). The values of the correlation coefficient showed that IGF-1gene was a important factor to growth performance and IGF-1gene expressive increased the amino acid in lean. No significant correlation was observed between H-FABP gene expression and the index of growth performance, carcass traits, meat quality. The values of the correlation coefficient showed that H-FABP gene was a important factor to fat deposition. MSTN gene expression was very significantly negatively correlated with lean meat percentage, eye muscle area, the total amino acid and flavor amino acid in lean (P<0.01), significantly negatively correlated with dressing percentage (P<0.05), significantly positively correlated with intramuscular fat (P<0.05). Comprehensive analysis of experimental results showed that, IGF-1was a important gene to growth performance; H-FABP was a important gene to fat deposition; MSTN was a important gene to lean and amino acid deposition.
     The dietary CP level was positively correlated with. IGF-1and negatively correlated with H-FABP and MSTN (P<0.05) in liver and longissimus muscle; The dietary Lys was positively correlated with ICF-1and H-FABP, and negatively correlated with MSTN; The dietary TP was positively correlated with ICF-1, H-FABP and MSTN.
     In conclusion, dietary nutrition factors influenced production performance of Xiangcun black pig in some ways such as blood biochemical index, hormone, digestive enzyme activity, intestinal mucosal morphology and gene expression. The best growth performance of Xiangcun black pig was obtained when the optimum combination of the three factors was CP17.18%, Lys0.90%,TP0.56%in10-30kg stage, CP.15.84%, Lys0.79%,TP0.52%in30-60kg stage, CP13.74%,Lys0.68%,TP0.47%in60-90kg stage. The best carcass traits of Xiangcun black pig was obtained when the optimum combination of the three factors was CP15.60%, Lys0.61%,TP0.35%in60-90kg stage.
引文
[1]王艳明.中国优良地方猪种及其种质特性[J].畜牧与饲料科学.2009(04):162-165.
    [2]宋虎威,张彬,何柳青,等.湖南地方猪品种资源现状及研究[J].湖南饲料.2011(02):46-48.
    [3]中华人民共和国农业部公告第1827号[J].中华人民共和国农业部公报.2012(09):47.
    [4]肖湘淮.桃源黑猪[J].农业知识.2008(27):46.
    [5]徐克学.中国猪种的定量分析—Ⅰ.猪种的类型和地理分布[J].畜牧兽医学报.1987(02):73-78.
    [6]彭英林,谢菊兰,朱吉,等.湖南黑猪种质资源保护利用与产业开发发展战略[C].中国山东青岛:2011.
    [7]中华人民共和国农业部公告第1827号[J].中华人民共和国农业部公报.2012(10):46.
    [8]余清桂,刘永富,吴先明,等.新桃源猪毛色遗传的初步探讨[J].湖南畜牧兽医.1999(03):8-10.
    [9]谢菊兰,孙宗炎,李静茹,等.湖南黑猪种质特性及开发利用[J].养猪.2008(03):33-34.
    [10]孙建帮,刘建,李静如,等.湘村黑猪的肉质特性研究[J].养猪.2012(05):63-64.
    [11]毛寿林.湖南黑猪哺乳母猪的饲养管理[J].养殖与饲料.2011(10):11-12.
    [12]周兴藩,杨增玲,刘贤,等.酒糟主要成分含量的近红外反射光谱快速分析[J].农业机械学报.2012,43(3):103-107.
    [13]石学刚,王斯佳,李发弟,等.动物性蛋白饲料原料开发及应用现状[J].中国畜牧杂志.2007,43(20):46-50.
    [14]杨在宾,刘丽,杜明宏.我国饲料业的发展及饲料资源供求现状浅析[J].饲料工业.2008,29(19):45-49.
    [15]袁涛,张伟力.我国几种蛋白质饲料资源现状[J].江西饲料.2004(2):25-28.
    [16]张民,那日苏,桂荣,等.反刍动物蛋白质的营养及研究进展(续)[J].饲料研究.2004(12):23-25.
    [17]Yen H T, Cole D J A, Lewis D. Amino acid requirements of growing pigs 8. The response of pigs from 50 to 90 kg live weight to dietary ideal protein[J]. Anim Sci.1986,43(01): 155-165.
    [18]NRC. Nutrients Requirements of Swine (10th ed)[S]. National Academy Press,Washington, DC,1998.
    [19]Cho W T, Kim J H, Bae S H, et al. Studies on amino acids requirements of early weaned pigs[J]. Kor.J.Anim.Nutr.Feed.1998:165-180.
    [20]Baker D H. Ideal amino acid profiles for swine and poultry and their applications in feed formulation. BioKyowa Technical Review 9. [C]. St. Louis, MO:Biokyowa Publ. Co.,1997.
    [21]Wang T C, Fuller M F. The effect of the plane of nutrition on the optimum dietary amino acid pattern for growing pigs[J]. Anim Sci.1990,50(01):155-164.
    [22]Chung T K, Baker D H. Ideal amino acid pattern for 10-kilogram pigs[J]. J Anim Sci.1992, 70(10):3102-3111.
    [23]ARC. The nutrient requirements of pigs. Commonwealth Agricultural Bureaux. Farham Royal, Slough, UK.1981.
    [24]吴世林,蒋宗勇.5-110kg猪可消化氨基酸需要量与平衡[J].动物营养学报.1995(01):50-63.
    [25]罗献梅,陈代文,张克英.25~35kg生长猪可消化氨基酸的需要量[J].动物营养学报.2001(02):14.
    [26]Wang T C, Fuller M F. The optimum dietary amino acid pattern for growing pigs[J]. Br J Nutr.1989,62(01):77-89.
    [27]Yen H T, Cole D J A, Lewis D. Amino acid requirements of growing pigs.7. The response of pigs from 25 to 55 kg live weight to dietary ideal protein[J]. Anim Sci.1986,43(01): 141-154.
    [28]Fuller M F, Mcwilliam R, Wang T C, et al. The optimum dietary amino acid pattern for growing pigs[J]. Br J Nutr.1989,62(02):255-267.
    [29]罗献梅,陈代文,张克英.35~60kg生长猪可消化氨基酸需要量研究[J].动物营养学报.2001(03):59.
    [30]Le Bellego L, van Milgen J, Dubois S, et al. Energy utilization of low-protein diets in growing pigs[J]. J Anim Sci.2001,79(5):1259-1271.
    [31]Kerr B J, Yen J T, Nienaber J A, et al. Influences of dietary protein level, amino acid supplementation and environmental temperature on performance, body composition, organ weights and total heat production of growing pigs[J]. J Anim Sci.2003,81(8):1998-2007.
    [32]Kerr B J, Southern L L, Bidner T D, et al. Influence of dietary protein level, amino acid supplementation, and dietary energy levels on growing-finishing pig performance and carcass composition[J]. J Anim Sci.2003,81(12):3075-3087.
    [33]Bessa R J, Hughes R A, Jeronimo E, et al. Effect of pig breed and dietary protein level on selected fatty acids and stearoyl-coenzyme A desaturase protein expression in longissimus muscle and subcutaneous fat[J]. J Anim Sci.2013,91(9):4540-4546.
    [34]Kerr B J, Mckeith F K, Easter R A. Effect on performance and carcass characteristics of nursery to finisher pigs fed reduced crude protein, amino acid-supplemented diets[J]. J Anim Sci.1995,73(2):433-440.
    [35]Tuitoek K, Young L G, de Lange C F, et al. The effect of reducing excess dietary amino acids on growing-finishing pig performance:an elevation of the ideal protein concept[J]. J Anim Sci.1997,75(6):1575-1583.
    [36]Figueroa J L, Lewis A J, Miller P S, et al. Nitrogen metabolism and growth performance of gilts fed standard corn-soybean meal diets or low-crude protein, amino acid-supplemented diets[J]. J Anim Sci.2002,80(11):2911-2919.
    [37]Knowles T A, Southern L L, Bidner T D, et al. Effect of dietary fiber or fat in low-crude protein, crystalline amino acid-supplemented diets for finishing pigs[J]. J Anim Sci.1998, 76(11):2818-2832.
    [38]Le Bellego L, van Milgen J, Noblet J. Effect of high temperature and low-protein diets on the performance of growing-finishing pigs[J]. J Anim Sci.2002,80(3):691-701.
    [39]杨强,易学武,鲁宁,等.猪低蛋白日粮体系研究(三)—猪低蛋白日粮体系应用研究[J].湖南饲料.2009(06):11-14.
    [40]Figueroa J L, Lewis A J, Miller P S, et al. Growth, carcass traits, and plasma amino acid concentrations of gilts fed low-protein diets supplemented with amino acids including histidine, isoleucine, and valine[J]. J Anim Sci.2003,81(6):1529-1537.
    [41]Yue L Y, Qiao S Y. Effects of low-protein diets supplemented with crystalline amino acids on performance and intestinal development in piglets over the first 2 weeks after weaning[J]. Livest Sci.2008,115(2-3):144-152.
    [42]Kerr B J, Easter R A. Effect of feeding reduced protein, amino acid-supplemented diets on nitrogen and energy balance in grower pigs[J]. J Anim Sci.1995,73(10):3000-3008.
    [43]Carter J M, Bell N J, Suleiman M S. The use of Langendorff perfused guinea-pig heart to study the efflux of amino acids from heart cells[J]. Biochem Soc Trans.1996,24(3):482S.
    [44]Shriver J A, Carter S D, Sutton A L, et al. Effects of adding fiber sources to reduced-crude protein, amino acid-supplemented diets on nitrogen excretion, growth performance, and carcass traits of finishing pigs[J]. J Anim Sci.2003,81(2):492-502.
    [45]詹凯,程广龙,胡达林,等.低蛋白日粮对生长猪舍NH3和H2S质量浓度及猪生产性能的影响[J].安徽农业科学.2002(04):475-476.
    [46]张敏,孟繁艳,李香子,等.猪低污染日粮技术的研究进展[J].延边大学农学学报.2002(04):296-299.
    [47]易学武,鲁宁,杨强,等.猪低蛋白日粮体系研究(一)—国内外研究进展[J].湖南饲料.2009(04):23-28.
    [48]朱良,张石蕊.苏氨酸的营养生理作用及其在猪低蛋白日粮中的应用[J].猪业科学.2009(06):54-57.
    [49]郑萍.氧化应激对仔猪精氨酸代谢和需求特点的影响及机制研究[D].四川农业大学,2010.
    [50]罗钧秋.猪饲粮不同来源蛋白质营养代谢效应的比较研究[D].四川农业大学,2011.
    [51]陈路,张日俊.生物活性肽(或寡肽)饲料添加剂的研究与应用[J].动物营养学报.2004(02):12-14.
    [52]Klang J E, Burnworth L A, Pan Y X, et al. Functional characterization of a cloned pig intestinal peptide transporter (pPepTl)[J]. J Anim Sci.2005,83(1):172-181.
    [53]Hodgkinson S M, Moughan P J, Reynolds G W, et al. The effect of dietary peptide concentration on endogenous ileal amino acid loss in the growing pig[J]. Br J Nutr.2000, 83(4):421-430.
    [54]Nosworthy M G, Bertolo R F, Brunton J A. Ontogeny of dipeptide uptake and peptide transporter 1 (PepTl) expression along the gastrointestinal tract in the neonatal Yucatan miniature pig[J]. Br J Nutr.2013,110(2):275-281.
    [55]Daniel E E, Haugh C, Woskowska Z, et al. Role of nitric oxide-related inhibition in intestinal function:relation to vasoactive intestinal polypeptide[J]. Am J Physiol.1994,266(1 Pt 1): G31-G39.
    [56]徐基利,许丽.小肽在动物营养中的作用及研究趋势[J].饲料工业.2011,32(8):59-62.
    [57]小肽转运载体2在奶牛乳腺小肽摄取中的作用研究[J].今日畜牧兽医.2011(10):68.
    [58]赵海云.小肽的吸收机制及营养功能[J].安徽农业科学.2013,41(1):146-148,165.
    [59]朱宇旌,王秉玉,张勇,等.小肽转运载体1的生物学特性及其功能[J].动物营养学报.2012,24(10):1847-1853.
    [60]Ganapathy V, Mendicino J F, Leibach F H. Transport of glycyl-L-proline into intestinal and renal brush border vesicles from rabbit[J]. J Biol Chem.1981,256(1):118-124.
    [61]Madeira M S, Costa P, Alfaia C M, et al. The increased intramuscular fat promoted by dietary lysine restriction in lean but not in fatty pig genotypes improves pork sensory attributes [J]. J Anim Sci.2013,91(7):3177-3187.
    [62]Heger J, Van Phung T, Krizova L. Efficiency of amino acid utilization in the growing pig at suboptimal levels of intake:lysine, threonine, sulphur amino acids and tryptophan[J]. J Anim Physiol Anim Nutr (Berl).2002,86(5-6):153-165.
    [63]Ly N T, Ngoan L D, Verstegen M W, et al. Pig performance increases with the addition of DL-methionine and L-lysine to ensiled cassava leaf protein diets[J]. Trop Anim Health Prod. 2012,44(1):165-172.
    [64]杨峰.理想氨基酸模式下生长肥育猪可消化赖氨酸需要量研究[D].华中农业大学,2008.
    [65]Wang T C, Fuller M F. The optimum dietary amino acid pattern for growing pigs.1. Experiments by amino acid deletion[J]. Br J Nutr.1989,62(1):77-89.
    [66]Susenbeth A, Keitel K. Partition of whole body protein in different body fractions and some constants in body composition in pigs[J]. Livest Produc Sci.1988,20(1):37-52.
    [67]Bikker P, Verstegen M W, Campbell R G. Performance and body composition of finishing gilts (45 to 85 kilograms) as affected by energy intake and nutrition in earlier life:Ⅱ. Protein and lipid accretion in body components[J]. J Anim Sci.1996,74(4):817-826.
    [68]Bikker P, Verstegen M W, Kemp B, et al. Performance and body composition of finishing gilts (45 to 85 kilograms) as affected by energy intake and nutrition in earlier life:Ⅰ. Growth of the body and body components[J]. J Anim Sci.1996,74(4):806-816.
    [69]Batterham E S, Andersen L M, Baigent D R, et al. Utilization of ileal digestible amino acids by growing pigs:effect of dietary lysine concentration on efficiency of lysine retention[J]. Br J Nutr.1990,64(1):81-94.
    [70]Hahn J D, Biehl R R, Baker D H. Ideal digestible lysine level for early-and late-finishing swine[J]. J Anim Sci.1995,73(3):773-784.
    [71]Saraiva A, Donzele J L, Oliveira R F, et al. Phosphorus requirements for 60 to 100 kg pigs selected for high lean deposition under different thermal environments [J]. J Anim Sci.2011.
    [72]Combs N R, Kornegay E T, Lindemann M D, et al. Calcium and phosphorus requirement of swine from weaning to market weight:I. Development of response curves for performance[J]. J Anim Sci.1991,69(2):673-681.
    [73]Combs N R, Kornegay E T, Lindemann M D, et al. Calcium and phosphorus requirement of swine from weaning to market weight:Ⅱ. Development of response curves for bone criteria and comparison of bending and shear bone testing[J]. J Anim Sci.1991,69(2):682-693.
    [74]Maxson P F, Mahan D C. Dietary calcium and phosphorus levels for growing swine from 18 to 57 kilograms body weight[J]. J Anim Sci.1983,56(5):1124-1134.
    [75]Thomas H R, Kornegay E T. Phosphorus in swine. I. Influence of dietary calcium and phosphorus levels and growth rate on feedlot performance of barrows, gilts and boars[J]. J Anim Sci.1981,52(5):1041-1048.
    [76]Miller E R, Ullrey D E, Zutaut C L, et al. Phosphorus requirement of the baby pig[J]. J Nutr. 1964,82:34-40.
    [77]Miller E R, Ullrey D E, Zutaut C L, et al. Mineral balance studies with the baby pig:effects of dietary phosphorus level upon calcium and phosphorus balance[J]. J Nutr.1964,82: 111-114.
    [78]Miller E R, Ullrey D E, Zutaut C I, et al. Mineral balance studies with the baby pig:effects of dietary magnesium level upon calcium, phosphorus and magnesium balance[J]. J Nutr.1965, 86:209-212.
    [79]Blair R, Benzie D. The effect of level of dietary calcium and phosphorus on skeletal development in the young pig to 25 1b live weight[J]. Br J Nutr.1964,18:91-101.
    [80]Coalson J A, Maxwell C V, Hillier J C, et al. Calcium and phosphorus requirements of young pigs reared under controlled environmental conditions[J]. J Anim Sci.1972,35(6): 1194-1200.
    [81]Mahan D C. Dietary calcium and phosphorus levels for weanling swine[J]. J Anim Sci.1982, 54(3):559-564.
    [82]Cromwell G L, Hays V W, Chaney C H, et al. Effects of Dietary Phosphorus and Calcium Level on Performance, Bone Mineralization and Carcass Characteristics of Swine[J]. J Anim Sci.1970,30(4):519-525.
    [83]Mahan D C, Ekstrom K E, Fetter A W. Effect of dietary protein, calcium and phosphorus for swine from 7 to 20 kilograms body weight[J]. J Anim Sci.1980,50(2):309-314.
    [84]Ekpe E D, Zijlstra R T, Patience J F. Digestible phosphorus requirement of grower pigs[J]. Can J Anim Sci.2002,82(4):541-549.
    [85]Hastad C W, Dritz S S, Tokach M D, et al. Phosphorus requirements of growing-finishing pigs reared in a commercial environment[J]. J Anim Sci.2004,82(10):2945-2952.
    [86]Ruan, Z., Zhang, et al. Dietary requirement of true digestible phosphorus and total calcium for growing pigs[J]. Asian Austral J Anim Sic.2007,20(8):1236-1242.
    [87]Partanen K, Siljander-Rasi H, Karhapaa M, et al. Responses of growing pigs to different levels of dietary phosphorus-Performance, bone characteristics, and solubility of faecal phosphorus[J]. Livest Sci.2010,134(1-3):109-112.
    [88]Prasad R, Kumar V. Thyroid hormones increase Na+-Pi co-transport activity in intestinal brush border membrane:role of membrane lipid composition and fluidity[J]. Mol Cell Biochem.2005,278(1-2):195-202.
    [89]Prasad R, Kumar V. Thyroid hormones stimulate Na+-Pi transport activity in rat renal brush-border membranes:role of membrane lipid composition and fluidity[J]. Mol Cell Biochem.2005,268(1-2):75-82.
    [90]Moz Y, Levi R, Lavi-Moshayoff V, et al. Calcineurin Abeta is central to the expression of the renal type Ⅱ Na/Pi co-transporter gene and to the regulation of renal phosphate transp.ort[J]. J Am Soc Nephrol.2004,15(12):2972-2980.
    [91]Kohl B, Herter P, Hulseweh B, et al. Na-Pi cotransport in flounder:same transport system in kidney and intestine[J]. Am J Physiol.1996,270(6 Pt 2):F937-F944.
    [92]Papakonstanti E A, Emmanouel D S, Gravanis A, et al. Na+/Pi co-transport alters rapidly cytoskeletal protein polymerization dynamics in opossum kidney cells[J]. Biochem J.1996, 315 (Pt 1):241-247.
    [93]黄大鹏,郑本艳,张金良,等.营养水平对不同生长阶段三江白猪生长性能的影响[J].动物营养学报.2008(01):85-91.
    [94]陈晓春,陈代文,张克英.饲粮能量、蛋白质水平及赖能比对早期断奶仔猪生产性能的影响[J].四川农业大学学报.1999,17(4):385-391.
    [95]樊银珍,周俐兵,吴义师,等.生长猪在不同的能量和蛋白质(氨基酸)水平下生产性能的研究:第四届全国饲料营养学术研讨会[Z].中国南京:200255.
    [96]武英,戴更芸,呼红梅,等.能量、粗蛋白和赖氨酸水平对猪生长及肉品质的影响[J].山东农业科学.2005(6):55-57.
    [97]杨凤.动物营养学[M].北京:中国农业出版社,2001.
    [98]宋育.猪的营养[M].北京:中国农业大学出版社,1995.
    [99]Whittemore C T, Fawcett R H. Model responses of the growing pig to the dietary intake of energy and protein[J]. Anim Prod.1974,19(02):221-231.
    [100]高鹏飞,张青峰,王钦德.五指山猪(WZSP)近交系生长曲线分析与拟合的研究[J].畜牧兽医科技信息.2005(9):31-32.
    [101]马学武.实验条件下生猪生产水平分析[D].甘肃农业大学甘肃农业大学,2004.
    [102]田亚东.肉鸡能量和氨基酸需要动态模型的建立[D].中国农业科学院,2005.
    [103]杨诗兴,何振东,汤振玉,等.猪的饲养标准研究—生长肥育猪的消化能与可消化蛋白质的需要[J].甘肃畜牧兽医.1981(1):9-17.
    [104]杨诗兴,何振东,王永清,等.猪的饲养标准研究—甘肃黑猪生长肥育期消化能与可消化蛋白质需要量的制定(报告II)[J].甘肃农大学报.1984(2):8-18.
    [105]周梅卿,李华友,刘君锡,等.瘦肉型生长肥育猪饲粮能量蛋白水平及需要量的探讨[J].中国畜牧杂志.1986(2):8-10.
    [106]杨嘉实,苏秀霞,万伶俐,等.东北民猪不同生长阶段饥饿代谢的研究[J].养猪.1989(2):3-5.
    [107]黄忠,陈衍仁,曾昭光,等.北京黑猪营养需要的研究[J].北京农业大学学报.1985(1):95-99.
    [108]李焕友.甘肃白猪饲养标准研究—20-90公斤生长肥育猪能量需要量[J].安徽农学院学报.1991,18(1):69-73.
    [109]李昌茂.贵州实验动物香猪营养需要模型研究[D].贵州大学,2009.
    [110]谷建.黄花补血草总黄酮提取工艺及生物活性研究[D].甘肃农业大学,2010.
    [111]Wu J C, Cheng J, Shi X L. Preparation of ACE inhibitory peptides from Mytilus coruscus hydrolysate using uniform design[J]. Biomed Res Int.2013,2013:290120.
    [112]王庆奎,白东清,陈成勋,等.用均匀设计法研究不同营养组合对凡纳滨对虾生长和饵料利用率的影响[J].饲料工业.2011(08):21-23.
    [113]张阳.矿物质对半滑舌鳎生长及部分生理生化指标的影响[D].天津农学院,2011.
    [114]王庆奎,陈成勋,邢克智,等.饵料中蛋白质、糖类、脂类对点带石斑鱼生长的影响[J].饲料工业.2010(14):7-10.
    [115]李鹏,武书庚,张海军,等.利用均匀设计方法研制复合酸化剂的配方[J].动物营养学报.2009(04):513-518.
    [116]刘长忠,谢德华,王自良,等.日粮纤维与非淀粉多糖酶对生长鹅日粮真代谢能当量的影响[J].中国饲料.2009(11):19-23.
    [117]Karaman I, Qannari E M, Martens H, et al. Comparison of Sparse and Jack-knife partial least squares regression methods for variable selection[J]. Chemom Intell Lab Syst.2013, 122:65-77.
    [118]唐启义,唐洁.偏最小二乘回归分析在均匀设计试验建模分析中的应用[J].数理统计与管理.2005(05):45-49.
    [119]Ragni L, Berardinelli A, Cevoli C, et al. Assessment of the water content in extra virgin olive oils by Time Domain Reflectometry (TDR) and Partial Least Squares (PLS) regression methods[J]. J Food Eng.2012,111(1):66-72.
    [120]Hassani S, Martens H, Qannari E M, et al. Model validation and error estimation in multi-block partial least squares regression[J]. Chemom Intell Lab Syst.2012,117:42-53.
    [121]Krishnan A, Williams L J, Mcintosh A R, et al. Partial Least Squares (PLS) methods for neuroimaging:A tutorial and review[J]. Neurolmage.2011,56(2):455-475.
    [122]Sharma M C, Sharma S, Sahu N K, et al. QSAR studies of some substituted imidazolinones angiotensin II receptor antagonists using Partial Least Squares Regression (PLSR) method based feature selection[J]. J Saudi Chem Soc.2013,17(2):219-225.
    [123]王惠文.偏最小二乘回归方法及应用[M].北京:国防科技出版社,1996.
    [124]Mehmood T, Liland K H, Snipen L, et al. A review of variable selection methods in Partial Least Squares Regression[J]. Chemom Intell Lab Syst.2012,118:62-69.
    [125]曲亚鑫.基于历史数据的偏最小二乘建模方法研究与应用[D].华北电力大学,2012.
    [126]邓书鸿.基于化学计量学的阿胶鉴别方法及黄芪谱效关系的研究[D].山东大学,2012.
    [127]甄少立,王卫平.均匀设计优化烧伤油一号的制备条件[J].数理统计与管理.2001(2):11-13.
    [128]杜国华,姚国清,周建军.均匀设计-偏最小二乘方法解析铁钴镍铜锌配合物吸收光谱[J].实用测试技术.2001(6):30-32.
    [129]邓聚龙.灰理论基础[M].武汉:华中科技大学出版社,2002.
    [130]Wang S, Jiang X M, Wang Q, et al. Experiment and grey relational analysis of seaweed particle combustion in a fluidized bed[J]. Energ Convers Manage.2013,66:115-120.
    [131]Tang C, Young H. Using Grey relational analysis to determine wet chemical etching parameters in through-silicon-via etching application[J]. Mat Sci Semicon Proc.2013, 16(2):403-409.
    [132]Chang K, Chang Y, Tsai I. Enhancing FMEA assessment by integrating grey relational analysis and the decision making trial and evaluation laboratory approach[J]. Eng Fail Analy.2013,31:211-224.
    [133]Kuram E, Ozcelik B. Multi-objective optimization using Taguchi based grey relational analysis for micro-milling of Al 7075 material with ball nose end mill[J]. Measurement. 2013,46(6):1849-1864.
    [134]Nagesh S, Narasimha Murthy H N, Krishna M, et al. Parametric study of CO2 laser drilling of carbon hanopowder/vinylester/glass nanocomposites using design of experiments and grey relational analysis[J]. Opt Laser Technol.2013,48:480-488.
    [135]Qiu B, Wang F, Li Y, et al. Research on Method of Simulation Model Validation Based on Improved Grey Relational Analysis[J]. Phys Procedia.2012,25:1118-1125.
    [136]龙萍,许立坤,李庆芬,等.均匀设计RuIrSnLa/Ti氧化物涂层的回归与灰色关联分析[J].化学学报.2009,67(12):1325-1330.
    [137]Xue-Jun T, Jia C. A Dynamic Interval Decision-Making Method Based on GRA[J]. Phys Procedia.2012,24, Part C:2017-2025.
    [138]Xie Y, Mao Z. Evaluation of Residential Energy-Saving Buildings Based on Grey Relational Analysis Method[J]. Procedia Engineering.2012,29:3149-3153.
    [139]何万林.支持向量机排序回归方法及其在优化分子对接打分函数的应用[D].浙江大学,2012.
    [140]Cortes C, Vapnik V. Support-vector networks[J]. Mach Learn.1995,20(3):273-297.
    [141]李涛,汪西莉.—种基于聚类核的半监督支持向量机分类方法[J].计算机应用研究.2013,30(1):42-45.
    [142]丁胜锋,孙劲光.基于混合模糊隶属度的模糊双支持向量机研究[J].计算机应用研究.2013,02:432-435.
    [143]李俊,谭显胜,谭泗桥,等.改进支持向量机在棉铃虫人工饲料配方优化中的应用[C].中国湖南长沙:2010.
    [144]李明山,王正明,张仪.基于均匀试验设计的支持向量回归参数选择方法[J].系统仿真学报.2008,08:2195-2199.
    [145]李江长,邹云,贺建华.湖南黑猪养殖现状调查与开发利用对策研究[J].湖南畜牧兽 医.2012,03:27-29.
    [146]Hu T, Zeng H, Chen Z, et al. The optimization of regeneration tissue culture system of three chilli peppers cultivars based on the uniform design and the mathematical model equation[J]. Acta Biol Hung.2012,63(3):372-388.
    [147]Kong S S, Liu J J, Hwang T C, et al. Optimizing the parameters of vagus nerve stimulation by uniform design in rats with acute myocardial infarction[J]. PLoS One.2012,7(11): e42799.
    [148]Xiao Q, Yan H, Wei Y, et al. Optimization of H2O2 dosage in microwave-H2O2 process for sludge pretreatment with uniform design method[J]. J Envir Sci.2012,24(12): 2060-2067.
    [149]猪饲养标准[S].北京,中华人民共和国农业部,2004.
    [150]唐启义.DPS数据处理系统:试验设计、统计分析及数据挖掘(第二版)[M].北京:科学出版社,2010.
    [151]高辉,胡良平,郭晋,等.如何正确处理正交设计和均匀设计定量资料[J].中西医结合学报.2008(8):873-877.
    [152]Tang Q, Zhang C. Data Processing System (DPS) software with experimental design, statistical analysis and data mining developed for use in entomological research[J]. Insect Sci.2013,20(2):254-260.
    [153]Garcia N P, Alonso F J, de Cos J F, et al. Hybrid modelling based on support vector regression with genetic algorithms in forecasting the cyanotoxins presence in the Trasona reservoir (Northern Spain)[J]. Environ Res.2013,122:1-10.
    [154]Chen C K, Bruce M, Tyler L, et al. Analysis of an environmental exposure health questionnaire in a metropolitan minority population utilizing logistic regression and Support Vector Machines[J]. J Health Care Poor Underserved.2013,24(1 Suppl):153-171.
    [155]左斌,胡超,谢达平.均匀设计对大肠杆菌产谷氨酸脱羧酶培养基优化的应用[J].湖南农业大学学报(自然科学版).2008,34(5):531-533.
    [156]李骆冰.酿酒酵母甜高梁汁发酵生产乙醇研究[D].华东理工大学,2010.
    [157]王四清.回雁母系猪不同营养水平育肥试验报告[J].湖南畜牧兽医.1998,3:6-7.
    [158]苏从成,宗绍志.大白猪繁殖性状的相关及通径分析[J].畜牧兽医杂志.2010,29(3):14-17,19.
    [159]吴其文,陈建锚,肖天放,等.莆田黑猪繁殖性状的通径分析[J].福建畜牧兽医.2009,31(2):4-6.
    [160]杨立彬,李德发.猪生长模型研究进展及建立我国猪营养需要模型的可行性分析[C].中国云南昆明:2003.
    [161]张潭瑛,杨勤,刘汉丽,等.合作猪最佳饲养方式探讨[J].畜牧兽医杂志.2013(01):15-18.
    [162]左晓红,赵迪武,吴买生,等.沙子岭猪与巴沙、汉沙杂交猪肉质特性的研究[J].猪业科学.2011(06):100-103.
    [163]谭毓平,吴买生,易建军,等.沙子岭猪肥育性能与肉质特性研究[J].家畜生态.2003(04):19-21.
    [164]金鑫,李娜,张树敏,等.松辽黑猪新品系及其与长白山野猪杂交—代生长肥育性能比较[J].吉林畜牧兽医.2008(05):6-9.
    [165]葛长荣,赵素梅,张曦,等.不同日粮蛋白水平对乌金猪生长性能和胴体品质的影响[J].畜牧兽医学报.2008(11):1499-1509.
    [166]郑本艳.营养水平对三江白猪生长性能、胴体及肌肉品质的影响[D].黑龙江八一农垦大学,2007.
    [167]林大木,饶自立,何建国,等.不同组合三元杂交瘦肉猪在低蛋白质水平日粮的饲养效果[J].中国畜牧杂志.1988(03):27-29.
    [168]邓波波,霍永久,赵国琦,等.低氮、低磷日粮对育肥猪生产性能的影响[J].饲料工业.2013,5:30-32.
    [169]杨立彬,李德发,谯仕彦,等.饲粮不同营养水平对20-90kg猪生长肥育性能及胴体品质的影响[J].中国畜牧杂志.2002,38(3):23-25.
    [170]Friesen K G, Nelssen J L, Goodband R D, et al. Influence of dietary lysine on growth and carcass composition of high-lean-growth gilts fed from 34 to 72 kilograms [J]. J Anim Sci. 1994,72(7):1761-1770.
    [171]Li P, Zeng Z, Wang D, et al. Effects of the standardized ileal digestible lysine to metabolizable energy ratio on performance and carcass characteristics of growing-finishing pigs[J]. J Anim Sci Biotechnol.2012,3(1):9.
    [172]Fragkaki A G, Farmaki E, Thomaidis N, et al. Comparison of multiple linear regression, partial least squares and artificial neural networks for prediction of gas chromatographic relative retention times of trimethylsilylated anabolic androgenic steroids[J]. J Chromatogr A.2012,1256:232-239.
    [173]Krivobokova T, Briones R, Hub J S, et al. Partial least-squares functional mode analysis: application to the membrane proteins AQP1, Aqyl, and CLC-ecl[J]. Biophys J.2012, 103(4):786-796.
    [174]Monfared A M, Tiwari-V S, Tripathi M M, et al. Raman spectroscopy for clinical-level detection of heparin in serum by partial least-squares analysis [J]. J Biomed Opt.2013, 18(2):27010.
    [175]Land W H, Qiao X, Margolis D E, et al. Kernelized partial least squares for feature reduction and classification of gene microarray data[J]. BMC Syst Biol.2011,5 Suppl 3: S13.
    [176]Lee S H, Lee J H, Cho S, et al. End point determination of blending process for trimebutine tablets using principle component analysis (PCA) and partial least squares (PLS) regression[J]. Arch Pharm Res.2012,35(9):1599-1607.
    [177]Al-Degs Y S, El-Sheikh A H, Issa A A, et al. A simple and accurate analytical method for determination of three commercial dyes in different water systems using partial least squares regression[J]. Water Sci Technol.2012,66(8):1647-1655.
    [178]Basant N, Durante C, Cocchi M, et al. Modeling the binding affinity of p38alpha MAP kinase inhibitors by partial least squares regression[J]. Chem Biol Drug Des.2012,80(3): 455-470.
    [179]Kreeger P K. Using partial least squares regression to analyze cellular response data[J]. Sci Signal.2013,6(271):r7.
    [180]Stewart T B, Leon D L, Fox M C, et al. Performance of pigs with mixed nematode infections before and after ivermectin treatment[J]. Vet Parasitol.1991,39(3-4):253-266.
    [181]Kestin S, Kennedy R, Tonner E, et al. Decreased fat content and increased lean in pigs treated with antibodies to adipocyte plasma membranes [J]. J Anim Sci.1993,71(6): 1486-1494.
    [182]Ma Y L, Lindemann M D, Cromwell G L, et al. Evaluation of trace mineral source and preharvest deletion of trace minerals from finishing diets for pigs on growth performance, carcass characteristics, and pork quality[J]. J Anim Sci.2012,90(11):3833-3841.
    [183]Suo C, Yin Y, Wang X, et al. Effects of lactobacillus plantarum ZJ316 on pig growth and pork quality[J]. BMC Vet Res.2012,8:89.
    [184]Lonergan S M, Stalder K J, Huff-Lonergan E, et al. Influence of lipid content on pork sensory quality within pH classification[J]. J Anim Sci.2007,85(4):1074-1079.
    [185]Monteith K L, Stephenson T R, Bleich V C, et al. Risk-sensitive allocation in seasonal dynamics of fat and protein reserves in a long-lived mammal [J]. J Anim Ecol.2013.
    [186]Fukagawa N K. Protein and amino acid supplementation in older humans[J]. Amino Acids. 2013,44(6):1493-1509.
    [187]Otten W, Kanitz E, Tuchscherer M, et al. Effects of low and high protein:carbohydrate ratios in the diet of pregnant gilts on maternal cortisol levels and the adrenocortical and sympathoadrenal reactivity in their offspring[J]. J Anim Sci.2013,91(6):2680-2692.
    [188]李梦云,陈代文,张克英.日粮营养水平对猪胴体品质和肉质性状的影响[J].饲料研究.2008,12:30-31.
    [189]李红玲,宋春阳,翟强,等.营养水平对鲁农2号生长猪屠宰性能和肉品质的影响[J].中国饲料.2011,10:38-40.
    [190]储中和,孙长远,卢东升,等.不同蛋白质水平对育肥猪生长及胴体品质的影响[J].中国畜牧杂志.1991,3:35-36.
    [191]邹田德,毛湘冰,余冰,等.饲粮消化能和可消化赖氨酸水平对长荣杂交生长猪生长性能及胴体品质的影响[J].动物营养学报.2012,12:2498-2506.
    [192]欧秀琼,郭宗义.不同营养水平与饲养方式对商品猪肉质的影响[J].养猪.1995,4:24-25.
    [193]陈代文,张克英,胡祖禹,等.营养水平及性别对生长育肥猪肉质性状发育规律的影响[J].四川农业大学学报.2002,1:7-11.
    [194]黄大鹏,郑本艳,李祥辉,等.营养水平对育肥后期三江白猪肌肉品质的影响[J].动物营养学报.2009,4:428-433.
    [195]黄大鹏,郑本艳,李祥辉,等.营养水平对育肥后期三江白猪胴体指标影响效应研究[J].动物营养学报.2009,3:263-271.
    [196]Szabo C, Jansman A J, Babinszky L, et al. Effect of dietary protein source and lysine:DE ratio on growth performance, meat quality, and body composition of growing-finishing pigs[J]. J Anim Sci.2001,79(11):2857-2865.
    [197]Smith J N, Tokach M D, O'Quinn P R, et al. Effects of dietary energy density and lysine:calorie ratio on growth performance and carcass characteristics of growing-finishing pigs[J]. J Anim Sci.1999,77(11):3007-3015.
    [198]朱立鑫,易学武,谯仕彦.不同净能水平和赖氨酸净能比的低蛋白日粮对肥育猪生长性能和胴体品质的影响[J].中国畜牧杂志.2010,46(9):33-37.
    [199]刘丑生,王彦芳.猪肉品质的灰色关联分析和模糊综合评判[J].中国畜牧杂志.2003,2:18-20.
    [200]唐爱发,连林生,李爱云.撒坝猪及其配套系猪肉品质的灰色关联度分析[J].四川畜牧兽医.2000,5:21-22.
    [201]陈国顺,刘孟洲.甘肃合作猪不同体重的肉质灰色关联度分析[J].广西畜牧兽医.2004,1:13-15.
    [202]杨诗兴.研究猪血液生化指标和增重关系应用灰色关联度分析值得考虑的问题—与张 力、柳树青二先生商洽[J].家畜生态.2000,21(2):1-9.
    [203]齐俊勇,刘丁健,李秀宝,等.能量、粗蛋白、钙和磷水平对20kg-40kg新美系长白猪的血清生化指标的影响研究:中国畜牧兽医学会养猪学分会第五次全国会员代表大会暨养猪业创新发展论坛[Z].中国广西桂林:20108.
    [204]雷秋霞.日粮不同蛋白水平对生长肉兔生产性能、营养物质利用、免疫及蛋白酶活的影响[D].山东农业大学,2003.
    [205]Kanjanapruthipong J. Supplementation of milk replacers containing soy protein with threonine, methionine, and lysine in the diets of calves[J]. J Dairy Sci.1998,81(11): 2912-2915.
    [206]Brudevold A B, Southern L L. Low-protein, crystalline amino acid-supplemented, sorghum-soybean meal diets for the 10-to 20-kilogram pig[J]. J Anim Sci.1994,72(3): 638-647.
    [207]Coma J, Zimmerman D R, Carrion D. Relationship of rate of lean tissue growth and other factors to concentration of urea in plasma of pigs[J]. J Anim Sci.1995,73(12): 3649-3656.
    [208]Brendemuhl J H, Lewis A J, Peo E J. Effect of protein and energy intake by primiparous sows during lactation on sow and litter performance and sow serum thyroxine and urea concentrations[J]. J Anim Sci.1987,64(4):1060-1069.
    [209]Cohen J A, Kaplan M M. The SGOT/SGPT ratio-an indicator of alcoholic liver disease[J]. Dig Dis Sci.1979,24(11):835-838.
    [210]Reichling J J, Kaplan M M. Clinical use of serum enzymes in liver disease[J]. Dig Dis Sci. 1988,33(12):1601-1614.
    [211]郭春华,冯保华,徐亚欧,等.猪血清碱性磷酸酶的研究[J].云南畜牧兽医.1991,4:1-4.
    [212]徐建业,董宪彤,张海明.骨碱性磷酸酶测定在早期诊断佝偻病与血清碱性酶及钙磷测定的比较[J].实用医技杂志.2004,11(8):1421-1422.
    [213]Coma J, Carrion D, Zimmerman D R. Use of plasma urea nitrogen as a rapid response criterion to determine the lysine requirement of pigs[J]. J Anim Sci.1995,73(2):472-481.
    [214]Young V R, Marchini J S, Cortiella J. Assessment of protein nutritional status[J]. J Nutr. 1990,120 Suppl 11:1496-1502.
    [215]董志岩,方桂友,冯玉兰,等.饲粮不同赖氨酸、微量元素浓度对生长猪生产性能和血液生化指标的影响[J].饲料博览.2001(11):33-35.
    [216]Tanabe A, Egashira Y, Fukuoka S, et al. Expression of rat hepatic 2-amino-3-carboxymuconate-6-semialdehyde decarboxylase is affected by a high protein diet and by streptozotocin-induced diabetes[J]. J Nutr.2002,132(6):1153-1159.
    [217]Buonomo F C, Klindt J, Yen J T. Administration of porcine somatotropin by sustained-release implant:growth factor and metabolic responses in crossbred white and genetically lean and obese boars and gilts[J]. J Anim Sci.1995,73(5):1318-1326.
    [218]Draghia-Akli R, Fiorotto M L, Hill L A, et al. Myogenic expression of an injectable protease-resistant growth hormone-releasing hormone augments long-term growth in pigs[J].Nat Biotechnol.1999,17(12):1179-1183.
    [219]Brameld J M, Gilmour R S, Buttery P J. Glucose and amino acids interact with hormones to control expression of insulin-like growth factor-I and growth hormone receptor mRNA in cultured pig hepatocytes[J]. J Nutr.1999,129(7):1298-1306.
    [220]周芬,王恬,张莉莉,等.猪生长激素的应用及存在问题[J].饲料研究.2007(11):25-27.
    [221]Buonomo F C, Lauterio T J, Baile C A, et al. Effects of insulin-like growth factor I (IGF-I) on growth hormone-releasing factor (GRF) and thyrotropin-releasing hormone (TRH) stimulation of growth hormone (GH) secretion in the domestic fowl (Gallus domesticus)[J]. Gen Comp Endocrinol.1987,66(2):274-279.
    [222]Yang H, Pettigrew J E, Johnston L J, et al. Effects of dietary lysine intake during lactation on blood metabolites, hormones, and reproductive performance in primiparous sows[J]. J Anim Sci.2000,78(4):1001-1009.
    [223]Guay F, Trottier N L. Muscle growth and plasma concentrations of amino acids, insulin-like growth factor-I, and insulin in growing pigs fed reduced-protein diets[J]. J Anim Sci.2006, 84(11):3010-3019.
    [224]Brameld J M, Atkinson J L, Saunders J C, et al. Effects of growth hormone administration and dietary protein intake on insulin-like growth factor I and growth hormone receptor mRNA Expression in porcine liver, skeletal muscle, and adipose tissue[J]. J Anim Sci. 1996,74(8):1832-1841.
    [225]Jepson M M, Bates P C, Millward D J. The role of insulin and thyroid hormones in the regulation of muscle growth and protein turnover in response to dietary protein in the rat[J]. Br J Nutr.1988,59(3):397-415.
    [226]Sticker L S, Thompson D J, Fernandez J M, et al. Dietary protein and(or) energy restriction in mares:plasma growth hormone, IGF-I, prolactin, cortisol, and thyroid hormone responses to feeding, glucose, and epinephrine[J]. J Anim Sci.1995,73(5):1424-1432.
    [227]Gerrits W J, Decuypere E, Verstegen M W, et al. Effect of protein and protein-free energy intake on plasma concentrations of insulin-like growth factor I and thyroid hormones in preruminant calves[J]. J Anim Sci.1998,76(5):1356-1363.
    [228]Davenport G M, Cummins K A, Mulvaney D R. Abomasal nitrogen flow affects the relationship between dietary nitrogen and insulin-like growth factor-I in growing lambs[J]. J Nutr.1995,125(4):842-850.
    [229]Takenaka A, Oki N, Takahashi S I, et al. Dietary restriction of single essential amino acids reduces plasma insulin-like growth factor-I (IGF-I) but does not affect plasma IGF-binding protein-1 inrats[J]. J Nutr.2000,130(12):2910-2914.
    [230]Walsh A M, Sweeney T, Bahar B, et al. The effect of chitooligosaccharide supplementation on intestinal morphology, selected microbial populations, volatile fatty acid concentrations and immune gene expression in the weaned pig[J]. Animal.2012,6(10):1620-1626.
    [231]Walsh A M, Sweeney T, O'Shea C J, et al. Effects of supplementing dietary laminarin and fucoidan on intestinal morphology and the immune gene expression in the weaned pig[J]. J Anim Sci.2012,90 Suppl 4:284-286.
    [232]Walsh A M, Sweeney T, O'Shea C J, et al. Effect of dietary laminarin and fucoidan on selected microbiota, intestinal morphology and immune status of the newly weaned pig[J]. Br J Nutr.2013:1-9.
    [233]Yoon J H, Ingale S L, Kim J S, et al. Effects of dietary supplementation with antimicrobial peptide-P5 on growth performance, apparent total tract digestibility, faecal and intestinal microflora and intestinal morphology of weanling pigs[J]. J Sci Food Agric.2013,93(3): 587-592.
    [234]Palander P A, Heinonen M, Simpura I, et al. Jejunal morphology and blood metabolites in tail biting, victim and control pigs[J]. Animal.2013:1-9.
    [235]Dunsford B R, Haensly W E. Effect of dietary cholesterol and carbohydrate on small intestinal structure and function in prematurely weaned rats[J]. J Anim Sci.1991,69(7): 2894-2903.
    [236]Hampson D J. Alterations in piglet small intestinal structure at weaning[J]. Res Vet Sci. 1986,40(1):32-40.
    [237]Mayer P W, Schalch D S. Somatomedin synthesis by a subclone of Buffalo rat liver cells: characterization and evidence for immediate secretion of de novo synthesized hormone[J]. Endocrinology.1983,113(2):588-595.
    [238]Zhu Z C, Zhang J S, Ke G J. Effects of blocking activation of IGF-1-Stat3 signaling pathway in guinea pig sclera fibroblast by AG490 on expression of MMP-2 and Integrinbeta(1)[J]. Zhonghua Yan Ke Za Zhi.2011,47(4):332-335.
    [239]Han B, Tong J, Zhu M J, et al. Insulin-like growth factor-1 (IGF-1) and leucine activate pig myogenic satellite cells through mammalian target of rapamycin (mTOR) pathway[J]. Mol Reprod Dev.2008,75(5):810-817.
    [240]Raha D, Nehar S, Paswan B, et al. IGF-I enhances cortisol secretion from guinea-pig adrenal gland:in vivo and in vitro study[J]. Int J Mol Med.2007,20(1):91-95.
    [241]Gregoraszczuk E L, Ptak A. In vitro effect of leptin on growth hormone (GH)- and insulin-like growth factor-I (IGF-I)-stimulated progesterone secretion and apoptosis in developing and mature corpora lutea of pig ovaries[J]. J Reprod Dev.2005,51(6):727-733.
    [242]Gerbens F, de Koning D J, Harders F L, et al. The effect of adipocyte and heart fatty acid-binding protein genes on intramuscular fat and backfat content in Meishan crossbred pigs[J]. J Anim Sci.2000,78(3):552-559.
    [243]Schaap F G, van der Vusse G J, Glatz J F. Fatty acid-binding proteins in the heart[J]. Mol Cell Biochem.1998,180(1-2):43-51.
    [244]Gerbens F, van Erp A J, Harders F L, et al. Effect of genetic variants of the heart fatty acid-binding protein gene on intramuscular fat and performance traits in pigs[J]. J Anim Sci. 1999,77(4):846-852.
    [245]Gerbens F, Rettenberger G, Lenstra J A, et al. Characterization, chromosomal localization, and genetic variation of the porcine heart fatty acid-binding protein gene[J]. Mamm Genome.1997,8(5):328-332.
    [246]杨永生,贺建华,邓惠中,等.肌肉生长抑制素对动物肌肉、脂肪和骨骼的影响[J].动物营养学报.2012,2:220-225.
    [247]Bellinge R H, Liberles D A, Iaschi S P, et al. Myostatin and its implications on animal breeding:a review[J]. Anim Genet.2005,36(1):1-6.
    [248]Joulia-Ekaza D, Cabello G. Myostatin regulation of muscle development:molecular basis, natural mutations, physiopathological aspects[J]. Exp Cell Res.2006,312(13):2401-2414.
    [249]Thomas M, Langley B, Berry C, et al. Myostatin, a negative regulator of muscle growth, functions by inhibiting myoblast proliferation[J]. J Biol Chem.2000,275(51): 40235-40243.
    [250]Feldman B J, Streeper R S, Farese R J, et al. Myostatin modulates adipogenesis to generate adipocytes with favorable metabolic effects[J]. Proc Natl Acad Sci U S A.2006,103(42): 15675-15680.
    [251]Elkasrawy M N, Hamrick M W. Myostatin (GDF-8) as a key factor linking muscle mass and bone structure[J]. J Musculoskelet Neuronal Interact.2010,10(1):56-63.