多孔梯度HAP生物陶瓷人工骨的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
仿人长干骨的结构梯度进行材料设计:外层为致密层,内层为多孔松质层。采用HAP粉末为原料,添加一定量的生物玻璃,来制备多孔梯度HAP人工骨。
     本研究首次采用自燃烧法合成了纳米级HAP粉末。自燃烧法以溶胶-凝胶法为基础,特别适合于纳米粉体的合成。按照摩尔比n(Ca)/n(P)=1.67及n(Ca离子)/n(柠檬酸)=1将Ca(NO_3)_2·4H_2O、(NH_4)_2HPO_4与柠檬酸混合,在80℃加热蒸发,几小时后凝胶形成。然后在200℃燃烧,最后经750℃煅烧得到纳米HAP粉末。经XRD分析及TEM观察,为纯相的HAP,平均粒径为85nm。通过对自燃烧法制备的纳米级羟基磷灰石(HAP)粉末,进行的DTA、TG和XRD测试,分析纳米HAP的生成历程,并对反应机理进行了初步探讨。对该工艺的影响因素:水量、PH值、温度和柠檬酸的量进行了初步讨论。结果发现,反应机理主要为溶胶凝胶生成阶段的络合物sol-gel法机理和煅烧阶段的氧化还原燃烧机理;HAP的生成主要经历了β-Ca_2P_2O_7、γ-Ca_2P_2O_7、CaH_2P_2O_7、C_2Ca、CaCO_3等相;最佳工艺条件是:[H_2O]/[Ca~(2+)]=30~35,PH值在2~3之间,加热温度为80℃左右,柠檬酸与钙离子的比在1~2之间。
     本研究采用含生物玻璃前驱体粉末原料,添加柠檬酸造孔剂,模压成型,在1050℃烧结保温3小时,获得了显气孔率为54%、体积密度为1.28S/cm~3、抗弯强度为13.25MPa的多孔HAP人工骨材料。
     研究发现,加入玻璃粘结剂可以促进材料的烧结,降低烧结温度。随着烧结温度的升高和保温时间的延长,显气孔率和吸水率逐渐减小,体积密度逐渐增加。抗弯强度随着烧结温度的升高和保温时间的延长而增加,多孔烧结体的强度可以主要通过气孔率来判断。
     通过1050℃不同保温时间烧结的多孔HAP的形貌观察,可以清楚地看到孔径大小的梯度变化,与人长骨的梯度结构基本一致。致密层存在少量的尺寸为50μm左右的气孔和大量的尺寸为5μm左右的微孔,这是原料中残留有机物烧失以及粉末颗粒烧结不致密形成的;多孔层存在大量的尺寸为500μm左右的大孔,这是柠檬酸造孔剂烧失形成的,在大孔之间存在一些约50μm、100μm的气孔。随着保温时间的延长,梯度界面变得更加致密,宏观气孔孔的边缘钝化,且较大的缺陷被愈合,气孔的形状更加近似球形,气孔的尺寸由500μm左右减小到400μm左右。
The structure of artificial bone was designed according to the long bone of people, the outer was compact layer, the inner was porous spongiosa layer.
    HAP powders were firstly prepared by auto-combustion method in this study. The calcium nitrate, ammonium hydrogen phosphate and citric acid were blended according that the mole ratio of Ca/P and Ca2+/(citric acid) were 1.67 and 1. Then the blender were heating at 80 to form gel after some hours. At last the gel was firing at 200 and calcined at 750 to get the HAP powders. The results showed that the sample was pure-phase HAP and the grain size was about 85 nm. Via TG-DTA and XRD testing on the nanosized hydroxyapatite (HAP) prepared by auto-combustion method, the course of HAP was analyzed, and the mechanism of reaction was discussed. The influence factors of this method such as, the quantity of water, PH value, temperature and the quantity of citric acid were studied. The results show that the mechanism of reaction is complex mechanism in the generating stage of sol-gel and then the oxidation-reduction combustion mechanism; The forming of HAP mostly experienced the phases of B-Ca2P2O7, y- Ca2P2O7, CaH2P2O7,
     C2Ca, CaCO3 and so on. The optimum technical parameters are that the n(H2O)/ n(Ca2+) is 30-35, the PH value is 2-3, the heating temperature is about 80, and the mole ratio of citric acid to Ca2+ is 1-2.
    The material was sintered at 1050 for three hours to get the porous artificial bone, that its apparent porosity was54%, its volume density was 1.28 g/cm3, and its bending strength was 13.25Mpa.
    The results showed that the sintering temperature was reduced by adding bioglass. Along with the rising of sintering temperature and the increasing of heat preservation time, the porosity and water absorption reduced, the density and bending strength increased, the bending strength was mostly estimated by the porosity.
    Through observing the interface of porosity HAP sintered at 1050, the gradient changing of pore size was observed that was like gradient structure of bone. In the compact layer there were a few about 50 y mpores and many about 5um micropores. In the porous layer there were many about 500um pores.
引文
[1] 杨志明.从临床观点探讨人工骨材料研究.材料导报,2000.14(3):6~8
    [2] 顾兴卿,徐国风.生物医学材料学.天津:天津科技翻译出版公司,1993.57
    [3] 杨洪义,刘玲蓉,张燕.骨移植材料及其传导机理.国外医学生物医学工程分册,1999.22(6):344~349
    [4] Vacanti CA, Upton J. Tissue-engineered morphogenesis of cartilage and bone by means of cell transplantation using synlhelic biodegradable polymer matrices. Clin Plast Surg, 1994.21: 445~462.
    [5] 金丹,裴国献.骨与软骨缺损组织工程学修复研究进展.中华骨科杂志,1999.19(7):441~442
    [6] Paige KT, Cima LG, Yaremchuk M J, ct al.. Injectable cartilage. Plast Reconstr Surg, 1995.96: 1390~1398.
    [7] Nerem RM. Tissue engineering in the USA. Med Biol Eng Comput, 1992.30: 8~20.
    [8] 颜永年,崔福斋,张人佶,胡蕴玉.人工骨的快速成形制造.材料导报,2000.14(2):11~13
    [9] Thorp BH, Ekman S, Jakowlew SB, et al. Porcine osleochondrosis: deficiencies in transforming growth factor—β and insulin-like growth factor-Ⅰ. Calcif Tissue Int, 1995.56: 376~382.
    [10] Tsukazaki T, Usa T, Matsumoto T, et al. Effect of transforming growth factor—β on the insulin-like growth factor-Ⅰ autocrine/paracrine axis in culture rat articular chondrocytes. Exp Cell Res, 1994. 215: 9~15.
    [11] 梁戈,胡蕴玉,郑昌琼,冉均国,王士斌.多孔β-TCP/BMP复合人工骨的研制和动物体内的相关研究.中华骨科杂志,1998.18(2):75~79
    [12] EI-Ghannam A,Ducheyne P, Shapiro IM.Porous bioactive glass and hydroxyapatile ceramic affect bone cell function in vitro along different time lines. J Biomed Mater Res, 1997.36(2): 167~180.
    [13] 李世普,冯凌云,贾莉.β-Ca_3(PO_4)_2粉末的制备及其有关性能.武汉工业大学学报,1995.17(4):146~148
    [14] 闫玉华,樊东辉,刘畅等.β-TCP多孔陶瓷药物载体的制备与微观结构.武汉工业大学学报,1995.17(4):106~108
    [15] 陈晓明,张士成,刘秋霞等.β-Ca_3(PO_1)_2陶瓷人工骨的枂成与结构特征.武汉工业大学学报,1995.17(4):136~139
    [16] 邬鸿彦,朱明刚,孔令宜等.纳米级羟基磷灰石生物陶瓷粉末的制备新方法.河北师范大学学报(自然科学版),1997.21(3):266~269
    
    
    [17] 薄颖慧,廖凯荣,卢泽俭等.聚乳酸/羟基磷灰石复合材料的研究 Ⅰ 超细微羟基磷灰石的合成及表面处理.中山大学学报(自然科学版),1999.38(3):43~47
    [18] 刘羽,钟康年,胡文云.溶胶-凝胶法合成条件与羟基磷灰石特征的关系.材料科学与工程,1997.15(1):63~65
    [19] Masahiro TOYODA, Eiji TERANISHI. Low Temperature Preparation of β-Tricalcium Phosphate Through Sol-Gel Processing. Journal of the Saciety of Japan, 2000. 108(2): 213~215
    [20] 何毅,刘孝波,陈德娟等.纳米级β-磷酸钙的合成.合成化学,2000.8(2):96~99
    [21] 王志强,马铁成,韩趁涛等.湿法合成纳米羟基磷灰石粉末的研究.无机盐工业,2001.33(1):3~5
    [22] 李世普,陈晓明.生物陶瓷.武汉,武汉工业大学出版社,1989:27
    [23] 黄立业,徐可为.纳米针状羟基磷灰石涂层的制备及其性能的研究.硅酸盐学报,1999.27(3):351~356
    [24] 黎大兵,胡建东,连建设等..纳米粉体(CeO_2)_(0.9-x)(GdO_1.5)_x(Sm_2O_3)_0.1的溶胶-凝胶低温燃烧合成[J].硅酸盐学报,2001.29(4):340~343
    [25] 张明福,赫晓东,韩杰才等.自燃烧法合成BaNd_2Ti_5O_11的凝胶化及热处理研究.无机材料学报,2000.15(5):879~883
    [26] 徐志刚,程福祥 周彪等.CoFe_2O_4纳米材料的燃烧法合成及磁性研究[J].科学通报,2000.45(17):1837~1841
    [27] 谢平波,张慰萍,尹民等,纳米Ln_2O_3:Eu(Ln=Gd,Y)荧光粉的燃烧法合成及其光致发光性质.无机材料学报(Journal of Inorganic Materials),1998.13(1):53~58
    [28] 李汶霞,殷声.低温燃烧合成陶瓷微粉.硅酸盐学报,1999.27(1):71~78
    [29] 岳振星,周济,张洪国.柠檬酸盐凝胶的自燃烧与铁氧体纳米粉合成[J].硅酸盐学报,1999.27(4):466~470
    [30] 丁子上,翁文剑,杨娟.化学络合法在溶胶-凝胶过程中的应用[J].硅酸盐学报,1995.23(5):571~579
    [31] 尹邦跃,王零森,樊毅等.乙二醇在络合物溶胶-凝胶法中的应用研究.硅酸盐学报,1999.27(3):337~341
    [32] 李汶霞,殷声.低温燃烧合成陶瓷微粉.硅酸盐学报,1999.27(1):71~78
    [33] 李汶霞,殷声.燃烧合成中的有机物.材料导报,2000.14(5):45~48
    [34] 邱明才.骨结构与骨代谢.医用生物力学,1995.10(4):253~256
    
    
    [35] 郑岳华,侯小妹,杨兆雄.多孔羟基磷灰石生物陶瓷的进展.硅酸盐通报.1995,3:20~24
    [36] 杨晓鸿,王志宏.生物陶瓷种植体研究概述——从致密到多孔.大自然探索,1998.17(65):51~56
    [37] 张玉军,尹衍升,王迎军.羟基磷灰石及其复合生物陶瓷材料材料研究进展.生物医学工程学杂志,1999.16(增刊):37~39
    [38] 张琳,田杰谟.多孔 HA 人工骨的制取与诱导成成骨研究.材料导报,2000.14(10):308~310
    [39] 朱新文,江东亮.有机泡沫浸渍工艺——种经济实用的多孔陶瓷制备工艺硅酸盐通报,2000.3:45~51
    [40] 刘富德,陈森凤等.多孔陶瓷材料的发展状况.材料导报,2000.14(6):33~34
    [41] 刘学建,黄莉萍,古宏晨,符锡仁.陶瓷成型方法研究进展.陶瓷学报,1999.20(4):230~234
    [42] 姚秀敏,谭寿洪,江东亮,孔径可控的多孔羟基磷灰石的制备工艺研究.功能材料与器件学报,2001.7(2):152~156
    [43] 姚秀敏,谭寿洪,江东亮.多孔羟基磷灰石陶瓷的制备.无机材料学报,2000.15(3):467~472
    [44] 袁建君,刘智恩,徐晓晖等.羟基磷灰石陶瓷凝胶浇注成型工艺研究.华东理工大学报.1996.22(3):310~315
    [45] 李世普.特种陶瓷工艺学.武汉:武汉工业大学出版社,1990.54~57
    [46] 李世普.特种陶瓷工艺学.武汉:武汉工业大学出版社,1990.61~68